mirror of
https://github.com/qurator-spk/eynollah.git
synced 2025-10-15 19:09:58 +02:00
do_order_of_regions: simplify
- remove duplicate code via inline def for the try-catch
This commit is contained in:
parent
e674ea08f3
commit
29b4527bde
1 changed files with 22 additions and 105 deletions
|
@ -2525,22 +2525,23 @@ class Eynollah:
|
||||||
cx_head, cy_head, mx_head, Mx_head, my_head, My_head, mxy_head = find_new_features_of_contours(
|
cx_head, cy_head, mx_head, Mx_head, my_head, My_head, mxy_head = find_new_features_of_contours(
|
||||||
contours_only_text_parent_h)
|
contours_only_text_parent_h)
|
||||||
|
|
||||||
try:
|
def match_boxes(only_centers: bool):
|
||||||
arg_text_con_main = np.zeros(len(contours_only_text_parent), dtype=int)
|
arg_text_con_main = np.zeros(len(contours_only_text_parent), dtype=int)
|
||||||
for ii in range(len(contours_only_text_parent)):
|
for ii in range(len(contours_only_text_parent)):
|
||||||
check_if_textregion_located_in_a_box = False
|
check_if_textregion_located_in_a_box = False
|
||||||
for jj, box in enumerate(boxes):
|
for jj, box in enumerate(boxes):
|
||||||
if (mx_main[ii] >= box[0] and
|
if ((cx_main[ii] >= box[0] and
|
||||||
Mx_main[ii] < box[1] and
|
cx_main[ii] < box[1] and
|
||||||
my_main[ii] >= box[2] and
|
cy_main[ii] >= box[2] and
|
||||||
My_main[ii] < box[3]):
|
cy_main[ii] < box[3]) if only_centers else
|
||||||
|
(mx_main[ii] >= box[0] and
|
||||||
|
Mx_main[ii] < box[1] and
|
||||||
|
my_main[ii] >= box[2] and
|
||||||
|
My_main[ii] < box[3])):
|
||||||
arg_text_con_main[ii] = jj
|
arg_text_con_main[ii] = jj
|
||||||
check_if_textregion_located_in_a_box = True
|
check_if_textregion_located_in_a_box = True
|
||||||
break
|
break
|
||||||
if not check_if_textregion_located_in_a_box:
|
if not check_if_textregion_located_in_a_box:
|
||||||
# dists_tr_from_box = [math.sqrt((cx_main[ii] - 0.5 * box[1] - 0.5 * box[0]) ** 2 +
|
|
||||||
# (cy_main[ii] - 0.5 * box[3] - 0.5 * box[2]) ** 2)
|
|
||||||
# for box in boxes]
|
|
||||||
dists_tr_from_box = np.linalg.norm(c_boxes - np.array([[cy_main[ii]], [cx_main[ii]]]), axis=0)
|
dists_tr_from_box = np.linalg.norm(c_boxes - np.array([[cy_main[ii]], [cx_main[ii]]]), axis=0)
|
||||||
pcontained_in_box = ((boxes[:, 2] <= cy_main[ii]) & (cy_main[ii] < boxes[:, 3]) &
|
pcontained_in_box = ((boxes[:, 2] <= cy_main[ii]) & (cy_main[ii] < boxes[:, 3]) &
|
||||||
(boxes[:, 0] <= cx_main[ii]) & (cx_main[ii] < boxes[:, 1]))
|
(boxes[:, 0] <= cx_main[ii]) & (cx_main[ii] < boxes[:, 1]))
|
||||||
|
@ -2553,17 +2554,18 @@ class Eynollah:
|
||||||
for ii in range(len(contours_only_text_parent_h)):
|
for ii in range(len(contours_only_text_parent_h)):
|
||||||
check_if_textregion_located_in_a_box = False
|
check_if_textregion_located_in_a_box = False
|
||||||
for jj, box in enumerate(boxes):
|
for jj, box in enumerate(boxes):
|
||||||
if (mx_head[ii] >= box[0] and
|
if ((cx_head[ii] >= box[0] and
|
||||||
Mx_head[ii] < box[1] and
|
cx_head[ii] < box[1] and
|
||||||
my_head[ii] >= box[2] and
|
cy_head[ii] >= box[2] and
|
||||||
My_head[ii] < box[3]):
|
cy_head[ii] < box[3]) if only_centers else
|
||||||
|
(mx_head[ii] >= box[0] and
|
||||||
|
Mx_head[ii] < box[1] and
|
||||||
|
my_head[ii] >= box[2] and
|
||||||
|
My_head[ii] < box[3])):
|
||||||
arg_text_con_head[ii] = jj
|
arg_text_con_head[ii] = jj
|
||||||
check_if_textregion_located_in_a_box = True
|
check_if_textregion_located_in_a_box = True
|
||||||
