mirror of
https://github.com/qurator-spk/eynollah.git
synced 2025-07-09 10:59:54 +02:00
minor fixes to avoid frequent warnings
This commit is contained in:
parent
903c87aca0
commit
2919538382
5 changed files with 17 additions and 24 deletions
|
@ -32,7 +32,7 @@ from scipy.ndimage import gaussian_filter1d
|
||||||
from numba import cuda
|
from numba import cuda
|
||||||
|
|
||||||
from ocrd import OcrdPage
|
from ocrd import OcrdPage
|
||||||
from ocrd_utils import getLogger
|
from ocrd_utils import getLogger, tf_disable_interactive_logs
|
||||||
|
|
||||||
try:
|
try:
|
||||||
import torch
|
import torch
|
||||||
|
@ -47,14 +47,11 @@ try:
|
||||||
except ImportError:
|
except ImportError:
|
||||||
TrOCRProcessor = VisionEncoderDecoderModel = None
|
TrOCRProcessor = VisionEncoderDecoderModel = None
|
||||||
|
|
||||||
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "3"
|
|
||||||
#os.environ['CUDA_VISIBLE_DEVICES'] = '-1'
|
#os.environ['CUDA_VISIBLE_DEVICES'] = '-1'
|
||||||
stderr = sys.stderr
|
tf_disable_interactive_logs()
|
||||||
sys.stderr = open(os.devnull, "w")
|
|
||||||
import tensorflow as tf
|
import tensorflow as tf
|
||||||
from tensorflow.python.keras import backend as K
|
from tensorflow.python.keras import backend as K
|
||||||
from tensorflow.keras.models import load_model
|
from tensorflow.keras.models import load_model
|
||||||
sys.stderr = stderr
|
|
||||||
tf.get_logger().setLevel("ERROR")
|
tf.get_logger().setLevel("ERROR")
|
||||||
warnings.filterwarnings("ignore")
|
warnings.filterwarnings("ignore")
|
||||||
# use tf1 compatibility for keras backend
|
# use tf1 compatibility for keras backend
|
||||||
|
@ -3614,7 +3611,7 @@ class Eynollah:
|
||||||
for ij in range(len(all_found_textline_polygons[j])):
|
for ij in range(len(all_found_textline_polygons[j])):
|
||||||
con_ind = all_found_textline_polygons[j][ij]
|
con_ind = all_found_textline_polygons[j][ij]
|
||||||
area = cv2.contourArea(con_ind)
|
area = cv2.contourArea(con_ind)
|
||||||
con_ind = con_ind.astype(np.float)
|
con_ind = con_ind.astype(float)
|
||||||
|
|
||||||
x_differential = np.diff( con_ind[:,0,0])
|
x_differential = np.diff( con_ind[:,0,0])
|
||||||
y_differential = np.diff( con_ind[:,0,1])
|
y_differential = np.diff( con_ind[:,0,1])
|
||||||
|
@ -3718,7 +3715,7 @@ class Eynollah:
|
||||||
con_ind = all_found_textline_polygons[j]
|
con_ind = all_found_textline_polygons[j]
|
||||||
#print(len(con_ind[:,0,0]),'con_ind[:,0,0]')
|
#print(len(con_ind[:,0,0]),'con_ind[:,0,0]')
|
||||||
area = cv2.contourArea(con_ind)
|
area = cv2.contourArea(con_ind)
|
||||||
con_ind = con_ind.astype(np.float)
|
con_ind = con_ind.astype(float)
|
||||||
|
|
||||||
x_differential = np.diff( con_ind[:,0,0])
|
x_differential = np.diff( con_ind[:,0,0])
|
||||||
y_differential = np.diff( con_ind[:,0,1])
|
y_differential = np.diff( con_ind[:,0,1])
|
||||||
|
@ -3821,7 +3818,7 @@ class Eynollah:
|
||||||
con_ind = all_found_textline_polygons[j][ij]
|
con_ind = all_found_textline_polygons[j][ij]
|
||||||
area = cv2.contourArea(con_ind)
|
area = cv2.contourArea(con_ind)
|
||||||
|
|
||||||
con_ind = con_ind.astype(np.float)
|
con_ind = con_ind.astype(float)
|
||||||
|
|
||||||
x_differential = np.diff( con_ind[:,0,0])
|
x_differential = np.diff( con_ind[:,0,0])
|
||||||
y_differential = np.diff( con_ind[:,0,1])
|
y_differential = np.diff( con_ind[:,0,1])
|
||||||
|
@ -4053,7 +4050,7 @@ class Eynollah:
|
||||||
for j in range(len(all_found_textline_polygons)):
|
for j in range(len(all_found_textline_polygons)):
|
||||||
for i in range(len(all_found_textline_polygons[j])):
|
for i in range(len(all_found_textline_polygons[j])):
|
||||||
con_ind = all_found_textline_polygons[j][i]
|
con_ind = all_found_textline_polygons[j][i]
|
||||||
con_ind = con_ind.astype(np.float)
|
con_ind = con_ind.astype(float)
|
||||||
|
|
||||||
x_differential = np.diff( con_ind[:,0,0])
|
x_differential = np.diff( con_ind[:,0,0])
|
||||||
y_differential = np.diff( con_ind[:,0,1])
|
y_differential = np.diff( con_ind[:,0,1])
|
||||||
|
|
|
@ -4,25 +4,19 @@ Tool to load model and binarize a given image.
