|
|
|
@ -89,7 +89,7 @@ from .utils.xml import order_and_id_of_texts
|
|
|
|
|
from .plot import EynollahPlotter
|
|
|
|
|
from .writer import EynollahXmlWriter
|
|
|
|
|
|
|
|
|
|
MIN_AREA_REGION = 0.00001
|
|
|
|
|
MIN_AREA_REGION = 0.000001
|
|
|
|
|
SLOPE_THRESHOLD = 0.13
|
|
|
|
|
RATIO_OF_TWO_MODEL_THRESHOLD = 95.50 #98.45:
|
|
|
|
|
DPI_THRESHOLD = 298
|
|
|
|
@ -237,15 +237,16 @@ class Eynollah:
|
|
|
|
|
self.model_region_dir_p = dir_models + "/eynollah-main-regions-aug-scaling_20210425"
|
|
|
|
|
self.model_region_dir_p2 = dir_models + "/eynollah-main-regions-aug-rotation_20210425"
|
|
|
|
|
self.model_region_dir_fully_np = dir_models + "/eynollah-full-regions-1column_20210425"
|
|
|
|
|
self.model_region_dir_fully = dir_models + "/eynollah-full-regions-3+column_20210425"
|
|
|
|
|
#self.model_region_dir_fully = dir_models + "/eynollah-full-regions-3+column_20210425"
|
|
|
|
|
self.model_page_dir = dir_models + "/eynollah-page-extraction_20210425"
|
|
|
|
|
self.model_region_dir_p_ens = dir_models + "/eynollah-main-regions-ensembled_20210425"
|
|
|
|
|
self.model_region_dir_p_ens_light = dir_models + "/eynollah-main-regions_20220314"
|
|
|
|
|
self.model_reading_order_machine_dir = dir_models + "/model_ens_reading_order_machine_based"
|
|
|
|
|
self.model_region_dir_p_1_2_sp_np = dir_models + "/model_3_eraly_layout_no_patches_1_2_spaltige"
|
|
|
|
|
self.model_region_dir_fully_new = dir_models + "/model_2_full_layout_new_trans"
|
|
|
|
|
self.model_region_dir_p_1_2_sp_np = dir_models + "/modelens_1_2_4_5_early_lay_1_2_spaltige"#"/model_3_eraly_layout_no_patches_1_2_spaltige"
|
|
|
|
|
##self.model_region_dir_fully_new = dir_models + "/model_2_full_layout_new_trans"
|
|
|
|
|
self.model_region_dir_fully = dir_models + "/modelens_full_layout_24_till_28"#"/model_2_full_layout_new_trans"
|
|
|
|
|
if self.textline_light:
|
|
|
|
|
self.model_textline_dir = dir_models + "/eynollah-textline_light_20210425"
|
|
|
|
|
self.model_textline_dir = dir_models + "/model_textline_ens_3_4_5_6_artificial"#"/modelens_textline_9_12_13_14_15"#"/eynollah-textline_light_20210425"#
|
|
|
|
|
else:
|
|
|
|
|
self.model_textline_dir = dir_models + "/eynollah-textline_20210425"
|
|
|
|
|
if self.ocr:
|
|
|
|
@ -267,7 +268,7 @@ class Eynollah:
|
|
|
|
|
self.model_textline = self.our_load_model(self.model_textline_dir)
|
|
|
|
|
self.model_region = self.our_load_model(self.model_region_dir_p_ens_light)
|
|
|
|
|
self.model_region_1_2 = self.our_load_model(self.model_region_dir_p_1_2_sp_np)
|
|
|
|
|
self.model_region_fl_new = self.our_load_model(self.model_region_dir_fully_new)
|
|
|
|
|
###self.model_region_fl_new = self.our_load_model(self.model_region_dir_fully_new)
|
|
|
|
|
self.model_region_fl_np = self.our_load_model(self.model_region_dir_fully_np)
|
|
|
|
|
self.model_region_fl = self.our_load_model(self.model_region_dir_fully)
|
|
|
|
|
self.model_reading_order_machine = self.our_load_model(self.model_reading_order_machine_dir)
|
|
|
|
@ -994,8 +995,15 @@ class Eynollah:
|
|
|
|
|
|
|
|
|
|
label_p_pred = model.predict(img.reshape(1, img.shape[0], img.shape[1], img.shape[2]), verbose=0)
