Merge sbb_pixelwise_segmentation training code into eynollah

This commit is contained in:
kba 2025-09-29 14:44:31 +02:00
commit 3b9548d0bd
19 changed files with 6767 additions and 0 deletions

0
train/.gitkeep Normal file
View file

29
train/Dockerfile Normal file
View file

@ -0,0 +1,29 @@
# Use NVIDIA base image
FROM nvidia/cuda:11.8.0-cudnn8-devel-ubuntu20.04
# Set the working directory
WORKDIR /app
# Set environment variable for GitPython
ENV GIT_PYTHON_REFRESH=quiet
# Install Python and pip
RUN apt-get update && apt-get install -y --fix-broken && \
apt-get install -y \
python3 \
python3-pip \
python3-distutils \
python3-setuptools \
python3-wheel && \
rm -rf /var/lib/apt/lists/*
# Copy and install Python dependencies
COPY requirements.txt .
RUN pip install --no-cache-dir -r requirements.txt
# Copy the rest of the application
COPY . .
# Specify the entry point
CMD ["python3", "train.py", "with", "config_params_docker.json"]

201
train/LICENSE Normal file
View file

@ -0,0 +1,201 @@
Apache License
Version 2.0, January 2004
http://www.apache.org/licenses/
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
1. Definitions.
"License" shall mean the terms and conditions for use, reproduction,
and distribution as defined by Sections 1 through 9 of this document.
"Licensor" shall mean the copyright owner or entity authorized by
the copyright owner that is granting the License.
"Legal Entity" shall mean the union of the acting entity and all
other entities that control, are controlled by, or are under common
control with that entity. For the purposes of this definition,
"control" means (i) the power, direct or indirect, to cause the
direction or management of such entity, whether by contract or
otherwise, or (ii) ownership of fifty percent (50%) or more of the
outstanding shares, or (iii) beneficial ownership of such entity.
"You" (or "Your") shall mean an individual or Legal Entity
exercising permissions granted by this License.
"Source" form shall mean the preferred form for making modifications,
including but not limited to software source code, documentation
source, and configuration files.
"Object" form shall mean any form resulting from mechanical
transformation or translation of a Source form, including but
not limited to compiled object code, generated documentation,
and conversions to other media types.
"Work" shall mean the work of authorship, whether in Source or
Object form, made available under the License, as indicated by a
copyright notice that is included in or attached to the work
(an example is provided in the Appendix below).
"Derivative Works" shall mean any work, whether in Source or Object
form, that is based on (or derived from) the Work and for which the
editorial revisions, annotations, elaborations, or other modifications
represent, as a whole, an original work of authorship. For the purposes
of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of,
the Work and Derivative Works thereof.
"Contribution" shall mean any work of authorship, including
the original version of the Work and any modifications or additions
to that Work or Derivative Works thereof, that is intentionally
submitted to Licensor for inclusion in the Work by the copyright owner
or by an individual or Legal Entity authorized to submit on behalf of
the copyright owner. For the purposes of this definition, "submitted"
means any form of electronic, verbal, or written communication sent
to the Licensor or its representatives, including but not limited to
communication on electronic mailing lists, source code control systems,
and issue tracking systems that are managed by, or on behalf of, the
Licensor for the purpose of discussing and improving the Work, but
excluding communication that is conspicuously marked or otherwise
designated in writing by the copyright owner as "Not a Contribution."
"Contributor" shall mean Licensor and any individual or Legal Entity
on behalf of whom a Contribution has been received by Licensor and
subsequently incorporated within the Work.
2. Grant of Copyright License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare Derivative Works of,
publicly display, publicly perform, sublicense, and distribute the
Work and such Derivative Works in Source or Object form.
3. Grant of Patent License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made,
use, offer to sell, sell, import, and otherwise transfer the Work,
where such license applies only to those patent claims licensable
by such Contributor that are necessarily infringed by their
Contribution(s) alone or by combination of their Contribution(s)
with the Work to which such Contribution(s) was submitted. If You
institute patent litigation against any entity (including a
cross-claim or counterclaim in a lawsuit) alleging that the Work
or a Contribution incorporated within the Work constitutes direct
or contributory patent infringement, then any patent licenses
granted to You under this License for that Work shall terminate
as of the date such litigation is filed.
4. Redistribution. You may reproduce and distribute copies of the
Work or Derivative Works thereof in any medium, with or without
modifications, and in Source or Object form, provided that You
meet the following conditions:
(a) You must give any other recipients of the Work or
Derivative Works a copy of this License; and
(b) You must cause any modified files to carry prominent notices
stating that You changed the files; and
(c) You must retain, in the Source form of any Derivative Works
that You distribute, all copyright, patent, trademark, and
attribution notices from the Source form of the Work,
excluding those notices that do not pertain to any part of
the Derivative Works; and
(d) If the Work includes a "NOTICE" text file as part of its
distribution, then any Derivative Works that You distribute must
include a readable copy of the attribution notices contained
within such NOTICE file, excluding those notices that do not
pertain to any part of the Derivative Works, in at least one
of the following places: within a NOTICE text file distributed
as part of the Derivative Works; within the Source form or
documentation, if provided along with the Derivative Works; or,
within a display generated by the Derivative Works, if and
wherever such third-party notices normally appear. The contents
of the NOTICE file are for informational purposes only and
do not modify the License. You may add Your own attribution
notices within Derivative Works that You distribute, alongside
or as an addendum to the NOTICE text from the Work, provided
that such additional attribution notices cannot be construed
as modifying the License.
You may add Your own copyright statement to Your modifications and
may provide additional or different license terms and conditions
for use, reproduction, or distribution of Your modifications, or
for any such Derivative Works as a whole, provided Your use,
reproduction, and distribution of the Work otherwise complies with
the conditions stated in this License.
5. Submission of Contributions. Unless You explicitly state otherwise,
any Contribution intentionally submitted for inclusion in the Work
by You to the Licensor shall be under the terms and conditions of
this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify
the terms of any separate license agreement you may have executed
with Licensor regarding such Contributions.
6. Trademarks. This License does not grant permission to use the trade
names, trademarks, service marks, or product names of the Licensor,
except as required for reasonable and customary use in describing the
origin of the Work and reproducing the content of the NOTICE file.
7. Disclaimer of Warranty. Unless required by applicable law or
agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied, including, without limitation, any warranties or conditions
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
PARTICULAR PURPOSE. You are solely responsible for determining the
appropriateness of using or redistributing the Work and assume any
risks associated with Your exercise of permissions under this License.
8. Limitation of Liability. In no event and under no legal theory,
whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly
negligent acts) or agreed to in writing, shall any Contributor be
liable to You for damages, including any direct, indirect, special,
incidental, or consequential damages of any character arising as a
result of this License or out of the use or inability to use the
Work (including but not limited to damages for loss of goodwill,
work stoppage, computer failure or malfunction, or any and all
other commercial damages or losses), even if such Contributor
has been advised of the possibility of such damages.
9. Accepting Warranty or Additional Liability. While redistributing
the Work or Derivative Works thereof, You may choose to offer,
and charge a fee for, acceptance of support, warranty, indemnity,
or other liability obligations and/or rights consistent with this
License. However, in accepting such obligations, You may act only
on Your own behalf and on Your sole responsibility, not on behalf
of any other Contributor, and only if You agree to indemnify,
defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason
of your accepting any such warranty or additional liability.
END OF TERMS AND CONDITIONS
APPENDIX: How to apply the Apache License to your work.
To apply the Apache License to your work, attach the following
boilerplate notice, with the fields enclosed by brackets "[]"
replaced with your own identifying information. (Don't include
the brackets!) The text should be enclosed in the appropriate
comment syntax for the file format. We also recommend that a
file or class name and description of purpose be included on the
same "printed page" as the copyright notice for easier
identification within third-party archives.
Copyright [yyyy] [name of copyright owner]
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