break
|
break
|
||||||
if not check_if_textregion_located_in_a_box:
|
if not check_if_textregion_located_in_a_box:
|
||||||
# dists_tr_from_box = [math.sqrt((cx_head[ii] - 0.5 * box[1] - 0.5 * box[0]) ** 2 +
|
|
||||||
# (cy_head[ii] - 0.5 * box[3] - 0.5 * box[2]) ** 2)
|
|
||||||
# for box in boxes]
|
|
||||||
dists_tr_from_box = np.linalg.norm(c_boxes - np.array([[cy_head[ii]], [cx_head[ii]]]), axis=0)
|
dists_tr_from_box = np.linalg.norm(c_boxes - np.array([[cy_head[ii]], [cx_head[ii]]]), axis=0)
|
||||||
pcontained_in_box = ((boxes[:, 2] <= cy_head[ii]) & (cy_head[ii] < boxes[:, 3]) &
|
pcontained_in_box = ((boxes[:, 2] <= cy_head[ii]) & (cy_head[ii] < boxes[:, 3]) &
|
||||||
(boxes[:, 0] <= cx_head[ii]) & (cx_head[ii] < boxes[:, 1]))
|
(boxes[:, 0] <= cx_head[ii]) & (cx_head[ii] < boxes[:, 1]))
|
||||||
|
@ -2613,101 +2615,16 @@ class Eynollah:
|
||||||
order_of_texts_tot = np.concatenate((order_by_con_main,
|
order_of_texts_tot = np.concatenate((order_by_con_main,
|
||||||
order_by_con_head))
|
order_by_con_head))
|
||||||
order_text_new = np.argsort(order_of_texts_tot)
|
order_text_new = np.argsort(order_of_texts_tot)
|
||||||
|
return order_text_new, id_of_texts_tot
|
||||||
|
|
||||||
|
try:
|
||||||
|
results = match_boxes(False)
|
||||||
except Exception as why:
|
except Exception as why:
|
||||||
self.logger.error(why)
|
self.logger.error(why)
|
||||||
arg_text_con_main = np.zeros(len(contours_only_text_parent), dtype=int)
|
results = match_boxes(True)
|
||||||
for ii in range(len(contours_only_text_parent)):
|
|
||||||
check_if_textregion_located_in_a_box = False
|
|
||||||
for jj, box in enumerate(boxes):
|
|
||||||
if (cx_main[ii] >= box[0] and
|
|
||||||
cx_main[ii] < box[1] and
|
|
||||||
cy_main[ii] >= box[2] and
|
|
||||||
cy_main[ii] < box[3]):
|
|
||||||
# this is valid if the center of region identify in which box it is located
|
|
||||||
arg_text_con_main[ii] = jj
|
|
||||||
check_if_textregion_located_in_a_box = True
|
|
||||||
break
|
|
||||||
if not check_if_textregion_located_in_a_box:
|
|
||||||
# dists_tr_from_box = [math.sqrt((cx_main[ii] - 0.5 * box[1] - 0.5 * box[0]) ** 2 +
|
|
||||||
# (cy_main[ii] - 0.5 * box[3] - 0.5 * box[2]) ** 2)
|
|
||||||
# for box in boxes]
|
|
||||||
dists_tr_from_box = np.linalg.norm(c_boxes - np.array([[cy_main[ii]], [cx_main[ii]]]), axis=0)
|
|
||||||
pcontained_in_box = ((boxes[:, 2] <= cy_main[ii]) & (cy_main[ii] < boxes[:, 3]) &
|
|
||||||
(boxes[:, 0] <= cx_main[ii]) & (cx_main[ii] < boxes[:, 1]))
|
|
||||||
ind_min = np.argmin(np.ma.masked_array(dists_tr_from_box, ~pcontained_in_box))
|
|
||||||
arg_text_con_main[ii] = ind_min
|
|
||||||
args_contours_main = np.arange(len(contours_only_text_parent))
|
|
||||||
order_by_con_main = np.zeros_like(arg_text_con_main)
|
|
||||||
|
|
||||||
arg_text_con_head = np.zeros(len(contours_only_text_parent_h), dtype=int)
|
|
||||||
for ii in range(len(contours_only_text_parent_h)):
|
|
||||||
check_if_textregion_located_in_a_box = False
|
|
||||||
for jj, box in enumerate(boxes):
|
|
||||||
if (cx_head[ii] >= box[0] and
|
|
||||||
cx_head[ii] < box[1] and
|
|
||||||
cy_head[ii] >= box[2] and
|
|
||||||
cy_head[ii] < box[3]):
|
|
||||||
# this is valid if the center of region identify in which box it is located
|
|
||||||
arg_text_con_head[ii] = jj
|
|
||||||
check_if_textregion_located_in_a_box = True
|
|
||||||
break
|
|
||||||
if not check_if_textregion_located_in_a_box:
|
|
||||||
