mirror of
https://github.com/qurator-spk/eynollah.git
synced 2025-10-27 07:44:12 +01:00
move src/.../train.py to root to accomodate old PR
This commit is contained in:
parent
1e66c85222
commit
30fe51f3ae
1 changed files with 0 additions and 0 deletions
474
train.py
Normal file
474
train.py
Normal file
|
|
@ -0,0 +1,474 @@
|
|||
import os
|
||||
import sys
|
||||
import json
|
||||
|
||||
import click
|
||||
|
||||
from eynollah.training.metrics import (
|
||||
soft_dice_loss,
|
||||
weighted_categorical_crossentropy
|
||||
)
|
||||
from eynollah.training.models import (
|
||||
PatchEncoder,
|
||||
Patches,
|
||||
machine_based_reading_order_model,
|
||||
resnet50_classifier,
|
||||
resnet50_unet,
|
||||
vit_resnet50_unet,
|
||||
vit_resnet50_unet_transformer_before_cnn
|
||||
)
|
||||
from eynollah.training.utils import (
|
||||
data_gen,
|
||||
generate_arrays_from_folder_reading_order,
|
||||
generate_data_from_folder_evaluation,
|
||||
generate_data_from_folder_training,
|
||||
get_one_hot,
|
||||
provide_patches,
|
||||
return_number_of_total_training_data
|
||||
)
|
||||
|
||||
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
|
||||
import tensorflow as tf
|
||||
from tensorflow.compat.v1.keras.backend import set_session
|
||||
from tensorflow.keras.optimizers import SGD, Adam
|
||||
from sacred import Experiment
|
||||
from tensorflow.keras.models import load_model
|
||||
from tqdm import tqdm
|
||||
from sklearn.metrics import f1_score
|
||||
from tensorflow.keras.callbacks import Callback
|
||||
|
||||
import numpy as np
|
||||
import cv2
|
||||
|
||||
class SaveWeightsAfterSteps(Callback):
|
||||
def __init__(self, save_interval, save_path, _config):
|
||||
super(SaveWeightsAfterSteps, self).__init__()
|
||||
self.save_interval = save_interval
|
||||
self.save_path = save_path
|
||||
self.step_count = 0
|
||||
self._config = _config
|
||||
|
||||
def on_train_batch_end(self, batch, logs=None):
|
||||
self.step_count += 1
|
||||
|
||||
if self.step_count % self.save_interval ==0:
|
||||
save_file = f"{self.save_path}/model_step_{self.step_count}"
|
||||
#os.system('mkdir '+save_file)
|
||||
|
||||
self.model.save(save_file)
|
||||
|
||||
with open(os.path.join(os.path.join(self.save_path, f"model_step_{self.step_count}"),"config.json"), "w") as fp:
|
||||
json.dump(self._config, fp) # encode dict into JSON
|
||||
print(f"saved model as steps {self.step_count} to {save_file}")
|
||||
|
||||
|
||||
def configuration():
|
||||
config = tf.compat.v1.ConfigProto()
|
||||
config.gpu_options.allow_growth = True
|
||||
session = tf.compat.v1.Session(config=config)
|
||||
set_session(session)
|
||||
|
||||
|
||||
def get_dirs_or_files(input_data):
|
||||
image_input, labels_input = os.path.join(input_data, 'images/'), os.path.join(input_data, 'labels/')
|
||||
if os.path.isdir(input_data):
|
||||
# Check if training dir exists
|
||||
assert os.path.isdir(image_input), "{} is not a directory".format(image_input)
|
||||
assert os.path.isdir(labels_input), "{} is not a directory".format(labels_input)
|
||||
return image_input, labels_input
|
||||
|
||||
|
||||
ex = Experiment(save_git_info=False)
|
||||
|
||||
|
||||
@ex.config
|
||||
def config_params():
|
||||
n_classes = None # Number of classes. In the case of binary classification this should be 2.
|
||||
n_epochs = 1 # Number of epochs.
|
||||
input_height = 224 * 1 # Height of model's input in pixels.
|
||||
input_width = 224 * 1 # Width of model's input in pixels.
|
||||
weight_decay = 1e-6 # Weight decay of l2 regularization of model layers.
|
||||
n_batch = 1 # Number of batches at each iteration.
|
||||
learning_rate = 1e-4 # Set the learning rate.