90
train/README.md Normal file
View file

@ -0,0 +1,90 @@
# Pixelwise Segmentation
> Pixelwise segmentation for document images
## Introduction
This repository contains the source code for training an encoder model for document image segmentation.
## Installation
Either clone the repository via `git clone https://github.com/qurator-spk/sbb_pixelwise_segmentation.git` or download and unpack the [ZIP](https://github.com/qurator-spk/sbb_pixelwise_segmentation/archive/master.zip).
### Pretrained encoder
Download our pretrained weights and add them to a ``pretrained_model`` folder:
https://qurator-data.de/sbb_pixelwise_segmentation/pretrained_encoder/
### Helpful tools
* [`pagexml2img`](https://github.com/qurator-spk/page2img)
> Tool to extract 2-D or 3-D RGB images from PAGE-XML data. In the former case, the output will be 1 2-D image array which each class has filled with a pixel value. In the case of a 3-D RGB image,
each class will be defined with a RGB value and beside images, a text file of classes will also be produced.
* [`cocoSegmentationToPng`](https://github.com/nightrome/cocostuffapi/blob/17acf33aef3c6cc2d6aca46dcf084266c2778cf0/PythonAPI/pycocotools/cocostuffhelper.py#L130)
> Convert COCO GT or results for a single image to a segmentation map and write it to disk.
* [`ocrd-segment-extract-pages`](https://github.com/OCR-D/ocrd_segment/blob/master/ocrd_segment/extract_pages.py)
> Extract region classes and their colours in mask (pseg) images. Allows the color map as free dict parameter, and comes with a default that mimics PageViewer's coloring for quick debugging; it also warns when regions do overlap.
## Usage
### Train
To train a model, run: ``python train.py with config_params.json``
### Train using Docker
#### Build the Docker image
```bash
docker build -t model-training .
```
#### Run Docker image
```bash
docker run --gpus all -v /host/path/to/entry_point_dir:/entry_point_dir model-training
```
### Ground truth format
Lables for each pixel are identified by a number. So if you have a
binary case, ``n_classes`` should be set to ``2`` and labels should
be ``0`` and ``1`` for each class and pixel.
In the case of multiclass, just set ``n_classes`` to the number of classes
you have and the try to produce the labels by pixels set from ``0 , 1 ,2 .., n_classes-1``.
The labels format should be png.
Our lables are 3 channel png images but only information of first channel is used.
If you have an image label with height and width of 10, for a binary case the first channel should look like this:
Label: [ [1, 0, 0, 1, 1, 0, 0, 1, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
...,
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
This means that you have an image by `10*10*3` and `pixel[0,0]` belongs
to class `1` and `pixel[0,1]` belongs to class `0`.
A small sample of training data for binarization experiment can be found here, [Training data sample](https://qurator-data.de/~vahid.rezanezhad/binarization_training_data_sample/), which contains images and lables folders.
### Training , evaluation and output
The train and evaluation folders should contain subfolders of images and labels.
The output folder should be an empty folder where the output model will be written to.
### Parameter configuration
* patches: If you want to break input images into smaller patches (input size of the model) you need to set this parameter to ``true``. In the case that the model should see the image once, like page extraction, patches should be set to ``false``.
* n_batch: Number of batches at each iteration.
* n_classes: Number of classes. In the case of binary classification this should be 2.
* n_epochs: Number of epochs.
* input_height: This indicates the height of model's input.
* input_width: This indicates the width of model's input.
* weight_decay: Weight decay of l2 regularization of model layers.
* augmentation: If you want to apply any kind of augmentation this parameter should first set to ``true``.
* flip_aug: If ``true``, different types of filp will be applied on image. Type of flips is given with "flip_index" in train.py file.
* blur_aug: If ``true``, different types of blurring will be applied on image. Type of blurrings is given with "blur_k" in train.py file.
* scaling: If ``true``, scaling will be applied on image. Scale of scaling is given with "scales" in train.py file.
* rotation_not_90: If ``true``, rotation (not 90 degree) will be applied on image. Rotation angles are given with "thetha" in train.py file.
* rotation: If ``true``, 90 degree rotation will be applied on image.
* binarization: If ``true``,Otsu thresholding will be applied to augment the input data with binarized images.
* scaling_bluring: If ``true``, combination of scaling and blurring will be applied on image.
* scaling_binarization: If ``true``, combination of scaling and binarization will be applied on image.
* scaling_flip: If ``true``, combination of scaling and flip will be applied on image.
* continue_training: If ``true``, it means that you have already trained a model and you would like to continue the training. So it is needed to provide the dir of trained model with "dir_of_start_model" and index for naming the models. For example if you have already trained for 3 epochs then your last index is 2 and if you want to continue from model_1.h5, you can set "index_start" to 3 to start naming model with index 3.
* weighted_loss: If ``true``, this means that you want to apply weighted categorical_crossentropy as loss fucntion. Be carefull if you set to ``true``the parameter "is_loss_soft_dice" should be ``false``
* data_is_provided: If you have already provided the input data you can set this to ``true``. Be sure that the train and eval data are in "dir_output". Since when once we provide training data we resize and augment them and then we write them in sub-directories train and eval in "dir_output".
* dir_train: This is the directory of "images" and "labels" (dir_train should include two subdirectories with names of images and labels ) for raw images and labels. Namely they are not prepared (not resized and not augmented) yet for training the model. When we run this tool these raw data will be transformed to suitable size needed for the model and they will be written in "dir_output" in train and eval directories. Each of train and eval include "images" and "labels" sub-directories.
#### Additional documentation
Please check the [wiki](https://github.com/qurator-spk/sbb_pixelwise_segmentation/wiki).

