mirror of
https://github.com/qurator-spk/eynollah.git
synced 2025-06-08 19:59:56 +02:00
typo: s,spliter,splitter,g
This commit is contained in:
parent
e332da34f6
commit
375e9771e2
2 changed files with 72 additions and 72 deletions
|
@ -1486,10 +1486,10 @@ class Eynollah:
|
||||||
regions_without_seperators_d = None
|
regions_without_seperators_d = None
|
||||||
pixel_lines = 3
|
pixel_lines = 3
|
||||||
if np.abs(slope_deskew) < SLOPE_THRESHOLD:
|
if np.abs(slope_deskew) < SLOPE_THRESHOLD:
|
||||||
_, _, matrix_of_lines_ch, spliter_y_new, _ = find_number_of_columns_in_document(np.repeat(text_regions_p[:, :, np.newaxis], 3, axis=2), num_col_classifier, pixel_lines)
|
_, _, matrix_of_lines_ch, splitter_y_new, _ = find_number_of_columns_in_document(np.repeat(text_regions_p[:, :, np.newaxis], 3, axis=2), num_col_classifier, pixel_lines)
|
||||||
|
|
||||||
if np.abs(slope_deskew) >= SLOPE_THRESHOLD:
|
if np.abs(slope_deskew) >= SLOPE_THRESHOLD:
|
||||||
_, _, matrix_of_lines_ch_d, spliter_y_new_d, _ = find_number_of_columns_in_document(np.repeat(text_regions_p_1_n[:, :, np.newaxis], 3, axis=2), num_col_classifier, pixel_lines)
|
_, _, matrix_of_lines_ch_d, splitter_y_new_d, _ = find_number_of_columns_in_document(np.repeat(text_regions_p_1_n[:, :, np.newaxis], 3, axis=2), num_col_classifier, pixel_lines)
|
||||||
K.clear_session()
|
K.clear_session()
|
||||||
|
|
||||||
self.logger.info("num_col_classifier: %s", num_col_classifier)
|
self.logger.info("num_col_classifier: %s", num_col_classifier)
|
||||||
|
@ -1503,11 +1503,11 @@ class Eynollah:
|
||||||
regions_without_seperators_d = cv2.erode(regions_without_seperators_d[:, :], KERNEL, iterations=6)
|
regions_without_seperators_d = cv2.erode(regions_without_seperators_d[:, :], KERNEL, iterations=6)
|
||||||
t1 = time.time()
|
t1 = time.time()
|
||||||
if np.abs(slope_deskew) < SLOPE_THRESHOLD:
|
if np.abs(slope_deskew) < SLOPE_THRESHOLD:
|
||||||
boxes = return_boxes_of_images_by_order_of_reading_new(spliter_y_new, regions_without_seperators, matrix_of_lines_ch, num_col_classifier)
|
boxes = return_boxes_of_images_by_order_of_reading_new(splitter_y_new, regions_without_seperators, matrix_of_lines_ch, num_col_classifier)
|
||||||
boxes_d = None
|
boxes_d = None
|
||||||
self.logger.debug("len(boxes): %s", len(boxes))
|
self.logger.debug("len(boxes): %s", len(boxes))
|
||||||
else:
|
else:
|
||||||
boxes_d = return_boxes_of_images_by_order_of_reading_new(spliter_y_new_d, regions_without_seperators_d, matrix_of_lines_ch_d, num_col_classifier)
|
boxes_d = return_boxes_of_images_by_order_of_reading_new(splitter_y_new_d, regions_without_seperators_d, matrix_of_lines_ch_d, num_col_classifier)
|
||||||
boxes = None
|
boxes = None
|
||||||
self.logger.debug("len(boxes): %s", len(boxes_d))
|
self.logger.debug("len(boxes): %s", len(boxes_d))
|
||||||
|
|
||||||
|
@ -1760,17 +1760,17 @@ class Eynollah:
|
||||||
|
|
||||||
if not self.headers_off:
|
if not self.headers_off:
|
||||||
if np.abs(slope_deskew) < SLOPE_THRESHOLD:
|
if np.abs(slope_deskew) < SLOPE_THRESHOLD:
|
||||||
num_col, _, matrix_of_lines_ch, spliter_y_new, _ = find_number_of_columns_in_document(np.repeat(text_regions_p[:, :, np.newaxis], 3, axis=2), num_col_classifier, pixel_lines, contours_only_text_parent_h)
|
num_col, _, matrix_of_lines_ch, splitter_y_new, _ = find_number_of_columns_in_document(np.repeat(text_regions_p[:, :, np.newaxis], 3, axis=2), num_col_classifier, pixel_lines, contours_only_text_parent_h)
|
||||||
else:
|
else:
|
||||||
_, _, matrix_of_lines_ch_d, spliter_y_new_d, _ = find_number_of_columns_in_document(np.repeat(text_regions_p_1_n[:, :, np.newaxis], 3, axis=2), num_col_classifier, pixel_lines, contours_only_text_parent_h_d_ordered)
|