|
||||
patches = False # Divides input image into smaller patches (input size of the model) when set to true. For the model to see the full image, like page extraction, set this to false.
|
||||
augmentation = False # To apply any kind of augmentation, this parameter must be set to true.
|
||||
flip_aug = False # If true, different types of flipping will be applied to the image. Types of flips are defined with "flip_index" in config_params.json.
|
||||
blur_aug = False # If true, different types of blurring will be applied to the image. Types of blur are defined with "blur_k" in config_params.json.
|
||||
padding_white = False # If true, white padding will be applied to the image.
|
||||
padding_black = False # If true, black padding will be applied to the image.
|
||||
scaling = False # If true, scaling will be applied to the image. The amount of scaling is defined with "scales" in config_params.json.
|
||||
shifting = False
|
||||
degrading = False # If true, degrading will be applied to the image. The amount of degrading is defined with "degrade_scales" in config_params.json.
|
||||
brightening = False # If true, brightening will be applied to the image. The amount of brightening is defined with "brightness" in config_params.json.
|
||||
binarization = False # If true, Otsu thresholding will be applied to augment the input with binarized images.
|
||||
adding_rgb_background = False
|
||||
adding_rgb_foreground = False
|
||||
add_red_textlines = False
|
||||
channels_shuffling = False
|
||||
dir_train = None # Directory of training dataset with subdirectories having the names "images" and "labels".
|
||||
dir_eval = None # Directory of validation dataset with subdirectories having the names "images" and "labels".
|
||||
dir_output = None # Directory where the output model will be saved.
|
||||
pretraining = False # Set to true to load pretrained weights of ResNet50 encoder.
|
||||
scaling_bluring = False # If true, a combination of scaling and blurring will be applied to the image.
|
||||
scaling_binarization = False # If true, a combination of scaling and binarization will be applied to the image.
|
||||
rotation = False # If true, a 90 degree rotation will be implemeneted.
|
||||
rotation_not_90 = False # If true rotation based on provided angles with thetha will be implemeneted.
|
||||
scaling_brightness = False # If true, a combination of scaling and brightening will be applied to the image.
|
||||
scaling_flip = False # If true, a combination of scaling and flipping will be applied to the image.
|
||||
thetha = None # Rotate image by these angles for augmentation.
|
||||
shuffle_indexes = None
|
||||
blur_k = None # Blur image for augmentation.
|
||||
scales = None # Scale patches for augmentation.
|
||||
degrade_scales = None # Degrade image for augmentation.
|
||||
brightness = None # Brighten image for augmentation.
|
||||
flip_index = None # Flip image for augmentation.
|
||||
continue_training = False # Set to true if you would like to continue training an already trained a model.
|
||||
transformer_patchsize_x = None # Patch size of vision transformer patches in x direction.
|
||||
transformer_patchsize_y = None # Patch size of vision transformer patches in y direction.
|
||||
transformer_num_patches_xy = None # Number of patches for vision transformer in x and y direction respectively.
|
||||
transformer_projection_dim = 64 # Transformer projection dimension. Default value is 64.
|
||||
transformer_mlp_head_units = [128, 64] # Transformer Multilayer Perceptron (MLP) head units. Default value is [128, 64]
|
||||
transformer_layers = 8 # transformer layers. Default value is 8.
|
||||
transformer_num_heads = 4 # Transformer number of heads. Default value is 4.
|
||||
transformer_cnn_first = True # We have two types of vision transformers. In one type, a CNN is applied first, followed by a transformer. In the other type, this order is reversed. If transformer_cnn_first is true, it means the CNN will be applied before the transformer. Default value is true.
|
||||
index_start = 0 # Index of model to continue training from. E.g. if you trained for 3 epochs and last index is 2, to continue from model_1.h5, set "index_start" to 3 to start naming model with index 3.
|
||||
dir_of_start_model = '' # Directory containing pretrained encoder to continue training the model.
|
||||
is_loss_soft_dice = False # Use soft dice as loss function. When set to true, "weighted_loss" must be false.
|
||||
weighted_loss = False # Use weighted categorical cross entropy as loss fucntion. When set to true, "is_loss_soft_dice" must be false.
|
||||
data_is_provided = False # Only set this to true when you have already provided the input data and the train and eval data are in "dir_output".
|
||||
task = "segmentation" # This parameter defines task of model which can be segmentation, enhancement or classification.