0
train/__init__.py Normal file
View file

View file

@ -0,0 +1,29 @@
import os
import sys
import tensorflow as tf
import warnings
from tensorflow.keras.optimizers import *
from sacred import Experiment
from models import *
from utils import *
from metrics import *
def configuration():
gpu_options = tf.compat.v1.GPUOptions(allow_growth=True)
session = tf.compat.v1.Session(config=tf.compat.v1.ConfigProto(gpu_options=gpu_options))
if __name__ == '__main__':
n_classes = 2
input_height = 224
input_width = 448
weight_decay = 1e-6
pretraining = False
dir_of_weights = 'model_bin_sbb_ens.h5'
# configuration()
model = resnet50_unet(n_classes, input_height, input_width, weight_decay, pretraining)
model.load_weights(dir_of_weights)
model.save('./name_in_another_python_version.h5')

58
train/config_params.json Normal file
View file

@ -0,0 +1,58 @@
{
"backbone_type" : "transformer",
"task": "segmentation",
"n_classes" : 2,
"n_epochs" : 0,
"input_height" : 448,
"input_width" : 448,
"weight_decay" : 1e-6,
"n_batch" : 1,
"learning_rate": 1e-4,
"patches" : false,
"pretraining" : true,
"augmentation" : true,
"flip_aug" : false,
"blur_aug" : false,
"scaling" : false,
"adding_rgb_background": true,
"adding_rgb_foreground": true,
"add_red_textlines": false,
"channels_shuffling": false,
"degrading": false,
"brightening": false,
"binarization" : true,
"scaling_bluring" : false,
"scaling_binarization" : false,
"scaling_flip" : false,
"rotation": false,
"rotation_not_90": false,
"transformer_num_patches_xy": [56, 56],
"transformer_patchsize_x": 4,
"transformer_patchsize_y": 4,
"transformer_projection_dim": 64,
"transformer_mlp_head_units": [128, 64],
"transformer_layers": 1,
"transformer_num_heads": 1,
"transformer_cnn_first": false,
"blur_k" : ["blur","guass","median"],
"scales" : [0.6, 0.7, 0.8, 0.9],
"brightness" : [1.3, 1.5, 1.7, 2],
"degrade_scales" : [0.2, 0.4],
"flip_index" : [0, 1, -1],
"shuffle_indexes" : [ [0,2,1], [1,2,0], [1,0,2] , [2,1,0]],
"thetha" : [5, -5],
"number_of_backgrounds_per_image": 2,
"continue_training": false,
"index_start" : 0,
"dir_of_start_model" : " ",
"weighted_loss": false,
"is_loss_soft_dice": false,
"data_is_provided": false,
"dir_train": "/home/vahid/Documents/test/sbb_pixelwise_segmentation/test_label/pageextractor_test/train_new",
"dir_eval": "/home/vahid/Documents/test/sbb_pixelwise_segmentation/test_label/pageextractor_test/eval_new",
"dir_output": "/home/vahid/Documents/test/sbb_pixelwise_segmentation/test_label/pageextractor_test/output_new",
"dir_rgb_backgrounds": "/home/vahid/Documents/1_2_test_eynollah/set_rgb_background",
"dir_rgb_foregrounds": "/home/vahid/Documents/1_2_test_eynollah/out_set_rgb_foreground",
"dir_img_bin": "/home/vahid/Documents/test/sbb_pixelwise_segmentation/test_label/pageextractor_test/train_new/images_bin"
}

View file

@ -0,0 +1,54 @@
{
"backbone_type" : "nontransformer",
"task": "segmentation",
"n_classes" : 3,
"n_epochs" : 1,
"input_height" : 672,
"input_width" : 448,
"weight_decay" : 1e-6,
"n_batch" : 4,
"learning_rate": 1e-4,
"patches" : false,
"pretraining" : true,
"augmentation" : false,
"flip_aug" : false,
"blur_aug" : true,
"scaling" : true,
"adding_rgb_background": false,
"adding_rgb_foreground": false,
"add_red_textlines": false,
"channels_shuffling": true,
"degrading": true,
"brightening": true,
"binarization" : false,
"scaling_bluring" : false,
"scaling_binarization" : false,
"scaling_flip" : false,
"rotation": false,
"rotation_not_90": true,
"transformer_num_patches_xy": [14, 21],
"transformer_patchsize_x": 1,
"transformer_patchsize_y": 1,
"transformer_projection_dim": 64,
"transformer_mlp_head_units": [128, 64],
"transformer_layers": 1,
"transformer_num_heads": 1,
"transformer_cnn_first": true,
"blur_k" : ["blur","gauss","median"],
"scales" : [0.6, 0.7, 0.8, 0.9],
"brightness" : [1.3, 1.5, 1.7, 2],
"degrade_scales" : [0.2, 0.4],
"flip_index" : [0, 1, -1],
"shuffle_indexes" : [ [0,2,1], [1,2,0], [1,0,2] , [2,1,0]],
"thetha" : [5, -5],
"number_of_backgrounds_per_image": 2,
"continue_training": false,
"index_start" : 0,
"dir_of_start_model" : " ",
"weighted_loss": false,
"is_loss_soft_dice": true,
"data_is_provided": false,
"dir_train": "/entry_point_dir/train",
"dir_eval": "/entry_point_dir/eval",
"dir_output": "/entry_point_dir/output"
}