_, _, matrix_of_lines_ch_d, splitter_y_new_d, _ = find_number_of_columns_in_document(np.repeat(text_regions_p_1_n[:, :, np.newaxis], 3, axis=2), num_col_classifier, pixel_lines, contours_only_text_parent_h_d_ordered)
|
||||||
elif self.headers_off:
|
elif self.headers_off:
|
||||||
if np.abs(slope_deskew) < SLOPE_THRESHOLD:
|
if np.abs(slope_deskew) < SLOPE_THRESHOLD:
|
||||||
num_col, _, matrix_of_lines_ch, spliter_y_new, _ = find_number_of_columns_in_document(np.repeat(text_regions_p[:, :, np.newaxis], 3, axis=2), num_col_classifier, pixel_lines)
|
num_col, _, matrix_of_lines_ch, splitter_y_new, _ = find_number_of_columns_in_document(np.repeat(text_regions_p[:, :, np.newaxis], 3, axis=2), num_col_classifier, pixel_lines)
|
||||||
else:
|
else:
|
||||||
_, _, matrix_of_lines_ch_d, spliter_y_new_d, _ = find_number_of_columns_in_document(np.repeat(text_regions_p_1_n[:, :, np.newaxis], 3, axis=2), num_col_classifier, pixel_lines)
|
_, _, matrix_of_lines_ch_d, splitter_y_new_d, _ = find_number_of_columns_in_document(np.repeat(text_regions_p_1_n[:, :, np.newaxis], 3, axis=2), num_col_classifier, pixel_lines)
|
||||||
|
|
||||||
# print(peaks_neg_fin,peaks_neg_fin_d,'num_col2')
|
# print(peaks_neg_fin,peaks_neg_fin_d,'num_col2')
|
||||||
# print(spliter_y_new,spliter_y_new_d,'num_col_classifier')
|
# print(splitter_y_new,splitter_y_new_d,'num_col_classifier')
|
||||||
# print(matrix_of_lines_ch.shape,matrix_of_lines_ch_d.shape,'matrix_of_lines_ch')
|
# print(matrix_of_lines_ch.shape,matrix_of_lines_ch_d.shape,'matrix_of_lines_ch')
|
||||||
|
|
||||||
if num_col_classifier >= 3:
|
if num_col_classifier >= 3:
|
||||||
|
@ -1790,9 +1790,9 @@ class Eynollah:
|
||||||
regions_without_seperators_d[(random_pixels_for_image[:, :] == 1) & (text_regions_p_1_n[:, :] == 5)] = 1
|
regions_without_seperators_d[(random_pixels_for_image[:, :] == 1) & (text_regions_p_1_n[:, :] == 5)] = 1
|
||||||
|
|
||||||
if np.abs(slope_deskew) < SLOPE_THRESHOLD:
|
if np.abs(slope_deskew) < SLOPE_THRESHOLD:
|
||||||
boxes = return_boxes_of_images_by_order_of_reading_new(spliter_y_new, regions_without_seperators, matrix_of_lines_ch, num_col_classifier)
|
boxes = return_boxes_of_images_by_order_of_reading_new(splitter_y_new, regions_without_seperators, matrix_of_lines_ch, num_col_classifier)
|
||||||
else:
|
else:
|
||||||
boxes_d = return_boxes_of_images_by_order_of_reading_new(spliter_y_new_d, regions_without_seperators_d, matrix_of_lines_ch_d, num_col_classifier)
|
boxes_d = return_boxes_of_images_by_order_of_reading_new(splitter_y_new_d, regions_without_seperators_d, matrix_of_lines_ch_d, num_col_classifier)
|
||||||
|
|
||||||
if self.plotter:
|
if self.plotter:
|
||||||
self.plotter.write_images_into_directory(polygons_of_images, image_page)
|
self.plotter.write_images_into_directory(polygons_of_images, image_page)
|
||||||
|
|
|
@ -1549,30 +1549,30 @@ def find_number_of_columns_in_document(region_pre_p, num_col_classifier, pixel_l
|
||||||
matrix_of_lines_ch=np.copy(matrix_l_n)
|
matrix_of_lines_ch=np.copy(matrix_l_n)
|
||||||
|
|
||||||
|
|
||||||
cy_main_spliters=cy_main_hor[ (x_min_main_hor<=.16*region_pre_p.shape[1]) & (x_max_main_hor>=.84*region_pre_p.shape[1] )]
|
cy_main_splitters=cy_main_hor[ (x_min_main_hor<=.16*region_pre_p.shape[1]) & (x_max_main_hor>=.84*region_pre_p.shape[1] )]
|
||||||
|
|
||||||
cy_main_spliters=np.array( list(cy_main_spliters)+list(special_seperators))
|
cy_main_splitters=np.array( list(cy_main_splitters)+list(special_seperators))
|
||||||
|
|
||||||
if contours_h is not None:
|
if contours_h is not None:
|
||||||
try:
|
try:
|
||||||
cy_main_spliters_head=cy_main_head[ (x_min_main_head<=.16*region_pre_p.shape[1]) & (x_max_main_head>=.84*region_pre_p.shape[1] )]
|
cy_main_splitters_head=cy_main_head[ (x_min_main_head<=.16*region_pre_p.shape[1]) & (x_max_main_head>=.84*region_pre_p.shape[1] )]