|
|
|
|
|
|
|
|
|
|
seg_not_base = label_p_pred[0,:,:,4]
|
|
|
|
|
|
|
|
|
|
seg_not_base[seg_not_base>0.4] =1
|
|
|
|
|
seg_not_base[seg_not_base<1] =0
|
|
|
|
|
|
|
|
|
|
seg = np.argmax(label_p_pred, axis=3)[0]
|
|
|
|
|
|
|
|
|
|
seg[seg_not_base==1]=4
|
|
|
|
|
|
|
|
|
|
seg_color = np.repeat(seg[:, :, np.newaxis], 3, axis=2)
|
|
|
|
|
prediction_true = resize_image(seg_color, img_h_page, img_w_page)
|
|
|
|
|
prediction_true = prediction_true.astype(np.uint8)
|
|
|
|
@ -1781,7 +1789,7 @@ class Eynollah:
|
|
|
|
|
all_box_coord_per_process.append(crop_coor)
|
|
|
|
|
queue_of_all_params.put([slopes_per_each_subprocess, textlines_rectangles_per_each_subprocess, bounding_box_of_textregion_per_each_subprocess, contours_textregion_per_each_subprocess, contours_textregion_par_per_each_subprocess, all_box_coord_per_process, index_by_text_region_contours])
|
|
|
|
|
|
|
|
|
|
def textline_contours(self, img, patches, scaler_h, scaler_w):
|
|
|
|
|
def textline_contours(self, img, patches, scaler_h, scaler_w, num_col_classifier=None):
|
|
|
|
|
self.logger.debug('enter textline_contours')
|
|
|
|
|
if not self.dir_in:
|
|
|
|
|
model_textline, session_textline = self.start_new_session_and_model(self.model_textline_dir if patches else self.model_textline_dir_np)
|
|
|
|
@ -1792,10 +1800,34 @@ class Eynollah:
|
|
|
|
|
img = resize_image(img_org, int(img_org.shape[0] * scaler_h), int(img_org.shape[1] * scaler_w))
|
|
|
|
|
#print(img.shape,'bin shape textline')
|
|
|
|
|
if not self.dir_in:
|
|
|
|
|
prediction_textline = self.do_prediction(patches, img, model_textline, n_batch_inference=3)
|
|
|
|
|
prediction_textline = self.do_prediction(patches, img, model_textline, marginal_of_patch_percent=0.2, n_batch_inference=3)
|
|
|
|
|
if num_col_classifier==1:
|
|
|
|
|
prediction_textline_nopatch = self.do_prediction(False, img, model_textline)
|
|
|
|
|
prediction_textline[:,:][prediction_textline_nopatch[:,:]==0] = 0
|
|
|
|
|
else:
|
|
|
|
|
prediction_textline = self.do_prediction(patches, img, self.model_textline, n_batch_inference=3)
|
|
|
|
|
prediction_textline = self.do_prediction(patches, img, self.model_textline, marginal_of_patch_percent=0.2, n_batch_inference=3)
|
|
|
|
|
if num_col_classifier==1:
|
|
|
|
|
prediction_textline_nopatch = self.do_prediction(False, img, model_textline)
|
|
|
|
|
prediction_textline[:,:][prediction_textline_nopatch[:,:]==0] = 0
|
|
|
|
|
prediction_textline = resize_image(prediction_textline, img_h, img_w)
|
|
|
|
|
|
|
|
|
|
textline_mask_tot_ea_art = (prediction_textline[:,:]==2)*1
|
|
|
|
|
|
|
|
|
|
old_art = np.copy(textline_mask_tot_ea_art)
|
|
|
|
|
|
|
|
|
|
textline_mask_tot_ea_art = textline_mask_tot_ea_art.astype('uint8')
|
|
|
|
|
textline_mask_tot_ea_art = cv2.dilate(textline_mask_tot_ea_art, KERNEL, iterations=1)
|
|
|
|
|
|
|
|
|
|
prediction_textline[:,:][textline_mask_tot_ea_art[:,:]==1]=2
|
|
|
|
|
|
|
|
|
|
textline_mask_tot_ea_lines = (prediction_textline[:,:]==1)*1
|
|
|
|
|
textline_mask_tot_ea_lines = textline_mask_tot_ea_lines.astype('uint8')