View file

@ -0,0 +1,8 @@
{
"use_case": "textline",
"textregions":{ "rest_as_paragraph": 1, "header":2 , "heading":2 , "marginalia":3 },
"imageregion":4,
"separatorregion":5,
"graphicregions" :{"rest_as_decoration":6},
"columns_width":{"1":1000, "2":1300, "3":1600, "4":2000, "5":2300, "6":2500}
}

View file

@ -0,0 +1,567 @@
import click
import json
from gt_gen_utils import *
from tqdm import tqdm
from pathlib import Path
from PIL import Image, ImageDraw, ImageFont
@click.group()
def main():
pass
@main.command()
@click.option(
"--dir_xml",
"-dx",
help="directory of GT page-xml files",
type=click.Path(exists=True, file_okay=False),
)
@click.option(
"--dir_images",
"-di",
help="directory of org images. If print space cropping or scaling is needed for labels it would be great to provide the original images to apply the same function on them. So if -ps is not set true or in config files no columns_width key is given this argumnet can be ignored. File stems in this directory should be the same as those in dir_xml.",
type=click.Path(exists=True, file_okay=False),
)
@click.option(
"--dir_out_images",
"-doi",
help="directory where the output org images after undergoing a process (like print space cropping or scaling) will be written.",
type=click.Path(exists=True, file_okay=False),
)
@click.option(
"--dir_out",
"-do",
help="directory where ground truth label images would be written",
type=click.Path(exists=True, file_okay=False),
)
@click.option(
"--config",
"-cfg",
help="config file of prefered layout or use case.",
type=click.Path(exists=True, dir_okay=False),
)
@click.option(
"--type_output",
"-to",
help="this defines how output should be. A 2d image array or a 3d image array encoded with RGB color. Just pass 2d or 3d. The file will be saved one directory up. 2D image array is 3d but only information of one channel would be enough since all channels have the same values.",
)
@click.option(
"--printspace",
"-ps",
is_flag=True,
help="if this parameter set to true, generated labels and in the case of provided org images cropping will be imposed and cropped labels and images will be written in output directories.",
)
def pagexml2label(dir_xml,dir_out,type_output,config, printspace, dir_images, dir_out_images):
if config:
with open(config) as f:
config_params = json.load(f)
else:
print("passed")
config_params = None
gt_list = get_content_of_dir(dir_xml)
get_images_of_ground_truth(gt_list,dir_xml,dir_out,type_output, config, config_params, printspace, dir_images, dir_out_images)
@main.command()
@click.option(
"--dir_imgs",
"-dis",
help="directory of images with high resolution.",
type=click.Path(exists=True, file_okay=False),
)
@click.option(
"--dir_out_images",
"-dois",
help="directory where degraded images will be written.",
type=click.Path(exists=True, file_okay=False),
)
@click.option(
"--dir_out_labels",
"-dols",
help="directory where original images will be written as labels.",
type=click.Path(exists=True, file_okay=False),
)
@click.option(
"--scales",
"-scs",
help="json dictionary where the scales are written.",
type=click.Path(exists=True, dir_okay=False),
)
def image_enhancement(dir_imgs, dir_out_images, dir_out_labels, scales):
ls_imgs = os.listdir(dir_imgs)
with open(scales) as f:
scale_dict = json.load(f)
ls_scales = scale_dict['scales']
for img in tqdm(ls_imgs):
img_name = img.split('.')[0]
img_type = img.split('.')[1]
image = cv2.imread(os.path.join(dir_imgs, img))
for i, scale in enumerate(ls_scales):
height_sc = int(image.shape[0]*scale)
width_sc = int(image.shape[1]*scale)
image_down_scaled = resize_image(image, height_sc, width_sc)
image_back_to_org_scale = resize_image(image_down_scaled, image.shape[0], image.shape[1])
cv2.imwrite(os.path.join(dir_out_images, img_name+'_'+str(i)+'.'+img_type), image_back_to_org_scale)
cv2.imwrite(os.path.join(dir_out_labels, img_name+'_'+str(i)+'.'+img_type), image)
@main.command()
@click.option(
"--dir_xml",
"-dx",
help="directory of GT page-xml files",
type=click.Path(exists=True, file_okay=False),
)
@click.option(
"--dir_out_modal_image",
"-domi",
help="directory where ground truth images would be written",
type=click.Path(exists=True, file_okay=False),
)
@click.option(
"--dir_out_classes",
"-docl",
help="directory where ground truth classes would be written",
type=click.Path(exists=True, file_okay=False),
)
@click.option(
"--input_height",
"-ih",
help="input height",
)
@click.option(
"--input_width",
"-iw",
help="input width",
)
@click.option(
"--min_area_size",
"-min",
help="min area size of regions considered for reading order training.",
)
@click.option(
"--min_area_early",
"-min_early",
help="If you have already generated a training dataset using a specific minimum area value and now wish to create a dataset with a smaller minimum area value, you can avoid regenerating the previous dataset by providing the earlier minimum area value. This will ensure that only the missing data is generated.",
)
def machine_based_reading_order(dir_xml, dir_out_modal_image, dir_out_classes, input_height, input_width, min_area_size, min_area_early):
xml_files_ind = os.listdir(dir_xml)
xml_files_ind = [ind_xml for ind_xml in xml_files_ind if ind_xml.endswith('.xml')]
input_height = int(input_height)
input_width = int(input_width)
min_area = float(min_area_size)
if min_area_early:
min_area_early = float(min_area_early)
indexer_start= 0#55166
max_area = 1
#min_area = 0.0001
for ind_xml in tqdm(xml_files_ind):
indexer = 0
#print(ind_xml)
#print('########################')
xml_file = os.path.join(dir_xml,ind_xml )
f_name = ind_xml.split('.')[0]
_, _, _, file_name, id_paragraph, id_header,co_text_paragraph,co_text_header,tot_region_ref,x_len, y_len,index_tot_regions,img_poly = read_xml(xml_file)