|
||||
f1_threshold_classification = None # This threshold is used to consider models with an evaluation f1 scores bigger than it. The selected model weights undergo a weights ensembling. And avreage ensembled model will be written to output.
|
||||
classification_classes_name = None # Dictionary of classification classes names.
|
||||
backbone_type = None # As backbone we have 2 types of backbones. A vision transformer alongside a CNN and we call it "transformer" and only CNN called "nontransformer"
|
||||
save_interval = None
|
||||
dir_img_bin = None
|
||||
number_of_backgrounds_per_image = 1
|
||||
dir_rgb_backgrounds = None
|
||||
dir_rgb_foregrounds = None
|
||||
|
||||
@ex.automain
|
||||
def run(_config, n_classes, n_epochs, input_height,
|
||||
input_width, weight_decay, weighted_loss,
|
||||
index_start, dir_of_start_model, is_loss_soft_dice,
|
||||
n_batch, patches, augmentation, flip_aug,
|
||||
blur_aug, padding_white, padding_black, scaling, shifting, degrading,channels_shuffling,
|
||||
brightening, binarization, adding_rgb_background, adding_rgb_foreground, add_red_textlines, blur_k, scales, degrade_scales,shuffle_indexes,
|
||||
brightness, dir_train, data_is_provided, scaling_bluring,
|
||||
scaling_brightness, scaling_binarization, rotation, rotation_not_90,
|
||||
thetha, scaling_flip, continue_training, transformer_projection_dim,
|
||||
transformer_mlp_head_units, transformer_layers, transformer_num_heads, transformer_cnn_first,
|
||||
transformer_patchsize_x, transformer_patchsize_y,
|
||||
transformer_num_patches_xy, backbone_type, save_interval, flip_index, dir_eval, dir_output,
|
||||
pretraining, learning_rate, task, f1_threshold_classification, classification_classes_name, dir_img_bin, number_of_backgrounds_per_image,dir_rgb_backgrounds, dir_rgb_foregrounds):
|
||||
|
||||
if dir_rgb_backgrounds:
|
||||
list_all_possible_background_images = os.listdir(dir_rgb_backgrounds)
|
||||
else:
|
||||
list_all_possible_background_images = None
|
||||
|
||||
if dir_rgb_foregrounds:
|
||||
list_all_possible_foreground_rgbs = os.listdir(dir_rgb_foregrounds)
|
||||
else:
|
||||
list_all_possible_foreground_rgbs = None
|
||||
|
||||
if task == "segmentation" or task == "enhancement" or task == "binarization":
|
||||
if data_is_provided:
|
||||
dir_train_flowing = os.path.join(dir_output, 'train')
|
||||
dir_eval_flowing = os.path.join(dir_output, 'eval')
|
||||
|
||||
|
||||
dir_flow_train_imgs = os.path.join(dir_train_flowing, 'images')
|
||||
dir_flow_train_labels = os.path.join(dir_train_flowing, 'labels')
|
||||
|
||||
dir_flow_eval_imgs = os.path.join(dir_eval_flowing, 'images')
|
||||
dir_flow_eval_labels = os.path.join(dir_eval_flowing, 'labels')
|
||||
|
||||
configuration()
|
||||
|
||||
else:
|
||||
dir_img, dir_seg = get_dirs_or_files(dir_train)
|
||||
dir_img_val, dir_seg_val = get_dirs_or_files(dir_eval)