|
|
|
|
|
textline_mask_tot_ea_lines = cv2.dilate(textline_mask_tot_ea_lines, KERNEL, iterations=1)
|
|
|
|
|
|
|
|
|
|
prediction_textline[:,:][textline_mask_tot_ea_lines[:,:]==1]=1
|
|
|
|
|
|
|
|
|
|
prediction_textline[:,:][old_art[:,:]==1]=2
|
|
|
|
|
|
|
|
|
|
if not self.dir_in:
|
|
|
|
|
prediction_textline_longshot = self.do_prediction(False, img, model_textline)
|
|
|
|
|
else:
|
|
|
|
@ -1855,49 +1887,58 @@ class Eynollah:
|
|
|
|
|
#print(num_col_classifier,'num_col_classifier')
|
|
|
|
|
|
|
|
|
|
if num_col_classifier == 1:
|
|
|
|
|
img_w_new = 1000
|
|
|
|
|
img_w_new = 900#1000
|
|
|
|
|
img_h_new = int(img_org.shape[0] / float(img_org.shape[1]) * img_w_new)
|
|
|
|
|
|
|
|
|
|
elif num_col_classifier == 2:
|
|
|
|
|
img_w_new = 1500
|
|
|
|
|
img_w_new = 1300#1500
|
|
|
|
|
img_h_new = int(img_org.shape[0] / float(img_org.shape[1]) * img_w_new)
|
|
|
|
|
|
|
|
|
|
elif num_col_classifier == 3:
|
|
|
|
|
img_w_new = 2000
|
|
|
|
|
img_w_new = 1600#2000
|
|
|
|
|
img_h_new = int(img_org.shape[0] / float(img_org.shape[1]) * img_w_new)
|
|
|
|
|
|
|
|
|
|
elif num_col_classifier == 4:
|
|
|
|
|
img_w_new = 2500
|
|
|
|
|
img_w_new = 1900#2500
|
|
|
|
|
img_h_new = int(img_org.shape[0] / float(img_org.shape[1]) * img_w_new)
|
|
|
|
|
elif num_col_classifier == 5:
|
|
|
|
|
img_w_new = 3000
|
|
|
|
|
img_w_new = 2300#3000
|
|
|
|
|
img_h_new = int(img_org.shape[0] / float(img_org.shape[1]) * img_w_new)
|
|
|
|
|
else:
|
|
|
|
|
img_w_new = 4000
|
|
|
|
|
img_w_new = 3300#4000
|
|
|
|
|
img_h_new = int(img_org.shape[0] / float(img_org.shape[1]) * img_w_new)
|
|
|
|
|
img_resized = resize_image(img,img_h_new, img_w_new )
|
|
|
|
|
|
|
|
|
|
t_bin = time.time()
|
|
|
|
|
if not self.dir_in:
|
|
|
|
|
model_bin, session_bin = self.start_new_session_and_model(self.model_dir_of_binarization)
|
|
|
|
|
prediction_bin = self.do_prediction(True, img_resized, model_bin, n_batch_inference=5)
|
|
|
|
|
else:
|
|
|
|
|
prediction_bin = self.do_prediction(True, img_resized, self.model_bin, n_batch_inference=5)
|
|
|
|
|
|
|
|
|
|
#print("inside bin ", time.time()-t_bin)
|
|
|
|
|
prediction_bin=prediction_bin[:,:,0]
|
|
|
|
|
prediction_bin = (prediction_bin[:,:]==0)*1
|
|
|
|
|
prediction_bin = prediction_bin*255
|
|
|
|
|
#if (not self.input_binary) or self.full_layout:
|
|
|
|
|
#if self.input_binary:
|
|
|
|
|
#img_bin = np.copy(img_resized)
|
|
|
|
|
if (not self.input_binary and self.full_layout) or (not self.input_binary and num_col_classifier >= 3):
|
|
|
|
|
if not self.dir_in:
|
|
|
|
|
model_bin, session_bin = self.start_new_session_and_model(self.model_dir_of_binarization)
|
|
|
|
|
prediction_bin = self.do_prediction(True, img_resized, model_bin, n_batch_inference=5)
|
|
|
|
|
else:
|
|
|
|
|
prediction_bin = self.do_prediction(True, img_resized, self.model_bin, n_batch_inference=5)
|
|
|
|
|
|
|
|
|
|
#print("inside bin ", time.time()-t_bin)
|
|
|
|
|
prediction_bin=prediction_bin[:,:,0]
|
|
|
|
|
prediction_bin = (prediction_bin[:,:]==0)*1
|
|
|
|
|
prediction_bin = prediction_bin*255
|
|
|
|
|
|
|
|
|
|