id_all_text = id_paragraph + id_header
co_text_all = co_text_paragraph + co_text_header
_, cy_main, x_min_main, x_max_main, y_min_main, y_max_main, _ = find_new_features_of_contours(co_text_header)
img_header_and_sep = np.zeros((y_len,x_len), dtype='uint8')
for j in range(len(cy_main)):
img_header_and_sep[int(y_max_main[j]):int(y_max_main[j])+12,int(x_min_main[j]):int(x_max_main[j]) ] = 1
texts_corr_order_index = [index_tot_regions[tot_region_ref.index(i)] for i in id_all_text ]
texts_corr_order_index_int = [int(x) for x in texts_corr_order_index]
co_text_all, texts_corr_order_index_int, regions_ar_less_than_early_min = filter_contours_area_of_image(img_poly, co_text_all, texts_corr_order_index_int, max_area, min_area, min_area_early)
arg_array = np.array(range(len(texts_corr_order_index_int)))
labels_con = np.zeros((y_len,x_len,len(arg_array)),dtype='uint8')
for i in range(len(co_text_all)):
img_label = np.zeros((y_len,x_len,3),dtype='uint8')
img_label=cv2.fillPoly(img_label, pts =[co_text_all[i]], color=(1,1,1))
img_label[:,:,0][img_poly[:,:,0]==5] = 2
img_label[:,:,0][img_header_and_sep[:,:]==1] = 3
labels_con[:,:,i] = img_label[:,:,0]
labels_con = resize_image(labels_con, input_height, input_width)
img_poly = resize_image(img_poly, input_height, input_width)
for i in range(len(texts_corr_order_index_int)):
for j in range(len(texts_corr_order_index_int)):
if i!=j:
if regions_ar_less_than_early_min:
if regions_ar_less_than_early_min[i]==1:
input_multi_visual_modal = np.zeros((input_height,input_width,3)).astype(np.int8)
final_f_name = f_name+'_'+str(indexer+indexer_start)
order_class_condition = texts_corr_order_index_int[i]-texts_corr_order_index_int[j]
if order_class_condition<0:
class_type = 1
else:
class_type = 0
input_multi_visual_modal[:,:,0] = labels_con[:,:,i]
input_multi_visual_modal[:,:,1] = img_poly[:,:,0]
input_multi_visual_modal[:,:,2] = labels_con[:,:,j]
np.save(os.path.join(dir_out_classes,final_f_name+'_missed.npy' ), class_type)
cv2.imwrite(os.path.join(dir_out_modal_image,final_f_name+'_missed.png' ), input_multi_visual_modal)
indexer = indexer+1
else:
input_multi_visual_modal = np.zeros((input_height,input_width,3)).astype(np.int8)
final_f_name = f_name+'_'+str(indexer+indexer_start)
order_class_condition = texts_corr_order_index_int[i]-texts_corr_order_index_int[j]
if order_class_condition<0:
class_type = 1
else:
class_type = 0
input_multi_visual_modal[:,:,0] = labels_con[:,:,i]
input_multi_visual_modal[:,:,1] = img_poly[:,:,0]
input_multi_visual_modal[:,:,2] = labels_con[:,:,j]
np.save(os.path.join(dir_out_classes,final_f_name+'.npy' ), class_type)
cv2.imwrite(os.path.join(dir_out_modal_image,final_f_name+'.png' ), input_multi_visual_modal)
indexer = indexer+1
@main.command()
@click.option(
"--xml_file",
"-xml",
help="xml filename",
type=click.Path(exists=True, dir_okay=False),
)
@click.option(
"--dir_xml",
"-dx",
help="directory of GT page-xml files",
type=click.Path(exists=True, file_okay=False),
)
@click.option(
"--dir_out",
"-o",
help="directory where plots will be written",
type=click.Path(exists=True, file_okay=False),
)
@click.option(
"--dir_imgs",
"-di",
help="directory where the overlayed plots will be written", )
def visualize_reading_order(xml_file, dir_xml, dir_out, dir_imgs):
assert xml_file or dir_xml, "A single xml file -xml or a dir of xml files -dx is required not both of them"
if dir_xml:
xml_files_ind = os.listdir(dir_xml)
xml_files_ind = [ind_xml for ind_xml in xml_files_ind if ind_xml.endswith('.xml')]
else:
xml_files_ind = [xml_file]
indexer_start= 0#55166
#min_area = 0.0001
for ind_xml in tqdm(xml_files_ind):
indexer = 0
#print(ind_xml)
#print('########################')
#xml_file = os.path.join(dir_xml,ind_xml )
if dir_xml:
xml_file = os.path.join(dir_xml,ind_xml )
f_name = Path(ind_xml).stem
else:
xml_file = os.path.join(ind_xml )
f_name = Path(ind_xml).stem
print(f_name, 'f_name')
#f_name = ind_xml.split('.')[0]
_, _, _, file_name, id_paragraph, id_header,co_text_paragraph,co_text_header,tot_region_ref,x_len, y_len,index_tot_regions,img_poly = read_xml(xml_file)
id_all_text = id_paragraph + id_header
co_text_all = co_text_paragraph + co_text_header
cx_main, cy_main, x_min_main, x_max_main, y_min_main, y_max_main, _ = find_new_features_of_contours(co_text_all)
texts_corr_order_index = [int(index_tot_regions[tot_region_ref.index(i)]) for i in id_all_text ]
#texts_corr_order_index_int = [int(x) for x in texts_corr_order_index]
#cx_ordered = np.array(cx_main)[np.array(texts_corr_order_index)]
#cx_ordered = cx_ordered.astype(np.int32)
cx_ordered = [int(val) for (_, val) in sorted(zip(texts_corr_order_index, cx_main), key=lambda x: \
x[0], reverse=False)]
#cx_ordered = cx_ordered.astype(np.int32)
cy_ordered = [int(val) for (_, val) in sorted(zip(texts_corr_order_index, cy_main), key=lambda x: \
x[0], reverse=False)]
#cy_ordered = cy_ordered.astype(np.int32)
color = (0, 0, 255)
thickness = 20
if dir_imgs:
layout = np.zeros( (y_len,x_len,3) )
layout = cv2.fillPoly(layout, pts =co_text_all, color=(1,1,1))
img_file_name_with_format = find_format_of_given_filename_in_dir(dir_imgs, f_name)
img = cv2.imread(os.path.join(dir_imgs, img_file_name_with_format))
overlayed = overlay_layout_on_image(layout, img, cx_ordered, cy_ordered, color, thickness)
cv2.imwrite(os.path.join(dir_out, f_name+'.png'), overlayed)
else:
img = np.zeros( (y_len,x_len,3) )
img = cv2.fillPoly(img, pts =co_text_all, color=(255,0,0))
for i in range(len(cx_ordered)-1):
start_point = (int(cx_ordered[i]), int(cy_ordered[i]))
end_point = (int(cx_ordered[i+1]), int(cy_ordered[i+1]))
img = cv2.arrowedLine(img, start_point, end_point,
color, thickness, tipLength = 0.03)