|
||||
|
||||
# make first a directory in output for both training and evaluations in order to flow data from these directories.
|
||||
dir_train_flowing = os.path.join(dir_output, 'train')
|
||||
dir_eval_flowing = os.path.join(dir_output, 'eval')
|
||||
|
||||
dir_flow_train_imgs = os.path.join(dir_train_flowing, 'images/')
|
||||
dir_flow_train_labels = os.path.join(dir_train_flowing, 'labels/')
|
||||
|
||||
dir_flow_eval_imgs = os.path.join(dir_eval_flowing, 'images/')
|
||||
dir_flow_eval_labels = os.path.join(dir_eval_flowing, 'labels/')
|
||||
|
||||
if os.path.isdir(dir_train_flowing):
|
||||
os.system('rm -rf ' + dir_train_flowing)
|
||||
os.makedirs(dir_train_flowing)
|
||||
else:
|
||||
os.makedirs(dir_train_flowing)
|
||||
|
||||
if os.path.isdir(dir_eval_flowing):
|
||||
os.system('rm -rf ' + dir_eval_flowing)
|
||||
os.makedirs(dir_eval_flowing)
|
||||
else:
|
||||
os.makedirs(dir_eval_flowing)
|
||||
|
||||
os.mkdir(dir_flow_train_imgs)
|
||||
os.mkdir(dir_flow_train_labels)
|
||||
|
||||
os.mkdir(dir_flow_eval_imgs)
|
||||
os.mkdir(dir_flow_eval_labels)
|
||||
|
||||
# set the gpu configuration
|
||||
configuration()
|
||||
|
||||
imgs_list=np.array(os.listdir(dir_img))
|
||||
segs_list=np.array(os.listdir(dir_seg))
|
||||
|
||||
imgs_list_test=np.array(os.listdir(dir_img_val))
|
||||
segs_list_test=np.array(os.listdir(dir_seg_val))
|
||||
|
||||
# writing patches into a sub-folder in order to be flowed from directory.
|
||||
provide_patches(imgs_list, segs_list, dir_img, dir_seg, dir_flow_train_imgs,
|
||||
dir_flow_train_labels, input_height, input_width, blur_k,
|
||||
blur_aug, padding_white, padding_black, flip_aug, binarization, adding_rgb_background,adding_rgb_foreground, add_red_textlines, channels_shuffling,
|
||||
scaling, shifting, degrading, brightening, scales, degrade_scales, brightness,
|
||||
flip_index,shuffle_indexes, scaling_bluring, scaling_brightness, scaling_binarization,
|
||||
rotation, rotation_not_90, thetha, scaling_flip, task, augmentation=augmentation,
|
||||
patches=patches, dir_img_bin=dir_img_bin,number_of_backgrounds_per_image=number_of_backgrounds_per_image,list_all_possible_background_images=list_all_possible_background_images, dir_rgb_backgrounds=dir_rgb_backgrounds, dir_rgb_foregrounds=dir_rgb_foregrounds,list_all_possible_foreground_rgbs=list_all_possible_foreground_rgbs)
|
||||
|
||||
provide_patches(imgs_list_test, segs_list_test, dir_img_val, dir_seg_val,
|
||||
dir_flow_eval_imgs, dir_flow_eval_labels, input_height, input_width,
|
||||
blur_k, blur_aug, padding_white, padding_black, flip_aug, binarization, adding_rgb_background, adding_rgb_foreground, add_red_textlines, channels_shuffling,
|
||||
scaling, shifting, degrading, brightening, scales, degrade_scales, brightness,
|
||||
flip_index, shuffle_indexes, scaling_bluring, scaling_brightness, scaling_binarization,
|
||||
rotation, rotation_not_90, thetha, scaling_flip, task, augmentation=False, patches=patches,dir_img_bin=dir_img_bin,number_of_backgrounds_per_image=number_of_backgrounds_per_image,list_all_possible_background_images=list_all_possible_background_images, dir_rgb_backgrounds=dir_rgb_backgrounds,dir_rgb_foregrounds=dir_rgb_foregrounds,list_all_possible_foreground_rgbs=list_all_possible_foreground_rgbs )
|
||||
|
||||
if weighted_loss:
|
||||
weights = np.zeros(n_classes)
|
||||
if data_is_provided:
|
||||
for obj in os.listdir(dir_flow_train_labels):
|
||||
try:
|
||||
label_obj = cv2.imread(dir_flow_train_labels + '/' + obj)
|
||||
label_obj_one_hot = get_one_hot(label_obj, label_obj.shape[0], label_obj.shape[1], n_classes)
|
||||
weights += (label_obj_one_hot.sum(axis=0)).sum(axis=0)
|
||||
except:
|
||||
pass
|
||||
else:
|
||||
|
||||
for obj in os.listdir(dir_seg):
|
||||
try:
|
||||
label_obj = cv2.imread(dir_seg + '/' + obj)
|
||||
label_obj_one_hot = get_one_hot(label_obj, label_obj.shape[0], label_obj.shape[1], n_classes)
|
||||
weights += (label_obj_one_hot.sum(axis=0)).sum(axis=0)
|
||||
except:
|
||||
pass
|
||||
|
||||
weights = 1.00 / weights
|
||||
|
||||
weights = weights / float(np.sum(weights))
|
||||
weights = weights / float(np.min(weights))
|
||||
