mirror of
https://github.com/qurator-spk/eynollah.git
synced 2025-10-27 07:44:12 +01:00
matching deskewed text region contours with predicted: improve
- when matching undeskewed and new contours, do not just pick the closest centers, respectively, but also of similar size (by making the contour area the 3rd dimension of the vector norm in the distance calculation)
This commit is contained in:
parent
56f2d4131e
commit
29fcc75c0b
1 changed files with 5 additions and 1 deletions
|
|
@ -4608,7 +4608,11 @@ class Eynollah:
|
||||||
for i in range(len(contours_only_text_parent)):
|
for i in range(len(contours_only_text_parent)):
|
||||||
p = np.dot(M_22, centers[:, i:i+1]) # [2, 1]
|
p = np.dot(M_22, centers[:, i:i+1]) # [2, 1]
|
||||||
p -= offset
|
p -= offset
|
||||||
dists = np.linalg.norm(p - centers_d, axis=0)
|
# add dimension for area
|
||||||
|
#dists = np.linalg.norm(p - centers_d, axis=0)
|
||||||
|
diffs = (np.append(p, [[areas_cnt_text_parent[i]]], axis=0) -
|
||||||
|
np.append(centers_d, areas_cnt_text_d[np.newaxis], axis=0))
|
||||||
|
dists = np.linalg.norm(diffs, axis=0)
|
||||||
contours_only_text_parent_d_ordered.append(
|
contours_only_text_parent_d_ordered.append(
|
||||||
contours_only_text_parent_d[np.argmin(dists)])
|
contours_only_text_parent_d[np.argmin(dists)])
|
||||||
# cv2.fillPoly(img2, pts=[contours_only_text_parent_d[np.argmin(dists)]], color=i + 1)
|
# cv2.fillPoly(img2, pts=[contours_only_text_parent_d[np.argmin(dists)]], color=i + 1)
|
||||||
|
|
|
||||||
Loading…
Add table
Add a link
Reference in a new issue