|
||||||
cy_main_spliters=np.array( list(cy_main_spliters)+list(cy_main_spliters_head))
|
cy_main_splitters=np.array( list(cy_main_splitters)+list(cy_main_splitters_head))
|
||||||
except:
|
except:
|
||||||
pass
|
pass
|
||||||
args_cy_spliter=np.argsort(cy_main_spliters)
|
args_cy_splitter=np.argsort(cy_main_splitters)
|
||||||
|
|
||||||
cy_main_spliters_sort=cy_main_spliters[args_cy_spliter]
|
cy_main_splitters_sort=cy_main_splitters[args_cy_splitter]
|
||||||
|
|
||||||
spliter_y_new=[]
|
splitter_y_new=[]
|
||||||
spliter_y_new.append(0)
|
splitter_y_new.append(0)
|
||||||
for i in range(len(cy_main_spliters_sort)):
|
for i in range(len(cy_main_splitters_sort)):
|
||||||
spliter_y_new.append( cy_main_spliters_sort[i] )
|
splitter_y_new.append( cy_main_splitters_sort[i] )
|
||||||
|
|
||||||
spliter_y_new.append(region_pre_p.shape[0])
|
splitter_y_new.append(region_pre_p.shape[0])
|
||||||
|
|
||||||
spliter_y_new_diff=np.diff(spliter_y_new)/float(region_pre_p.shape[0])*100
|
splitter_y_new_diff=np.diff(splitter_y_new)/float(region_pre_p.shape[0])*100
|
||||||
|
|
||||||
args_big_parts=np.array(range(len(spliter_y_new_diff))) [ spliter_y_new_diff>22 ]
|
args_big_parts=np.array(range(len(splitter_y_new_diff))) [ splitter_y_new_diff>22 ]
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
@ -1587,8 +1587,8 @@ def find_number_of_columns_in_document(region_pre_p, num_col_classifier, pixel_l
|
||||||
for itiles in args_big_parts:
|
for itiles in args_big_parts:
|
||||||
|
|
||||||
|
|
||||||
regions_without_seperators_tile=regions_without_seperators[int(spliter_y_new[iteils]):int(spliter_y_new[iteils+1]),:,0]
|
regions_without_seperators_tile=regions_without_seperators[int(splitter_y_new[iteils]):int(splitter_y_new[iteils+1]),:,0]
|
||||||
#image_page_background_zero_tile=image_page_background_zero[int(spliter_y_new[iteils]):int(spliter_y_new[iteils+1]),:]
|
#image_page_background_zero_tile=image_page_background_zero[int(splitter_y_new[iteils]):int(splitter_y_new[iteils+1]),:]
|
||||||
|
|
||||||
#print(regions_without_seperators_tile.shape)
|
#print(regions_without_seperators_tile.shape)
|
||||||
##plt.imshow(regions_without_seperators_tile)
|
##plt.imshow(regions_without_seperators_tile)
|
||||||
|
@ -1614,25 +1614,25 @@ def find_number_of_columns_in_document(region_pre_p, num_col_classifier, pixel_l
|
||||||
#print(peaks_neg_fin_fin,'peaks_neg_fin_fintaza')
|
#print(peaks_neg_fin_fin,'peaks_neg_fin_fintaza')
|
||||||
|
|
||||||
|
|
||||||
return num_col_fin, peaks_neg_fin_fin,matrix_of_lines_ch,spliter_y_new,seperators_closeup_n
|
return num_col_fin, peaks_neg_fin_fin,matrix_of_lines_ch,splitter_y_new,seperators_closeup_n
|
||||||
|
|
||||||
|
|
||||||
def return_boxes_of_images_by_order_of_reading_new(spliter_y_new, regions_without_seperators, matrix_of_lines_ch, num_col_classifier):
|
def return_boxes_of_images_by_order_of_reading_new(splitter_y_new, regions_without_seperators, matrix_of_lines_ch, num_col_classifier):
|
||||||
boxes=[]
|
boxes=[]
|
||||||
|
|
||||||
|
|
||||||
for i in range(len(spliter_y_new)-1):
|
for i in range(len(splitter_y_new)-1):
|
||||||
#print(spliter_y_new[i],spliter_y_new[i+1])
|
#print(splitter_y_new[i],splitter_y_new[i+1])
|
||||||
matrix_new=matrix_of_lines_ch[:,:][ (matrix_of_lines_ch[:,6]> spliter_y_new[i] ) & (matrix_of_lines_ch[:,7]< spliter_y_new[i+1] ) ]
|
matrix_new=matrix_of_lines_ch[:,:][ (matrix_of_lines_ch[:,6]> splitter_y_new[i] ) & (matrix_of_lines_ch[:,7]< splitter_y_new[i+1] ) ]
|
||||||
#print(len( matrix_new[:,9][matrix_new[:,9]==1] ))
|
#print(len( matrix_new[:,9][matrix_new[:,9]==1] ))
|
||||||
|
|
||||||
#print(matrix_new[:,8][matrix_new[:,9]==1],'gaddaaa')
|
#print(matrix_new[:,8][matrix_new[:,9]==1],'gaddaaa')