weights = weights / float(np.sum(weights))
|
||||
|
||||
if continue_training:
|
||||
if backbone_type=='nontransformer':
|
||||
if is_loss_soft_dice and (task == "segmentation" or task == "binarization"):
|
||||
model = load_model(dir_of_start_model, compile=True, custom_objects={'soft_dice_loss': soft_dice_loss})
|
||||
if weighted_loss and (task == "segmentation" or task == "binarization"):
|
||||
model = load_model(dir_of_start_model, compile=True, custom_objects={'loss': weighted_categorical_crossentropy(weights)})
|
||||
if not is_loss_soft_dice and not weighted_loss:
|
||||
model = load_model(dir_of_start_model , compile=True)
|
||||
elif backbone_type=='transformer':
|
||||
if is_loss_soft_dice and (task == "segmentation" or task == "binarization"):
|
||||
model = load_model(dir_of_start_model, compile=True, custom_objects={"PatchEncoder": PatchEncoder, "Patches": Patches,'soft_dice_loss': soft_dice_loss})
|
||||
if weighted_loss and (task == "segmentation" or task == "binarization"):
|
||||
model = load_model(dir_of_start_model, compile=True, custom_objects={'loss': weighted_categorical_crossentropy(weights)})
|
||||
if not is_loss_soft_dice and not weighted_loss:
|
||||
model = load_model(dir_of_start_model , compile=True,custom_objects = {"PatchEncoder": PatchEncoder, "Patches": Patches})
|
||||
else:
|
||||
index_start = 0
|
||||
if backbone_type=='nontransformer':
|
||||
model = resnet50_unet(n_classes, input_height, input_width, task, weight_decay, pretraining)
|
||||
elif backbone_type=='transformer':
|
||||
num_patches_x = transformer_num_patches_xy[0]
|
||||
num_patches_y = transformer_num_patches_xy[1]
|
||||
num_patches = num_patches_x * num_patches_y
|
||||
|
||||
if transformer_cnn_first:
|
||||
if input_height != (num_patches_y * transformer_patchsize_y * 32):
|
||||
print("Error: transformer_patchsize_y or transformer_num_patches_xy height value error . input_height should be equal to ( transformer_num_patches_xy height value * transformer_patchsize_y * 32)")
|
||||
sys.exit(1)
|
||||
if input_width != (num_patches_x * transformer_patchsize_x * 32):
|
||||
print("Error: transformer_patchsize_x or transformer_num_patches_xy width value error . input_width should be equal to ( transformer_num_patches_xy width value * transformer_patchsize_x * 32)")
|
||||
sys.exit(1)
|
||||
if (transformer_projection_dim % (transformer_patchsize_y * transformer_patchsize_x)) != 0:
|
||||
print("Error: transformer_projection_dim error. The remainder when parameter transformer_projection_dim is divided by (transformer_patchsize_y*transformer_patchsize_x) should be zero")
|
||||
sys.exit(1)
|
||||
|
||||
|
||||
model = vit_resnet50_unet(n_classes, transformer_patchsize_x, transformer_patchsize_y, num_patches, transformer_mlp_head_units, transformer_layers, transformer_num_heads, transformer_projection_dim, input_height, input_width, task, weight_decay, pretraining)
|
||||
else:
|
||||
if input_height != (num_patches_y * transformer_patchsize_y):
|
||||
print("Error: transformer_patchsize_y or transformer_num_patches_xy height value error . input_height should be equal to ( transformer_num_patches_xy height value * transformer_patchsize_y)")
|
||||
sys.exit(1)
|
||||
if input_width != (num_patches_x * transformer_patchsize_x):
|
||||
print("Error: transformer_patchsize_x or transformer_num_patches_xy width value error . input_width should be equal to ( transformer_num_patches_xy width value * transformer_patchsize_x)")
|
||||
sys.exit(1)
|
||||
if (transformer_projection_dim % (transformer_patchsize_y * transformer_patchsize_x)) != 0:
|
||||
print("Error: transformer_projection_dim error. The remainder when parameter transformer_projection_dim is divided by (transformer_patchsize_y*transformer_patchsize_x) should be zero")
|
||||
sys.exit(1)
|
||||
model = vit_resnet50_unet_transformer_before_cnn(n_classes, transformer_patchsize_x, transformer_patchsize_y, num_patches, transformer_mlp_head_units, transformer_layers, transformer_num_heads, transformer_projection_dim, input_height, input_width, task, weight_decay, pretraining)
|
||||
|
||||
#if you want to see the model structure just uncomment model summary.