cv2.imwrite(os.path.join(dir_out, f_name+'.png'), img)
@main.command()
@click.option(
"--xml_file",
"-xml",
help="xml filename",
type=click.Path(exists=True, dir_okay=False),
)
@click.option(
"--dir_xml",
"-dx",
help="directory of GT page-xml files",
type=click.Path(exists=True, file_okay=False),
)
@click.option(
"--dir_out",
"-o",
help="directory where plots will be written",
type=click.Path(exists=True, file_okay=False),
)
@click.option(
"--dir_imgs",
"-di",
help="directory of images where textline segmentation will be overlayed", )
def visualize_textline_segmentation(xml_file, dir_xml, dir_out, dir_imgs):
assert xml_file or dir_xml, "A single xml file -xml or a dir of xml files -dx is required not both of them"
if dir_xml:
xml_files_ind = os.listdir(dir_xml)
xml_files_ind = [ind_xml for ind_xml in xml_files_ind if ind_xml.endswith('.xml')]
else:
xml_files_ind = [xml_file]
for ind_xml in tqdm(xml_files_ind):
indexer = 0
#print(ind_xml)
#print('########################')
xml_file = os.path.join(dir_xml,ind_xml )
f_name = Path(ind_xml).stem
img_file_name_with_format = find_format_of_given_filename_in_dir(dir_imgs, f_name)
img = cv2.imread(os.path.join(dir_imgs, img_file_name_with_format))
co_tetxlines, y_len, x_len = get_textline_contours_for_visualization(xml_file)
added_image = visualize_image_from_contours(co_tetxlines, img)
cv2.imwrite(os.path.join(dir_out, f_name+'.png'), added_image)
@main.command()
@click.option(
"--xml_file",
"-xml",
help="xml filename",
type=click.Path(exists=True, dir_okay=False),
)
@click.option(
"--dir_xml",
"-dx",
help="directory of GT page-xml files",
type=click.Path(exists=True, file_okay=False),
)
@click.option(
"--dir_out",
"-o",
help="directory where plots will be written",
type=click.Path(exists=True, file_okay=False),
)
@click.option(
"--dir_imgs",
"-di",
help="directory of images where textline segmentation will be overlayed", )
def visualize_layout_segmentation(xml_file, dir_xml, dir_out, dir_imgs):
assert xml_file or dir_xml, "A single xml file -xml or a dir of xml files -dx is required not both of them"
if dir_xml:
xml_files_ind = os.listdir(dir_xml)
xml_files_ind = [ind_xml for ind_xml in xml_files_ind if ind_xml.endswith('.xml')]
else:
xml_files_ind = [xml_file]
for ind_xml in tqdm(xml_files_ind):
indexer = 0
#print(ind_xml)
#print('########################')
if dir_xml:
xml_file = os.path.join(dir_xml,ind_xml )
f_name = Path(ind_xml).stem
else:
xml_file = os.path.join(ind_xml )
f_name = Path(ind_xml).stem
print(f_name, 'f_name')
img_file_name_with_format = find_format_of_given_filename_in_dir(dir_imgs, f_name)
img = cv2.imread(os.path.join(dir_imgs, img_file_name_with_format))
co_text, co_graphic, co_sep, co_img, co_table, co_noise, y_len, x_len = get_layout_contours_for_visualization(xml_file)
added_image = visualize_image_from_contours_layout(co_text['paragraph'], co_text['header']+co_text['heading'], co_text['drop-capital'], co_sep, co_img, co_text['marginalia'], co_table, img)
cv2.imwrite(os.path.join(dir_out, f_name+'.png'), added_image)
@main.command()
@click.option(
"--xml_file",
"-xml",
help="xml filename",
type=click.Path(exists=True, dir_okay=False),
)
@click.option(
"--dir_xml",
"-dx",
help="directory of GT page-xml files",
type=click.Path(exists=True, file_okay=False),
)
@click.option(
"--dir_out",
"-o",
help="directory where plots will be written",
type=click.Path(exists=True, file_okay=False),
)
def visualize_ocr_text(xml_file, dir_xml, dir_out):
assert xml_file or dir_xml, "A single xml file -xml or a dir of xml files -dx is required not both of them"
if dir_xml:
xml_files_ind = os.listdir(dir_xml)
xml_files_ind = [ind_xml for ind_xml in xml_files_ind if ind_xml.endswith('.xml')]
else:
xml_files_ind = [xml_file]
font_path = "Charis-7.000/Charis-Regular.ttf" # Make sure this file exists!
font = ImageFont.truetype(font_path, 40)
for ind_xml in tqdm(xml_files_ind):
indexer = 0
#print(ind_xml)
#print('########################')
if dir_xml:
xml_file = os.path.join(dir_xml,ind_xml )
f_name = Path(ind_xml).stem
else:
xml_file = os.path.join(ind_xml )
f_name = Path(ind_xml).stem
print(f_name, 'f_name')
co_tetxlines, y_len, x_len, ocr_texts = get_textline_contours_and_ocr_text(xml_file)
total_bb_coordinates = []
image_text = Image.new("RGB", (x_len, y_len), "white")
draw = ImageDraw.Draw(image_text)
for index, cnt in enumerate(co_tetxlines):
x,y,w,h = cv2.boundingRect(cnt)
#total_bb_coordinates.append([x,y,w,h])
#fit_text_single_line
#x_bb = bb_ind[0]
#y_bb = bb_ind[1]
#w_bb = bb_ind[2]
#h_bb = bb_ind[3]
if ocr_texts[index]:
is_vertical = h > 2*w # Check orientation
font = fit_text_single_line(draw, ocr_texts[index], font_path, w, int(h*0.4) )
if is_vertical:
vertical_font = fit_text_single_line(draw, ocr_texts[index], font_path, h, int(w * 0.8))
text_img = Image.new("RGBA", (h, w), (255, 255, 255, 0)) # Note: dimensions are swapped
text_draw = ImageDraw.Draw(text_img)
text_draw.text((0, 0), ocr_texts[index], font=vertical_font, fill="black")
# Rotate text image by 90 degrees
rotated_text = text_img.rotate(90, expand=1)
# Calculate paste position (centered in bbox)
paste_x = x + (w - rotated_text.width) // 2
paste_y = y + (h - rotated_text.height) // 2
image_text.paste(rotated_text, (paste_x, paste_y), rotated_text) # Use rotated image as mask
else:
text_bbox = draw.textbbox((0, 0), ocr_texts[index], font=font)
text_width = text_bbox[2] - text_bbox[0]
text_height = text_bbox[3] - text_bbox[1]
text_x = x + (w - text_width) // 2 # Center horizontally
text_y = y + (h - text_height) // 2 # Center vertically
# Draw the text
draw.text((text_x, text_y), ocr_texts[index], fill="black", font=font)
image_text.save(os.path.join(dir_out, f_name+'.png'))
if __name__ == "__main__":
main()