|
||||||
|
|
||||||
# check to see is there any vertical seperator to find holes.
|
# check to see is there any vertical seperator to find holes.
|
||||||
if 1>0:#len( matrix_new[:,9][matrix_new[:,9]==1] )>0 and np.max(matrix_new[:,8][matrix_new[:,9]==1])>=0.1*(np.abs(spliter_y_new[i+1]-spliter_y_new[i] )):
|
if 1>0:#len( matrix_new[:,9][matrix_new[:,9]==1] )>0 and np.max(matrix_new[:,8][matrix_new[:,9]==1])>=0.1*(np.abs(splitter_y_new[i+1]-splitter_y_new[i] )):
|
||||||
|
|
||||||
try:
|
try:
|
||||||
num_col, peaks_neg_fin=find_num_col(regions_without_seperators[int(spliter_y_new[i]):int(spliter_y_new[i+1]),:],multiplier=7.)
|
num_col, peaks_neg_fin=find_num_col(regions_without_seperators[int(splitter_y_new[i]):int(splitter_y_new[i+1]),:],multiplier=7.)
|
||||||
except:
|
except:
|
||||||
peaks_neg_fin=[]
|
peaks_neg_fin=[]
|
||||||
|
|
||||||
|
@ -1644,7 +1644,7 @@ def return_boxes_of_images_by_order_of_reading_new(spliter_y_new, regions_withou
|
||||||
#print('burda')
|
#print('burda')
|
||||||
|
|
||||||
if len(peaks_neg_fin)==0:
|
if len(peaks_neg_fin)==0:
|
||||||
num_col, peaks_neg_fin=find_num_col(regions_without_seperators[int(spliter_y_new[i]):int(spliter_y_new[i+1]),:],multiplier=3.)
|
num_col, peaks_neg_fin=find_num_col(regions_without_seperators[int(splitter_y_new[i]):int(splitter_y_new[i+1]),:],multiplier=3.)
|
||||||
peaks_neg_fin_early=[]
|
peaks_neg_fin_early=[]
|
||||||
peaks_neg_fin_early.append(0)
|
peaks_neg_fin_early.append(0)
|
||||||
#print(peaks_neg_fin,'peaks_neg_fin')
|
#print(peaks_neg_fin,'peaks_neg_fin')
|
||||||
|
@ -1657,15 +1657,15 @@ def return_boxes_of_images_by_order_of_reading_new(spliter_y_new, regions_withou
|
||||||
for i_n in range(len(peaks_neg_fin_early)-1):
|
for i_n in range(len(peaks_neg_fin_early)-1):
|
||||||
#print(i_n,'i_n')
|
#print(i_n,'i_n')
|
||||||
|
|
||||||
#plt.plot(regions_without_seperators[int(spliter_y_new[i]):int(spliter_y_new[i+1]),peaks_neg_fin_early[i_n]:peaks_neg_fin_early[i_n+1]].sum(axis=0) )
|
#plt.plot(regions_without_seperators[int(splitter_y_new[i]):int(splitter_y_new[i+1]),peaks_neg_fin_early[i_n]:peaks_neg_fin_early[i_n+1]].sum(axis=0) )
|
||||||
#plt.show()
|
#plt.show()
|
||||||
try:
|
try:
|
||||||
num_col, peaks_neg_fin1=find_num_col(regions_without_seperators[int(spliter_y_new[i]):int(spliter_y_new[i+1]),peaks_neg_fin_early[i_n]:peaks_neg_fin_early[i_n+1]],multiplier=7.)
|
num_col, peaks_neg_fin1=find_num_col(regions_without_seperators[int(splitter_y_new[i]):int(splitter_y_new[i+1]),peaks_neg_fin_early[i_n]:peaks_neg_fin_early[i_n+1]],multiplier=7.)