|
||||
model.summary()
|
||||
|
||||
|
||||
if task == "segmentation" or task == "binarization":
|
||||
if not is_loss_soft_dice and not weighted_loss:
|
||||
model.compile(loss='categorical_crossentropy',
|
||||
optimizer=Adam(learning_rate=learning_rate), metrics=['accuracy'])
|
||||
if is_loss_soft_dice:
|
||||
model.compile(loss=soft_dice_loss,
|
||||
optimizer=Adam(learning_rate=learning_rate), metrics=['accuracy'])
|
||||
if weighted_loss:
|
||||
model.compile(loss=weighted_categorical_crossentropy(weights),
|
||||
optimizer=Adam(learning_rate=learning_rate), metrics=['accuracy'])
|
||||
elif task == "enhancement":
|
||||
model.compile(loss='mean_squared_error',
|
||||
optimizer=Adam(learning_rate=learning_rate), metrics=['accuracy'])
|
||||
|
||||
|
||||
# generating train and evaluation data
|
||||
train_gen = data_gen(dir_flow_train_imgs, dir_flow_train_labels, batch_size=n_batch,
|
||||
input_height=input_height, input_width=input_width, n_classes=n_classes, task=task)
|
||||
val_gen = data_gen(dir_flow_eval_imgs, dir_flow_eval_labels, batch_size=n_batch,
|
||||
input_height=input_height, input_width=input_width, n_classes=n_classes, task=task)
|
||||
|
||||
##img_validation_patches = os.listdir(dir_flow_eval_imgs)
|
||||
##score_best=[]
|
||||
##score_best.append(0)
|
||||
|
||||
if save_interval:
|
||||
save_weights_callback = SaveWeightsAfterSteps(save_interval, dir_output, _config)
|
||||
|
||||
|
||||
for i in tqdm(range(index_start, n_epochs + index_start)):
|
||||
if save_interval:
|
||||
model.fit(
|
||||
train_gen,
|
||||
steps_per_epoch=int(len(os.listdir(dir_flow_train_imgs)) / n_batch) - 1,
|
||||
validation_data=val_gen,
|
||||
validation_steps=1,
|
||||
epochs=1, callbacks=[save_weights_callback])
|
||||
else:
|
||||
model.fit(
|
||||
train_gen,
|
||||
steps_per_epoch=int(len(os.listdir(dir_flow_train_imgs)) / n_batch) - 1,
|
||||
validation_data=val_gen,
|
||||
validation_steps=1,
|
||||
epochs=1)
|
||||
|
||||
model.save(os.path.join(dir_output,'model_'+str(i)))
|
||||
|
||||
with open(os.path.join(os.path.join(dir_output,'model_'+str(i)),"config.json"), "w") as fp:
|
||||
json.dump(_config, fp) # encode dict into JSON
|
||||
|
||||
#os.system('rm -rf '+dir_train_flowing)
|
||||
#os.system('rm -rf '+dir_eval_flowing)
|
||||
|
||||
#model.save(dir_output+'/'+'model'+'.h5')
|
||||
elif task=='classification':
|
||||
configuration()
|
||||
model = resnet50_classifier(n_classes, input_height, input_width, weight_decay, pretraining)
|
||||
|
||||
opt_adam = Adam(learning_rate=0.001)
|
||||
model.compile(loss='categorical_crossentropy',
|
||||
optimizer = opt_adam,metrics=['accuracy'])
|
||||
|
||||
|
||||
list_classes = list(classification_classes_name.values())
|
||||
testX, testY = generate_data_from_folder_evaluation(dir_eval, input_height, input_width, n_classes, list_classes)
|
||||
|
||||
y_tot=np.zeros((testX.shape[0],n_classes))
|
||||
|
||||
score_best= [0]
|
||||
|
||||
num_rows = return_number_of_total_training_data(dir_train)
|
||||
weights=[]
|
||||
|
||||
for i in range(n_epochs):
|
||||
history = model.fit( generate_data_from_folder_training(dir_train, n_batch , input_height, input_width, n_classes, list_classes), steps_per_epoch=num_rows / n_batch, verbose=1)#,class_weight=weights)
|
||||
|
||||
y_pr_class = []
|
||||
for jj in range(testY.shape[0]):