# dists_tr_from_box = [math.sqrt((cx_head[ii] - 0.5 * box[1] - 0.5 * box[0]) ** 2 +
|
|
||||||
# (cy_head[ii] - 0.5 * box[3] - 0.5 * box[2]) ** 2)
|
|
||||||
# for box in boxes]
|
|
||||||
dists_tr_from_box = np.linalg.norm(c_boxes - np.array([[cy_head[ii]], [cx_head[ii]]]), axis=0)
|
|
||||||
pcontained_in_box = ((boxes[:, 2] <= cy_head[ii]) & (cy_head[ii] < boxes[:, 3]) &
|
|
||||||
(boxes[:, 0] <= cx_head[ii]) & (cx_head[ii] < boxes[:, 1]))
|
|
||||||
ind_min = np.argmin(np.ma.masked_array(dists_tr_from_box, ~pcontained_in_box))
|
|
||||||
arg_text_con_head[ii] = ind_min
|
|
||||||
args_contours_head = np.arange(len(contours_only_text_parent_h))
|
|
||||||
order_by_con_head = np.zeros_like(arg_text_con_head)
|
|
||||||
|
|
||||||
ref_point = 0
|
|
||||||
order_of_texts_tot = []
|
|
||||||
id_of_texts_tot = []
|
|
||||||
for iij, box in enumerate(boxes):
|
|
||||||
ys = slice(*box[2:4])
|
|
||||||
xs = slice(*box[0:2])
|
|
||||||
args_contours_box_main = args_contours_main[arg_text_con_main == iij]
|
|
||||||
args_contours_box_head = args_contours_head[arg_text_con_head == iij]
|
|
||||||
con_inter_box = contours_only_text_parent[args_contours_box_main]
|
|
||||||
con_inter_box_h = contours_only_text_parent_h[args_contours_box_head]
|
|
||||||
|
|
||||||
indexes_sorted, kind_of_texts_sorted, index_by_kind_sorted = order_of_regions(
|
|
||||||
textline_mask_tot[ys, xs], con_inter_box, con_inter_box_h, box[2])
|
|
||||||
|
|
||||||
order_of_texts, id_of_texts = order_and_id_of_texts(
|
|
||||||
con_inter_box, con_inter_box_h,
|
|
||||||
indexes_sorted, index_by_kind_sorted, kind_of_texts_sorted, ref_point)
|
|
||||||
|
|
||||||
indexes_sorted_main = indexes_sorted[kind_of_texts_sorted == 1]
|
|
||||||
indexes_by_type_main = index_by_kind_sorted[kind_of_texts_sorted == 1]
|
|
||||||
indexes_sorted_head = indexes_sorted[kind_of_texts_sorted == 2]
|
|
||||||
indexes_by_type_head = index_by_kind_sorted[kind_of_texts_sorted == 2]
|
|
||||||
|
|
||||||
for zahler, _ in enumerate(args_contours_box_main):
|
|
||||||
arg_order_v = indexes_sorted_main[zahler]
|
|
||||||
order_by_con_main[args_contours_box_main[indexes_by_type_main[zahler]]] = \
|
|
||||||
np.flatnonzero(indexes_sorted == arg_order_v) + ref_point
|
|
||||||
|
|
||||||
for zahler, _ in enumerate(args_contours_box_head):
|
|
||||||
arg_order_v = indexes_sorted_head[zahler]
|
|
||||||
order_by_con_head[args_contours_box_head[indexes_by_type_head[zahler]]] = \
|
|
||||||
np.flatnonzero(indexes_sorted == arg_order_v) + ref_point
|
|
||||||
|
|
||||||
for jji in range(len(id_of_texts)):
|
|
||||||
order_of_texts_tot.append(order_of_texts[jji] + ref_point)
|
|
||||||
id_of_texts_tot.append(id_of_texts[jji])
|
|
||||||
ref_point += len(id_of_texts)
|
|
||||||
|
|
||||||
order_of_texts_tot = np.concatenate((order_by_con_main,
|
|
||||||
order_by_con_head))
|
|
||||||
order_text_new = np.argsort(order_of_texts_tot)
|
|
||||||
|
|
||||||
self.logger.debug("exit do_order_of_regions")
|
self.logger.debug("exit do_order_of_regions")
|
||||||
return order_text_new, id_of_texts_tot
|
return results
|
||||||
|
|
||||||
def check_iou_of_bounding_box_and_contour_for_tables(
|
def check_iou_of_bounding_box_and_contour_for_tables(
|
||||||
self, layout, table_prediction_early, pixel_table, num_col_classifier):
|
self, layout, table_prediction_early, pixel_table, num_col_classifier):
|
||||||
|
|
Loading…
Add table
Add a link
Reference in a new issue