|
||||||
except:
|
except:
|
||||||
peaks_neg_fin1=[]
|
peaks_neg_fin1=[]
|
||||||
|
|
||||||
try:
|
try:
|
||||||
num_col, peaks_neg_fin2=find_num_col(regions_without_seperators[int(spliter_y_new[i]):int(spliter_y_new[i+1]),peaks_neg_fin_early[i_n]:peaks_neg_fin_early[i_n+1]],multiplier=5.)
|
num_col, peaks_neg_fin2=find_num_col(regions_without_seperators[int(splitter_y_new[i]):int(splitter_y_new[i+1]),peaks_neg_fin_early[i_n]:peaks_neg_fin_early[i_n+1]],multiplier=5.)
|
||||||
except:
|
except:
|
||||||
peaks_neg_fin2=[]
|
peaks_neg_fin2=[]
|
||||||
|
|
||||||
|
@ -1698,7 +1698,7 @@ def return_boxes_of_images_by_order_of_reading_new(spliter_y_new, regions_withou
|
||||||
#print(peaks_neg_fin,'peaks_neg_fin')
|
#print(peaks_neg_fin,'peaks_neg_fin')
|
||||||
except:
|
except:
|
||||||
pass
|
pass
|
||||||
#num_col, peaks_neg_fin=find_num_col(regions_without_seperators[int(spliter_y_new[i]):int(spliter_y_new[i+1]),:],multiplier=7.0)
|
#num_col, peaks_neg_fin=find_num_col(regions_without_seperators[int(splitter_y_new[i]):int(splitter_y_new[i+1]),:],multiplier=7.0)
|
||||||
x_min_hor_some=matrix_new[:,2][ (matrix_new[:,9]==0) ]
|
x_min_hor_some=matrix_new[:,2][ (matrix_new[:,9]==0) ]
|
||||||
x_max_hor_some=matrix_new[:,3][ (matrix_new[:,9]==0) ]
|
x_max_hor_some=matrix_new[:,3][ (matrix_new[:,9]==0) ]
|
||||||
cy_hor_some=matrix_new[:,5][ (matrix_new[:,9]==0) ]
|
cy_hor_some=matrix_new[:,5][ (matrix_new[:,9]==0) ]
|
||||||
|
@ -1719,7 +1719,7 @@ def return_boxes_of_images_by_order_of_reading_new(spliter_y_new, regions_withou
|
||||||
|
|
||||||
|
|
||||||
try:
|
try:
|
||||||
y_grenze=int(spliter_y_new[i])+300
|
y_grenze=int(splitter_y_new[i])+300
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
@ -1728,13 +1728,13 @@ def return_boxes_of_images_by_order_of_reading_new(spliter_y_new, regions_withou
|
||||||
args_early_ys=np.array(range(len(y_type_2)))
|
args_early_ys=np.array(range(len(y_type_2)))
|
||||||
|
|
||||||
#print(args_early_ys,'args_early_ys')
|
#print(args_early_ys,'args_early_ys')
|
||||||
#print(int(spliter_y_new[i]),int(spliter_y_new[i+1]))
|
#print(int(splitter_y_new[i]),int(splitter_y_new[i+1]))
|
||||||
|
|
||||||
y_type_2_up=np.array(y_type_2)[( np.array(y_type_2)>int(spliter_y_new[i]) ) & (np.array(y_type_2)<=y_grenze)]
|
y_type_2_up=np.array(y_type_2)[( np.array(y_type_2)>int(splitter_y_new[i]) ) & (np.array(y_type_2)<=y_grenze)]
|
||||||
x_starting_up=np.array(x_starting)[( np.array(y_type_2)>int(spliter_y_new[i]) ) & (np.array(y_type_2)<=y_grenze)]
|
x_starting_up=np.array(x_starting)[( np.array(y_type_2)>int(splitter_y_new[i]) ) & (np.array(y_type_2)<=y_grenze)]
|
||||||
x_ending_up=np.array(x_ending)[( np.array(y_type_2)>int(spliter_y_new[i]) ) & (np.array(y_type_2)<=y_grenze)]
|
x_ending_up=np.array(x_ending)[( np.array(y_type_2)>int(splitter_y_new[i]) ) & (np.array(y_type_2)<=y_grenze)]
|
||||||
y_diff_type_2_up=np.array(y_diff_type_2)[( np.array(y_type_2)>int(spliter_y_new[i]) ) & (np.array(y_type_2)<=y_grenze)]
|
y_diff_type_2_up=np.array(y_diff_type_2)[( np.array(y_type_2)>int(splitter_y_new[i]) ) & (np.array(y_type_2)<=y_grenze)]
|
||||||
args_up=args_early_ys[( np.array(y_type_2)>int(spliter_y_new[i]) ) & (np.array(y_type_2)<=y_grenze)]
|
args_up=args_early_ys[( np.array(y_type_2)>int(splitter_y_new[i]) ) & (np.array(y_type_2)<=y_grenze)]
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