1838
train/gt_gen_utils.py Normal file

File diff suppressed because it is too large Load diff

683
train/inference.py Normal file
View file

@ -0,0 +1,683 @@
import sys
import os
import numpy as np
import warnings
import cv2
import seaborn as sns
from tensorflow.keras.models import load_model
import tensorflow as tf
from tensorflow.keras import backend as K
from tensorflow.keras import layers
import tensorflow.keras.losses
from tensorflow.keras.layers import *
from models import *
from gt_gen_utils import *
import click
import json
from tensorflow.python.keras import backend as tensorflow_backend
import xml.etree.ElementTree as ET
import matplotlib.pyplot as plt
with warnings.catch_warnings():
warnings.simplefilter("ignore")
__doc__=\
"""
Tool to load model and predict for given image.
"""
class sbb_predict:
def __init__(self,image, dir_in, model, task, config_params_model, patches, save, save_layout, ground_truth, xml_file, out, min_area):
self.image=image
self.dir_in=dir_in
self.patches=patches
self.save=save
self.save_layout=save_layout
self.model_dir=model
self.ground_truth=ground_truth
self.task=task
self.config_params_model=config_params_model
self.xml_file = xml_file
self.out = out
if min_area:
self.min_area = float(min_area)
else:
self.min_area = 0
def resize_image(self,img_in,input_height,input_width):
return cv2.resize( img_in, ( input_width,input_height) ,interpolation=cv2.INTER_NEAREST)
def color_images(self,seg):
ann_u=range(self.n_classes)
if len(np.shape(seg))==3:
seg=seg[:,:,0]
seg_img=np.zeros((np.shape(seg)[0],np.shape(seg)[1],3)).astype(np.uint8)
colors=sns.color_palette("hls", self.n_classes)
for c in ann_u:
c=int(c)
segl=(seg==c)
seg_img[:,:,0][seg==c]=c
seg_img[:,:,1][seg==c]=c
seg_img[:,:,2][seg==c]=c
return seg_img
def otsu_copy_binary(self,img):
img_r=np.zeros((img.shape[0],img.shape[1],3))
img1=img[:,:,0]
#print(img.min())
#print(img[:,:,0].min())
#blur = cv2.GaussianBlur(img,(5,5))
#ret3,th3 = cv2.threshold(blur,0,255,cv2.THRESH_BINARY+cv2.THRESH_OTSU)
retval1, threshold1 = cv2.threshold(img1, 0, 255, cv2.THRESH_BINARY+cv2.THRESH_OTSU)
img_r[:,:,0]=threshold1
img_r[:,:,1]=threshold1
img_r[:,:,2]=threshold1
#img_r=img_r/float(np.max(img_r))*255
return img_r
def otsu_copy(self,img):
img_r=np.zeros((img.shape[0],img.shape[1],3))
#img1=img[:,:,0]
#print(img.min())
#print(img[:,:,0].min())
#blur = cv2.GaussianBlur(img,(5,5))
#ret3,th3 = cv2.threshold(blur,0,255,cv2.THRESH_BINARY+cv2.THRESH_OTSU)
_, threshold1 = cv2.threshold(img[:,:,0], 0, 255, cv2.THRESH_BINARY+cv2.THRESH_OTSU)
_, threshold2 = cv2.threshold(img[:,:,1], 0, 255, cv2.THRESH_BINARY+cv2.THRESH_OTSU)
_, threshold3 = cv2.threshold(img[:,:,2], 0, 255, cv2.THRESH_BINARY+cv2.THRESH_OTSU)
img_r[:,:,0]=threshold1
img_r[:,:,1]=threshold2
img_r[:,:,2]=threshold3
###img_r=img_r/float(np.max(img_r))*255
return img_r
def soft_dice_loss(self,y_true, y_pred, epsilon=1e-6):
axes = tuple(range(1, len(y_pred.shape)-1))
numerator = 2. * K.sum(y_pred * y_true, axes)
denominator = K.sum(K.square(y_pred) + K.square(y_true), axes)
return 1.00 - K.mean(numerator / (denominator + epsilon)) # average over classes and batch
def weighted_categorical_crossentropy(self,weights=None):
def loss(y_true, y_pred):
labels_floats = tf.cast(y_true, tf.float32)
per_pixel_loss = tf.nn.sigmoid_cross_entropy_with_logits(labels=labels_floats,logits=y_pred)
if weights is not None:
weight_mask = tf.maximum(tf.reduce_max(tf.constant(
np.array(weights, dtype=np.float32)[None, None, None])
* labels_floats, axis=-1), 1.0)
per_pixel_loss = per_pixel_loss * weight_mask[:, :, :, None]
return tf.reduce_mean(per_pixel_loss)
return self.loss
def IoU(self,Yi,y_predi):
## mean Intersection over Union
## Mean IoU = TP/(FN + TP + FP)
IoUs = []
Nclass = np.unique(Yi)
for c in Nclass:
TP = np.sum( (Yi == c)&(y_predi==c) )
FP = np.sum( (Yi != c)&(y_predi==c) )
FN = np.sum( (Yi == c)&(y_predi != c))
IoU = TP/float(TP + FP + FN)
if self.n_classes>2:
print("class {:02.0f}: #TP={:6.0f}, #FP={:6.0f}, #FN={:5.0f}, IoU={:4.3f}".format(c,TP,FP,FN,IoU))
IoUs.append(IoU)
if self.n_classes>2:
mIoU = np.mean(IoUs)
print("_________________")
print("Mean IoU: {:4.3f}".format(mIoU))
return mIoU
elif self.n_classes==2:
mIoU = IoUs[1]
print("_________________")
print("IoU: {:4.3f}".format(mIoU))
return mIoU
def start_new_session_and_model(self):
config = tf.compat.v1.ConfigProto()
config.gpu_options.allow_growth = True
session = tf.compat.v1.Session(config=config) # tf.InteractiveSession()
tensorflow_backend.set_session(session)