prediction_bin =np.repeat(prediction_bin[:, :, np.newaxis], 3, axis=2)
|
|
|
|
|
prediction_bin =np.repeat(prediction_bin[:, :, np.newaxis], 3, axis=2)
|
|
|
|
|
|
|
|
|
|
prediction_bin = prediction_bin.astype(np.uint16)
|
|
|
|
|
#img= np.copy(prediction_bin)
|
|
|
|
|
img_bin = np.copy(prediction_bin)
|
|
|
|
|
prediction_bin = prediction_bin.astype(np.uint16)
|
|
|
|
|
#img= np.copy(prediction_bin)
|
|
|
|
|
img_bin = np.copy(prediction_bin)
|
|
|
|
|
else:
|
|
|
|
|
img_bin = np.copy(img_resized)
|
|
|
|
|
|
|
|
|
|
#print("inside 1 ", time.time()-t_in)
|
|
|
|
|
|
|
|
|
|
textline_mask_tot_ea = self.run_textline(img_bin)
|
|
|
|
|
###textline_mask_tot_ea = self.run_textline(img_bin)
|
|
|
|
|
textline_mask_tot_ea = self.run_textline(img_bin, num_col_classifier)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
textline_mask_tot_ea = resize_image(textline_mask_tot_ea,img_height_h, img_width_h )
|
|
|
|
|
|
|
|
|
@ -1906,20 +1947,20 @@ class Eynollah:
|
|
|
|
|
|
|
|
|
|
#print(img_resized.shape, num_col_classifier, "num_col_classifier")
|
|
|
|
|
if not self.dir_in:
|
|
|
|
|
###if num_col_classifier == 1 or num_col_classifier == 2:
|
|
|
|
|
###model_region, session_region = self.start_new_session_and_model(self.model_region_dir_p_1_2_sp_np)
|
|
|
|
|
###prediction_regions_org = self.do_prediction_new_concept(False, img_resized, model_region)
|
|
|
|
|
###else:
|
|
|
|
|
###model_region, session_region = self.start_new_session_and_model(self.model_region_dir_p_ens_light)
|
|
|
|
|
###prediction_regions_org = self.do_prediction_new_concept(True, img_bin, model_region)
|
|
|
|
|
model_region, session_region = self.start_new_session_and_model(self.model_region_dir_p_ens_light)
|
|
|
|
|
prediction_regions_org = self.do_prediction(True, img_bin, model_region, n_batch_inference=3, thresholding_for_some_classes_in_light_version=True)
|
|
|
|
|
if num_col_classifier == 1 or num_col_classifier == 2:
|
|
|
|
|
model_region, session_region = self.start_new_session_and_model(self.model_region_dir_p_1_2_sp_np)
|
|
|
|
|
prediction_regions_org = self.do_prediction_new_concept(False, img_resized, model_region)
|
|
|
|
|
else:
|
|
|
|
|
model_region, session_region = self.start_new_session_and_model(self.model_region_dir_p_ens_light)
|
|
|
|
|
prediction_regions_org = self.do_prediction_new_concept(True, img_bin, model_region)
|
|
|
|
|
##model_region, session_region = self.start_new_session_and_model(self.model_region_dir_p_ens_light)
|
|
|
|
|
##prediction_regions_org = self.do_prediction(True, img_bin, model_region, n_batch_inference=3, thresholding_for_some_classes_in_light_version=True)
|
|
|
|
|
else:
|
|
|
|
|
##if num_col_classifier == 1 or num_col_classifier == 2:
|
|
|
|
|
##prediction_regions_org = self.do_prediction_new_concept(False, img_resized, self.model_region_1_2)
|
|
|
|
|
##else:
|
|
|
|
|
##prediction_regions_org = self.do_prediction_new_concept(True, img_bin, self.model_region)
|
|
|
|
|
prediction_regions_org = self.do_prediction(True, img_bin, self.model_region, n_batch_inference=3, thresholding_for_some_classes_in_light_version=True)