@ -1747,25 +1747,25 @@ def return_boxes_of_images_by_order_of_reading_new(spliter_y_new, regions_withou
|
||||||
if len(y_diff_main_separator_up)>0:
|
if len(y_diff_main_separator_up)>0:
|
||||||
args_to_be_kept=np.array( list( set(args_early_ys)-set(args_main_to_deleted) ) )
|
args_to_be_kept=np.array( list( set(args_early_ys)-set(args_main_to_deleted) ) )
|
||||||
#print(args_to_be_kept,'args_to_be_kept')
|
#print(args_to_be_kept,'args_to_be_kept')
|
||||||
boxes.append([0,peaks_neg_tot[len(peaks_neg_tot)-1],int(spliter_y_new[i]),int( np.max(y_diff_main_separator_up))])
|
boxes.append([0,peaks_neg_tot[len(peaks_neg_tot)-1],int(splitter_y_new[i]),int( np.max(y_diff_main_separator_up))])
|
||||||
spliter_y_new[i]=[ np.max(y_diff_main_separator_up) ][0]
|
splitter_y_new[i]=[ np.max(y_diff_main_separator_up) ][0]
|
||||||
|
|
||||||
#print(spliter_y_new[i],'spliter_y_new[i]')
|
#print(splitter_y_new[i],'splitter_y_new[i]')
|
||||||
y_type_2=np.array(y_type_2)[args_to_be_kept]
|
y_type_2=np.array(y_type_2)[args_to_be_kept]
|
||||||
x_starting=np.array(x_starting)[args_to_be_kept]
|
x_starting=np.array(x_starting)[args_to_be_kept]
|
||||||
x_ending=np.array(x_ending)[args_to_be_kept]
|
x_ending=np.array(x_ending)[args_to_be_kept]
|
||||||
y_diff_type_2=np.array(y_diff_type_2)[args_to_be_kept]
|
y_diff_type_2=np.array(y_diff_type_2)[args_to_be_kept]
|
||||||
|
|
||||||
#print('galdiha')
|
#print('galdiha')
|
||||||
y_grenze=int(spliter_y_new[i])+200
|
y_grenze=int(splitter_y_new[i])+200
|
||||||
|
|
||||||
|
|
||||||
args_early_ys2=np.array(range(len(y_type_2)))
|
args_early_ys2=np.array(range(len(y_type_2)))
|
||||||
y_type_2_up=np.array(y_type_2)[( np.array(y_type_2)>int(spliter_y_new[i]) ) & (np.array(y_type_2)<=y_grenze)]
|
y_type_2_up=np.array(y_type_2)[( np.array(y_type_2)>int(splitter_y_new[i]) ) & (np.array(y_type_2)<=y_grenze)]
|
||||||
x_starting_up=np.array(x_starting)[( np.array(y_type_2)>int(spliter_y_new[i]) ) & (np.array(y_type_2)<=y_grenze)]
|
x_starting_up=np.array(x_starting)[( np.array(y_type_2)>int(splitter_y_new[i]) ) & (np.array(y_type_2)<=y_grenze)]
|
||||||
x_ending_up=np.array(x_ending)[( np.array(y_type_2)>int(spliter_y_new[i]) ) & (np.array(y_type_2)<=y_grenze)]
|
x_ending_up=np.array(x_ending)[( np.array(y_type_2)>int(splitter_y_new[i]) ) & (np.array(y_type_2)<=y_grenze)]
|
||||||
y_diff_type_2_up=np.array(y_diff_type_2)[( np.array(y_type_2)>int(spliter_y_new[i]) ) & (np.array(y_type_2)<=y_grenze)]
|
y_diff_type_2_up=np.array(y_diff_type_2)[( np.array(y_type_2)>int(splitter_y_new[i]) ) & (np.array(y_type_2)<=y_grenze)]
|
||||||
args_up2=args_early_ys2[( np.array(y_type_2)>int(spliter_y_new[i]) ) & (np.array(y_type_2)<=y_grenze)]
|
args_up2=args_early_ys2[( np.array(y_type_2)>int(splitter_y_new[i]) ) & (np.array(y_type_2)<=y_grenze)]
|
||||||
|
|
||||||
|
|
||||||
#print(y_type_2_up,x_starting_up,x_ending_up,'didid')
|
#print(y_type_2_up,x_starting_up,x_ending_up,'didid')
|
||||||
|
@ -1840,7 +1840,7 @@ def return_boxes_of_images_by_order_of_reading_new(spliter_y_new, regions_withou
|
||||||
y_type_2=np.array(y_type_2)
|
y_type_2=np.array(y_type_2)
|
||||||
y_diff_type_2_up=np.array(y_diff_type_2_up)
|
y_diff_type_2_up=np.array(y_diff_type_2_up)
|
||||||
|
|
||||||
#int(spliter_y_new[i])
|
#int(splitter_y_new[i])
|
||||||
|
|
||||||
y_lines_by_order=[]
|
y_lines_by_order=[]
|
||||||
x_start_by_order=[]
|
x_start_by_order=[]
|
||||||
|
