mirror of
https://github.com/qurator-spk/eynollah.git
synced 2025-06-30 22:49:52 +02:00
changing cnn ocr model name
This commit is contained in:
parent
92bfac4b41
commit
33fda2f8be
1 changed files with 11 additions and 11 deletions
|
@ -2191,18 +2191,18 @@ class Eynollah:
|
||||||
img = resize_image(img_org, int(img_org.shape[0] * scaler_h), int(img_org.shape[1] * scaler_w))
|
img = resize_image(img_org, int(img_org.shape[0] * scaler_h), int(img_org.shape[1] * scaler_w))
|
||||||
|
|
||||||
if not self.dir_in:
|
if not self.dir_in:
|
||||||
###prediction_textline = self.do_prediction(patches, img, model_textline, marginal_of_patch_percent=0.15, n_batch_inference=3, thresholding_for_artificial_class_in_light_version=thresholding_for_artificial_class_in_light_version)
|
prediction_textline = self.do_prediction(patches, img, model_textline, marginal_of_patch_percent=0.15, n_batch_inference=3, thresholding_for_artificial_class_in_light_version=thresholding_for_artificial_class_in_light_version)
|
||||||
|
|
||||||
prediction_textline = self.do_prediction_new_concept_scatter_nd(patches, img, model_textline, n_batch_inference=3)
|
###prediction_textline = self.do_prediction_new_concept_scatter_nd(patches, img, model_textline, n_batch_inference=3)
|
||||||
|
|
||||||
#if not thresholding_for_artificial_class_in_light_version:
|
#if not thresholding_for_artificial_class_in_light_version:
|
||||||
#if num_col_classifier==1:
|
#if num_col_classifier==1:
|
||||||
#prediction_textline_nopatch = self.do_prediction(False, img, model_textline)
|
#prediction_textline_nopatch = self.do_prediction(False, img, model_textline)
|
||||||
#prediction_textline[:,:][prediction_textline_nopatch[:,:]==0] = 0
|
#prediction_textline[:,:][prediction_textline_nopatch[:,:]==0] = 0
|
||||||
else:
|
else:
|
||||||
##prediction_textline = self.do_prediction(patches, img, self.model_textline, marginal_of_patch_percent=0.15, n_batch_inference=3,thresholding_for_artificial_class_in_light_version=thresholding_for_artificial_class_in_light_version)
|
prediction_textline = self.do_prediction(patches, img, self.model_textline, marginal_of_patch_percent=0.15, n_batch_inference=3,thresholding_for_artificial_class_in_light_version=thresholding_for_artificial_class_in_light_version)
|
||||||
|
|
||||||
prediction_textline = self.do_prediction_new_concept_scatter_nd(patches, img, self.model_textline, n_batch_inference=3)
|
##prediction_textline = self.do_prediction_new_concept_scatter_nd(patches, img, self.model_textline, n_batch_inference=3)
|
||||||
#if not thresholding_for_artificial_class_in_light_version:
|
#if not thresholding_for_artificial_class_in_light_version:
|
||||||
#if num_col_classifier==1:
|
#if num_col_classifier==1:
|
||||||
#prediction_textline_nopatch = self.do_prediction(False, img, model_textline)
|
#prediction_textline_nopatch = self.do_prediction(False, img, model_textline)
|
||||||
|
@ -2482,17 +2482,17 @@ class Eynollah:
|
||||||
if num_col_classifier == 1 or num_col_classifier == 2:
|
if num_col_classifier == 1 or num_col_classifier == 2:
|
||||||
model_region, session_region = self.start_new_session_and_model(self.model_region_dir_p_1_2_sp_np)
|
model_region, session_region = self.start_new_session_and_model(self.model_region_dir_p_1_2_sp_np)
|
||||||
if self.image_org.shape[0]/self.image_org.shape[1] > 2.5:
|
if self.image_org.shape[0]/self.image_org.shape[1] > 2.5:
|
||||||
prediction_regions_org = self.do_prediction_new_concept_scatter_nd(True, img_resized, model_region, n_batch_inference=1, thresholding_for_some_classes_in_light_version = True)
|
##prediction_regions_org = self.do_prediction_new_concept_scatter_nd(True, img_resized, model_region, n_batch_inference=1, thresholding_for_some_classes_in_light_version = True)
|
||||||
###prediction_regions_org = self.do_prediction_new_concept(True, img_resized, model_region, n_batch_inference=1, thresholding_for_some_classes_in_light_version = True)
|