|
|
|
|
|
if num_col_classifier == 1 or num_col_classifier == 2:
|
|
|
|
|
prediction_regions_org = self.do_prediction_new_concept(False, img_resized, self.model_region_1_2)
|
|
|
|
|
else:
|
|
|
|
|
prediction_regions_org = self.do_prediction_new_concept(True, img_bin, self.model_region)
|
|
|
|
|
###prediction_regions_org = self.do_prediction(True, img_bin, self.model_region, n_batch_inference=3, thresholding_for_some_classes_in_light_version=True)
|
|
|
|
|
|
|
|
|
|
#print("inside 3 ", time.time()-t_in)
|
|
|
|
|
#plt.imshow(prediction_regions_org[:,:,0])
|
|
|
|
@ -1937,7 +1978,7 @@ class Eynollah:
|
|
|
|
|
|
|
|
|
|
mask_texts_only = mask_texts_only.astype('uint8')
|
|
|
|
|
|
|
|
|
|
mask_texts_only = cv2.dilate(mask_texts_only, KERNEL, iterations=3)
|
|
|
|
|
mask_texts_only = cv2.dilate(mask_texts_only, KERNEL, iterations=2)
|
|
|
|
|
|
|
|
|
|
mask_images_only=(prediction_regions_org[:,:] ==2)*1
|
|
|
|
|
|
|
|
|
@ -2899,10 +2940,11 @@ class Eynollah:
|
|
|
|
|
#print("enhancement in ", time.time()-t_in)
|
|
|
|
|
return img_res, is_image_enhanced, num_col_classifier, num_column_is_classified
|
|
|
|
|
|
|
|
|
|
def run_textline(self, image_page):
|
|
|
|
|
scaler_h_textline = 1 # 1.2#1.2
|
|
|
|
|
scaler_w_textline = 1 # 0.9#1
|
|
|
|
|
textline_mask_tot_ea, _ = self.textline_contours(image_page, True, scaler_h_textline, scaler_w_textline)
|
|
|
|
|
def run_textline(self, image_page, num_col_classifier=None):
|
|
|
|
|
scaler_h_textline = 1#1.3 # 1.2#1.2
|
|
|
|
|
scaler_w_textline = 1#1.3 # 0.9#1
|
|
|
|
|
#print(image_page.shape)
|
|
|
|
|
textline_mask_tot_ea, _ = self.textline_contours(image_page, True, scaler_h_textline, scaler_w_textline, num_col_classifier)
|
|
|
|
|
if self.textline_light:
|
|
|
|
|
textline_mask_tot_ea = textline_mask_tot_ea.astype(np.int16)
|
|
|
|
|
|
|
|
|
@ -3147,6 +3189,17 @@ class Eynollah:
|
|
|
|
|
##regions_fully_only_drop = put_drop_out_from_only_drop_model(regions_fully_only_drop, text_regions_p)
|
|
|
|
|
##regions_fully[:, :, 0][regions_fully_only_drop[:, :, 0] == 4] = 4
|
|
|
|
|
drop_capital_label_in_full_layout_model = 3
|
|
|
|
|
|
|
|
|
|
drops = (regions_fully[:,:,0]==drop_capital_label_in_full_layout_model)*1
|
|
|
|
|
|
|
|
|
|
drops= drops.astype(np.uint8)
|
|
|
|
|
|
|
|
|
|
regions_fully[:,:,0][regions_fully[:,:,0]==drop_capital_label_in_full_layout_model] = 1
|
|
|
|
|
|
|
|
|
|
drops = cv2.erode(drops[:,:], KERNEL, iterations=1)
|
|
|
|
|
regions_fully[:,:,0][drops[:,:]==1] = drop_capital_label_in_full_layout_model
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
regions_fully = putt_bb_of_drop_capitals_of_model_in_patches_in_layout(regions_fully, drop_capital_label_in_full_layout_model)
|
|
|
|
|
##regions_fully_np, _ = self.extract_text_regions(image_page, False, cols=num_col_classifier)
|
|
|
|
|
##if num_col_classifier > 2:
|
|
|
|
@ -3695,7 +3748,7 @@ class Eynollah:
|
|
|
|
|
"""
|
|
|
|
|
self.logger.debug("enter run")
|
|
|
|
|
|
|
|
|
|
skip_layout_ro = True
|
|
|
|
|
skip_layout_ro = False#True
|
|
|
|
|
|
|
|
|
|
t0_tot = time.time()
|
|
|
|
|
|
|
|
|
|