|
||||||
|
|
||||||
import sys
|
import sys
|
||||||
from glob import glob
|
from glob import glob
|
||||||
from os import environ, devnull
|
|
||||||
from os.path import join
|
|
||||||
from warnings import catch_warnings, simplefilter
|
|
||||||
import os
|
import os
|
||||||
|
import logging
|
||||||
|
|
||||||
import numpy as np
|
import numpy as np
|
||||||
from PIL import Image
|
from PIL import Image
|
||||||
import cv2
|
import cv2
|
||||||
environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
|
from ocrd_utils import tf_disable_interactive_logs
|
||||||
stderr = sys.stderr
|
tf_disable_interactive_logs()
|
||||||
sys.stderr = open(devnull, 'w')
|
|
||||||
import tensorflow as tf
|
import tensorflow as tf
|
||||||
from tensorflow.keras.models import load_model
|
from tensorflow.keras.models import load_model
|
||||||
from tensorflow.python.keras import backend as tensorflow_backend
|
from tensorflow.python.keras import backend as tensorflow_backend
|
||||||
sys.stderr = stderr
|
|
||||||
|
|
||||||
|
|
||||||
import logging
|
|
||||||
|
|
||||||
def resize_image(img_in, input_height, input_width):
|
def resize_image(img_in, input_height, input_width):
|
||||||
return cv2.resize(img_in, (input_width, input_height), interpolation=cv2.INTER_NEAREST)
|
return cv2.resize(img_in, (input_width, input_height), interpolation=cv2.INTER_NEAREST)
|
||||||
|
|
||||||
|
@ -53,7 +47,7 @@ class SbbBinarizer:
|
||||||
del self.session
|
del self.session
|
||||||
|
|
||||||
def load_model(self, model_name):
|
def load_model(self, model_name):
|
||||||
model = load_model(join(self.model_dir, model_name), compile=False)
|
model = load_model(os.path.join(self.model_dir, model_name), compile=False)
|
||||||
model_height = model.layers[len(model.layers)-1].output_shape[1]
|
model_height = model.layers[len(model.layers)-1].output_shape[1]
|
||||||
model_width = model.layers[len(model.layers)-1].output_shape[2]
|
model_width = model.layers[len(model.layers)-1].output_shape[2]
|
||||||
n_classes = model.layers[len(model.layers)-1].output_shape[3]
|
n_classes = model.layers[len(model.layers)-1].output_shape[3]
|
||||||
|
|
|
@ -247,7 +247,7 @@ def get_textregion_contours_in_org_image_light(cnts, img, slope_first, map=map):
|
||||||
img = cv2.resize(img, (int(img.shape[1]/6), int(img.shape[0]/6)), interpolation=cv2.INTER_NEAREST)
|
img = cv2.resize(img, (int(img.shape[1]/6), int(img.shape[0]/6)), interpolation=cv2.INTER_NEAREST)
|
||||||
##cnts = list( (np.array(cnts)/2).astype(np.int16) )
|
##cnts = list( (np.array(cnts)/2).astype(np.int16) )
|
||||||
#cnts = cnts/2
|
#cnts = cnts/2
|
||||||
cnts = [(i/6).astype(np.int) for i in cnts]
|
cnts = [(i/6).astype(int) for i in cnts]
|
||||||
results = map(partial(do_back_rotation_and_get_cnt_back,
|
results = map(partial(do_back_rotation_and_get_cnt_back,
|
||||||
img=img,
|
img=img,
|
||||||
slope_first=slope_first,
|
slope_first=slope_first,
|
||||||
|
|
|
@ -1,3 +1,4 @@
|
||||||
|
from contextlib import nullcontext
|
||||||
from PIL import Image
|
from PIL import Image
|
||||||
import numpy as np
|
import numpy as np
|
||||||
from ocrd_models import OcrdExif
|
from ocrd_models import OcrdExif
|
||||||
|
@ -17,12 +18,13 @@ def pil2cv(img):
|
||||||
def check_dpi(img):
|
def check_dpi(img):
|
||||||
try:
|
try:
|
||||||
if isinstance(img, Image.Image):
|
if isinstance(img, Image.Image):
|
||||||
pil_image = img
|
pil_image = nullcontext(img)
|
||||||
elif isinstance(img, str):
|
elif isinstance(img, str):
|
||||||
pil_image = Image.open(img)
|
pil_image = Image.open(img)
|
||||||
else:
|
else:
|
||||||
pil_image = cv2pil(img)
|
pil_image = nullcontext(cv2pil(img))
|
||||||
exif = OcrdExif(pil_image)
|
with pil_image:
|
||||||
|
exif = OcrdExif(pil_image)
|
||||||
resolution = exif.resolution
|
resolution = exif.resolution
|
||||||
if resolution == 1:
|
if resolution == 1:
|
||||||
raise Exception()
|
raise Exception()
|
||||||
|
|
|
@ -1616,7 +1616,7 @@ def do_work_of_slopes_new(
|
||||||
textline_con_fil = filter_contours_area_of_image(img_int_p, textline_con,
|
textline_con_fil = filter_contours_area_of_image(img_int_p, textline_con,
|
||||||
hierarchy,
|
hierarchy,
|
||||||
max_area=1, min_area=0.00008)
|
max_area=1, min_area=0.00008)
|
||||||
y_diff_mean = find_contours_mean_y_diff(textline_con_fil)
|
y_diff_mean = find_contours_mean_y_diff(textline_con_fil) if len(textline_con_fil) > 1 else np.NaN
|
||||||
if np.isnan(y_diff_mean):
|
if np.isnan(y_diff_mean):
|
||||||
slope_for_all = MAX_SLOPE
|
slope_for_all = MAX_SLOPE
|
||||||
else:
|
else:
|
||||||
|
|
Loading…
Add table
Add a link
Reference in a new issue