prediction_regions_org = self.do_prediction_new_concept(True, img_resized, model_region, n_batch_inference=1, thresholding_for_some_classes_in_light_version = True)
|
||||||
else:
|
else:
|
||||||
prediction_regions_org = np.zeros((self.image_org.shape[0], self.image_org.shape[1], 3))
|
prediction_regions_org = np.zeros((self.image_org.shape[0], self.image_org.shape[1], 3))
|
||||||
prediction_regions_page = self.do_prediction_new_concept_scatter_nd(False, self.image_page_org_size, model_region, n_batch_inference=1, thresholding_for_artificial_class_in_light_version = True)
|
###prediction_regions_page = self.do_prediction_new_concept_scatter_nd(False, self.image_page_org_size, model_region, n_batch_inference=1, thresholding_for_artificial_class_in_light_version = True)
|
||||||
##prediction_regions_page = self.do_prediction_new_concept(False, self.image_page_org_size, model_region, n_batch_inference=1, thresholding_for_artificial_class_in_light_version = True)
|
prediction_regions_page = self.do_prediction_new_concept(False, self.image_page_org_size, model_region, n_batch_inference=1, thresholding_for_artificial_class_in_light_version = True)
|
||||||
prediction_regions_org[self.page_coord[0] : self.page_coord[1], self.page_coord[2] : self.page_coord[3],:] = prediction_regions_page
|
prediction_regions_org[self.page_coord[0] : self.page_coord[1], self.page_coord[2] : self.page_coord[3],:] = prediction_regions_page
|
||||||
else:
|
else:
|
||||||
model_region, session_region = self.start_new_session_and_model(self.model_region_dir_p_1_2_sp_np)
|
model_region, session_region = self.start_new_session_and_model(self.model_region_dir_p_1_2_sp_np)
|
||||||
###prediction_regions_org = self.do_prediction_new_concept(True, resize_image(img_bin, int( (900+ (num_col_classifier-3)*100) *(img_bin.shape[0]/img_bin.shape[1]) ), 900+ (num_col_classifier-3)*100), model_region, n_batch_inference=2, thresholding_for_some_classes_in_light_version=True)
|
prediction_regions_org = self.do_prediction_new_concept(True, resize_image(img_bin, int( (900+ (num_col_classifier-3)*100) *(img_bin.shape[0]/img_bin.shape[1]) ), 900+ (num_col_classifier-3)*100), model_region, n_batch_inference=2, thresholding_for_some_classes_in_light_version=True)
|
||||||
prediction_regions_org = self.do_prediction_new_concept_scatter_nd(True, resize_image(img_bin, int( (900+ (num_col_classifier-3)*100) *(img_bin.shape[0]/img_bin.shape[1]) ), 900+ (num_col_classifier-3)*100), model_region, n_batch_inference=2, thresholding_for_some_classes_in_light_version=True)
|
###prediction_regions_org = self.do_prediction_new_concept_scatter_nd(True, resize_image(img_bin, int( (900+ (num_col_classifier-3)*100) *(img_bin.shape[0]/img_bin.shape[1]) ), 900+ (num_col_classifier-3)*100), model_region, n_batch_inference=2, thresholding_for_some_classes_in_light_version=True)
|
||||||
##model_region, session_region = self.start_new_session_and_model(self.model_region_dir_p_ens_light)
|
##model_region, session_region = self.start_new_session_and_model(self.model_region_dir_p_ens_light)
|
||||||
##prediction_regions_org = self.do_prediction(True, img_bin, model_region, n_batch_inference=3, thresholding_for_some_classes_in_light_version=True)
|
##prediction_regions_org = self.do_prediction(True, img_bin, model_region, n_batch_inference=3, thresholding_for_some_classes_in_light_version=True)
|
||||||
else:
|
else:
|
||||||
|
@ -5638,7 +5638,7 @@ class Eynollah_ocr:
|
||||||
self.model_ocr.to(self.device)
|
self.model_ocr.to(self.device)
|
||||||
|
|
||||||
else:
|
else:
|
||||||
self.model_ocr_dir = dir_models + "/model_0_ocr_cnnrnn"#"/model_23_ocr_cnnrnn"
|
self.model_ocr_dir = dir_models + "/model_1_ocrcnn"#"/model_0_ocr_cnnrnn"#"/model_23_ocr_cnnrnn"
|
||||||
model_ocr = load_model(self.model_ocr_dir , compile=False)
|
model_ocr = load_model(self.model_ocr_dir , compile=False)
|
||||||
|
|
||||||
self.prediction_model = tf.keras.models.Model(
|
self.prediction_model = tf.keras.models.Model(
|
||||||
|
|
Loading…
Add table
Add a link
Reference in a new issue