@ -1850,7 +1850,7 @@ def return_boxes_of_images_by_order_of_reading_new(spliter_y_new, regions_withou
|
||||||
|
|
||||||
|
|
||||||
if reading_order_type==1:
|
if reading_order_type==1:
|
||||||
y_lines_by_order.append(int(spliter_y_new[i]))
|
y_lines_by_order.append(int(splitter_y_new[i]))
|
||||||
x_start_by_order.append(0)
|
x_start_by_order.append(0)
|
||||||
x_end_by_order.append(len(peaks_neg_tot)-2)
|
x_end_by_order.append(len(peaks_neg_tot)-2)
|
||||||
else:
|
else:
|
||||||
|
@ -1872,13 +1872,13 @@ def return_boxes_of_images_by_order_of_reading_new(spliter_y_new, regions_withou
|
||||||
x_ending=list(x_ending)
|
x_ending=list(x_ending)
|
||||||
|
|
||||||
for lj in columns_not_covered:
|
for lj in columns_not_covered:
|
||||||
y_type_2.append(int(spliter_y_new[i]))
|
y_type_2.append(int(splitter_y_new[i]))
|
||||||
x_starting.append(lj)
|
x_starting.append(lj)
|
||||||
x_ending.append(lj+1)
|
x_ending.append(lj+1)
|
||||||
##y_lines_by_order.append(int(spliter_y_new[i]))
|
##y_lines_by_order.append(int(splitter_y_new[i]))
|
||||||
##x_start_by_order.append(0)
|
##x_start_by_order.append(0)
|
||||||
for lk in range(len(x_start_without_mother)):
|
for lk in range(len(x_start_without_mother)):
|
||||||
y_type_2.append(int(spliter_y_new[i]))
|
y_type_2.append(int(splitter_y_new[i]))
|
||||||
x_starting.append(x_start_without_mother[lk])
|
x_starting.append(x_start_without_mother[lk])
|
||||||
x_ending.append(x_end_without_mother[lk])
|
x_ending.append(x_end_without_mother[lk])
|
||||||
|
|
||||||
|
@ -1935,13 +1935,13 @@ def return_boxes_of_images_by_order_of_reading_new(spliter_y_new, regions_withou
|
||||||
x_ending=list(x_ending)
|
x_ending=list(x_ending)
|
||||||
|
|
||||||
for lj in columns_not_covered:
|
for lj in columns_not_covered:
|
||||||
y_type_2.append(int(spliter_y_new[i]))
|
y_type_2.append(int(splitter_y_new[i]))
|
||||||
x_starting.append(lj)
|
x_starting.append(lj)
|
||||||
x_ending.append(lj+1)
|
x_ending.append(lj+1)
|
||||||
##y_lines_by_order.append(int(spliter_y_new[i]))
|
##y_lines_by_order.append(int(splitter_y_new[i]))
|
||||||
##x_start_by_order.append(0)
|
##x_start_by_order.append(0)
|
||||||
for lk in range(len(x_start_without_mother)):
|
for lk in range(len(x_start_without_mother)):
|
||||||
y_type_2.append(int(spliter_y_new[i]))
|
y_type_2.append(int(splitter_y_new[i]))
|
||||||
x_starting.append(x_start_without_mother[lk])
|
x_starting.append(x_start_without_mother[lk])
|
||||||
x_ending.append(x_end_without_mother[lk])
|
x_ending.append(x_end_without_mother[lk])
|
||||||
|
|
||||||
|
@ -1986,7 +1986,7 @@ def return_boxes_of_images_by_order_of_reading_new(spliter_y_new, regions_withou
|
||||||
|
|
||||||
for i_c in range(len(y_column_nc)):
|
for i_c in range(len(y_column_nc)):
|
||||||
if i_c==(len(y_column_nc)-1):
|
if i_c==(len(y_column_nc)-1):
|
||||||
ind_all_lines_betweeen_nm_wc=ind_args[(y_type_2>y_column_nc[i_c]) & (y_type_2<int(spliter_y_new[i+1])) & (x_starting>=i_s_nc) & (x_ending<=x_end_biggest_column)]
|
ind_all_lines_betweeen_nm_wc=ind_args[(y_type_2>y_column_nc[i_c]) & (y_type_2<int(splitter_y_new[i+1])) & (x_starting>=i_s_nc) & (x_ending<=x_end_biggest_column)]
|
||||||
else:
|
else:
|
||||||
ind_all_lines_betweeen_nm_wc=ind_args[(y_type_2>y_column_nc[i_c]) & (y_type_2<y_column_nc[i_c+1]) & (x_starting>=i_s_nc) & (x_ending<=x_end_biggest_column)]
|
ind_all_lines_betweeen_nm_wc=ind_args[(y_type_2>y_column_nc[i_c]) & (y_type_2<y_column_nc[i_c+1]) & (x_starting>=i_s_nc) & (x_ending<=x_end_biggest_column)]