|
||||
y_pr=model.predict(testX[jj,:,:,:].reshape(1,input_height,input_width,3), verbose=0)
|
||||
y_pr_ind= np.argmax(y_pr,axis=1)
|
||||
y_pr_class.append(y_pr_ind)
|
||||
|
||||
y_pr_class = np.array(y_pr_class)
|
||||
f1score=f1_score(np.argmax(testY,axis=1), y_pr_class, average='macro')
|
||||
print(i,f1score)
|
||||
|
||||
if f1score>score_best[0]:
|
||||
score_best[0]=f1score
|
||||
model.save(os.path.join(dir_output,'model_best'))
|
||||
|
||||
if f1score > f1_threshold_classification:
|
||||
weights.append(model.get_weights() )
|
||||
|
||||
|
||||
if len(weights) >= 1:
|
||||
new_weights=list()
|
||||
for weights_list_tuple in zip(*weights):
|
||||
new_weights.append( [np.array(weights_).mean(axis=0) for weights_ in zip(*weights_list_tuple)] )
|
||||
|
||||
new_weights = [np.array(x) for x in new_weights]
|
||||
model_weight_averaged=tf.keras.models.clone_model(model)
|
||||
model_weight_averaged.set_weights(new_weights)
|
||||
|
||||
model_weight_averaged.save(os.path.join(dir_output,'model_ens_avg'))
|
||||
with open(os.path.join( os.path.join(dir_output,'model_ens_avg'), "config.json"), "w") as fp:
|
||||
json.dump(_config, fp) # encode dict into JSON
|
||||
|
||||
with open(os.path.join( os.path.join(dir_output,'model_best'), "config.json"), "w") as fp:
|
||||
json.dump(_config, fp) # encode dict into JSON
|
||||
|
||||
elif task=='reading_order':
|
||||
configuration()
|
||||
model = machine_based_reading_order_model(n_classes,input_height,input_width,weight_decay,pretraining)
|
||||
|
||||
dir_flow_train_imgs = os.path.join(dir_train, 'images')
|
||||
dir_flow_train_labels = os.path.join(dir_train, 'labels')
|
||||
|
||||
classes = os.listdir(dir_flow_train_labels)
|
||||
if augmentation:
|
||||
num_rows = len(classes)*(len(thetha) + 1)
|
||||
else:
|
||||
num_rows = len(classes)
|
||||
#ls_test = os.listdir(dir_flow_train_labels)
|
||||
|
||||
#f1score_tot = [0]
|
||||
indexer_start = 0
|
||||
# opt = SGD(learning_rate=0.01, momentum=0.9)
|
||||
opt_adam = tf.keras.optimizers.Adam(learning_rate=0.0001)
|
||||
model.compile(loss="binary_crossentropy",
|
||||
optimizer = opt_adam,metrics=['accuracy'])
|
||||
|
||||
if save_interval:
|
||||
save_weights_callback = SaveWeightsAfterSteps(save_interval, dir_output, _config)
|
||||
|
||||
for i in range(n_epochs):
|
||||
if save_interval:
|
||||
history = model.fit(generate_arrays_from_folder_reading_order(dir_flow_train_labels, dir_flow_train_imgs, n_batch, input_height, input_width, n_classes, thetha, augmentation), steps_per_epoch=num_rows / n_batch, verbose=1, callbacks=[save_weights_callback])
|
||||
else:
|
||||
history = model.fit(generate_arrays_from_folder_reading_order(dir_flow_train_labels, dir_flow_train_imgs, n_batch, input_height, input_width, n_classes, thetha, augmentation), steps_per_epoch=num_rows / n_batch, verbose=1)
|
||||
model.save( os.path.join(dir_output,'model_'+str(i+indexer_start) ))
|
||||
|
||||
with open(os.path.join(os.path.join(dir_output,'model_'+str(i)),"config.json"), "w") as fp:
|
||||
json.dump(_config, fp) # encode dict into JSON
|
||||
'''
|
||||
if f1score>f1score_tot[0]:
|
||||
f1score_tot[0] = f1score
|
||||
model_dir = os.path.join(dir_out,'model_best')
|
||||
model.save(model_dir)
|
||||
'''
|
||||
|
||||
|
||||
Loading…
Add table
Add a link
Reference in a new issue