|
||||||
|
|
||||||
|
@ -2141,11 +2141,11 @@ def return_boxes_of_images_by_order_of_reading_new(spliter_y_new, regions_withou
|
||||||
if len(y_in_cols)>0:
|
if len(y_in_cols)>0:
|
||||||
y_down=np.min(y_in_cols)
|
y_down=np.min(y_in_cols)
|
||||||
else:
|
else:
|
||||||
y_down=[int(spliter_y_new[i+1])][0]
|
y_down=[int(splitter_y_new[i+1])][0]
|
||||||
#print(y_itself,'y_itself')
|
#print(y_itself,'y_itself')
|
||||||
boxes.append([peaks_neg_tot[column],peaks_neg_tot[column+1],y_itself,y_down])
|
boxes.append([peaks_neg_tot[column],peaks_neg_tot[column+1],y_itself,y_down])
|
||||||
except:
|
except:
|
||||||
boxes.append([0,peaks_neg_tot[len(peaks_neg_tot)-1],int(spliter_y_new[i]),int(spliter_y_new[i+1])])
|
boxes.append([0,peaks_neg_tot[len(peaks_neg_tot)-1],int(splitter_y_new[i]),int(splitter_y_new[i+1])])
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
@ -2170,13 +2170,13 @@ def return_boxes_of_images_by_order_of_reading_new(spliter_y_new, regions_withou
|
||||||
x_ending=list(x_ending)
|
x_ending=list(x_ending)
|
||||||
|
|
||||||
for lj in columns_not_covered:
|
for lj in columns_not_covered:
|
||||||
y_type_2.append(int(spliter_y_new[i]))
|
y_type_2.append(int(splitter_y_new[i]))
|
||||||
x_starting.append(lj)
|
x_starting.append(lj)
|
||||||
x_ending.append(lj+1)
|
x_ending.append(lj+1)
|
||||||
##y_lines_by_order.append(int(spliter_y_new[i]))
|
##y_lines_by_order.append(int(splitter_y_new[i]))
|
||||||
##x_start_by_order.append(0)
|
##x_start_by_order.append(0)
|
||||||
|
|
||||||
y_type_2.append(int(spliter_y_new[i]))
|
y_type_2.append(int(splitter_y_new[i]))
|
||||||
x_starting.append(x_starting[0])
|
x_starting.append(x_starting[0])
|
||||||
x_ending.append(x_ending[0])
|
x_ending.append(x_ending[0])
|
||||||
|
|
||||||
|
@ -2194,10 +2194,10 @@ def return_boxes_of_images_by_order_of_reading_new(spliter_y_new, regions_withou
|
||||||
x_ending=list(x_ending)
|
x_ending=list(x_ending)
|
||||||
|
|
||||||
for lj in columns_not_covered:
|
for lj in columns_not_covered:
|
||||||
y_type_2.append(int(spliter_y_new[i]))
|
y_type_2.append(int(splitter_y_new[i]))
|
||||||
x_starting.append(lj)
|
x_starting.append(lj)
|
||||||
x_ending.append(lj+1)
|
x_ending.append(lj+1)
|
||||||
##y_lines_by_order.append(int(spliter_y_new[i]))
|
##y_lines_by_order.append(int(splitter_y_new[i]))
|
||||||
##x_start_by_order.append(0)
|
##x_start_by_order.append(0)
|
||||||
|
|
||||||
|
|
||||||
|
@ -2256,13 +2256,13 @@ def return_boxes_of_images_by_order_of_reading_new(spliter_y_new, regions_withou
|
||||||
if len(y_in_cols)>0:
|
if len(y_in_cols)>0:
|
||||||
y_down=np.min(y_in_cols)
|
y_down=np.min(y_in_cols)
|
||||||
else:
|
else:
|
||||||
y_down=[int(spliter_y_new[i+1])][0]
|
y_down=[int(splitter_y_new[i+1])][0]
|
||||||
#print(y_itself,'y_itself')
|
#print(y_itself,'y_itself')
|
||||||
boxes.append([peaks_neg_tot[column],peaks_neg_tot[column+1],y_itself,y_down])
|
boxes.append([peaks_neg_tot[column],peaks_neg_tot[column+1],y_itself,y_down])
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
#else:
|
#else:
|
||||||
#boxes.append([ 0, regions_without_seperators[:,:].shape[1] ,spliter_y_new[i],spliter_y_new[i+1]])
|
#boxes.append([ 0, regions_without_seperators[:,:].shape[1] ,splitter_y_new[i],splitter_y_new[i+1]])
|
||||||
|
|
||||||
return boxes
|
return boxes
|
||||||
|
|
Loading…
Add table
Add a link
Reference in a new issue