#tensorflow.keras.layers.custom_layer = PatchEncoder
#tensorflow.keras.layers.custom_layer = Patches
self.model = load_model(self.model_dir , compile=False,custom_objects = {"PatchEncoder": PatchEncoder, "Patches": Patches})
#config = tf.ConfigProto()
#config.gpu_options.allow_growth=True
#self.session = tf.InteractiveSession()
#keras.losses.custom_loss = self.weighted_categorical_crossentropy
#self.model = load_model(self.model_dir , compile=False)
##if self.weights_dir!=None:
##self.model.load_weights(self.weights_dir)
if (self.task != 'classification' and self.task != 'reading_order'):
self.img_height=self.model.layers[len(self.model.layers)-1].output_shape[1]
self.img_width=self.model.layers[len(self.model.layers)-1].output_shape[2]
self.n_classes=self.model.layers[len(self.model.layers)-1].output_shape[3]
def visualize_model_output(self, prediction, img, task):
if task == "binarization":
prediction = prediction * -1
prediction = prediction + 1
added_image = prediction * 255
layout_only = None
else:
unique_classes = np.unique(prediction[:,:,0])
rgb_colors = {'0' : [255, 255, 255],
'1' : [255, 0, 0],
'2' : [255, 125, 0],
'3' : [255, 0, 125],
'4' : [125, 125, 125],
'5' : [125, 125, 0],
'6' : [0, 125, 255],
'7' : [0, 125, 0],
'8' : [125, 125, 125],
'9' : [0, 125, 255],
'10' : [125, 0, 125],
'11' : [0, 255, 0],
'12' : [0, 0, 255],
'13' : [0, 255, 255],
'14' : [255, 125, 125],
'15' : [255, 0, 255]}
layout_only = np.zeros(prediction.shape)
for unq_class in unique_classes:
rgb_class_unique = rgb_colors[str(int(unq_class))]
layout_only[:,:,0][prediction[:,:,0]==unq_class] = rgb_class_unique[0]
layout_only[:,:,1][prediction[:,:,0]==unq_class] = rgb_class_unique[1]
layout_only[:,:,2][prediction[:,:,0]==unq_class] = rgb_class_unique[2]
img = self.resize_image(img, layout_only.shape[0], layout_only.shape[1])
layout_only = layout_only.astype(np.int32)
img = img.astype(np.int32)
added_image = cv2.addWeighted(img,0.5,layout_only,0.1,0)
return added_image, layout_only
def predict(self, image_dir):
if self.task == 'classification':
classes_names = self.config_params_model['classification_classes_name']
img_1ch = img=cv2.imread(image_dir, 0)
img_1ch = img_1ch / 255.0
img_1ch = cv2.resize(img_1ch, (self.config_params_model['input_height'], self.config_params_model['input_width']), interpolation=cv2.INTER_NEAREST)
img_in = np.zeros((1, img_1ch.shape[0], img_1ch.shape[1], 3))
img_in[0, :, :, 0] = img_1ch[:, :]
img_in[0, :, :, 1] = img_1ch[:, :]
img_in[0, :, :, 2] = img_1ch[:, :]
label_p_pred = self.model.predict(img_in, verbose=0)
index_class = np.argmax(label_p_pred[0])
print("Predicted Class: {}".format(classes_names[str(int(index_class))]))
elif self.task == 'reading_order':
img_height = self.config_params_model['input_height']
img_width = self.config_params_model['input_width']
tree_xml, root_xml, bb_coord_printspace, file_name, id_paragraph, id_header, co_text_paragraph, co_text_header, tot_region_ref, x_len, y_len, index_tot_regions, img_poly = read_xml(self.xml_file)
_, cy_main, x_min_main, x_max_main, y_min_main, y_max_main, _ = find_new_features_of_contours(co_text_header)
img_header_and_sep = np.zeros((y_len,x_len), dtype='uint8')
for j in range(len(cy_main)):
img_header_and_sep[int(y_max_main[j]):int(y_max_main[j])+12,int(x_min_main[j]):int(x_max_main[j]) ] = 1
co_text_all = co_text_paragraph + co_text_header
id_all_text = id_paragraph + id_header
##texts_corr_order_index = [index_tot_regions[tot_region_ref.index(i)] for i in id_all_text ]
##texts_corr_order_index_int = [int(x) for x in texts_corr_order_index]
texts_corr_order_index_int = list(np.array(range(len(co_text_all))))
#print(texts_corr_order_index_int)
max_area = 1
#print(np.shape(co_text_all[0]), len( np.shape(co_text_all[0]) ),'co_text_all')
#co_text_all = filter_contours_area_of_image_tables(img_poly, co_text_all, _, max_area, min_area)
#print(co_text_all,'co_text_all')
co_text_all, texts_corr_order_index_int, _ = filter_contours_area_of_image(img_poly, co_text_all, texts_corr_order_index_int, max_area, self.min_area)
#print(texts_corr_order_index_int)
#co_text_all = [co_text_all[index] for index in texts_corr_order_index_int]
id_all_text = [id_all_text[index] for index in texts_corr_order_index_int]
labels_con = np.zeros((y_len,x_len,len(co_text_all)),dtype='uint8')
for i in range(len(co_text_all)):
img_label = np.zeros((y_len,x_len,3),dtype='uint8')
img_label=cv2.fillPoly(img_label, pts =[co_text_all[i]], color=(1,1,1))
labels_con[:,:,i] = img_label[:,:,0]
if bb_coord_printspace:
#bb_coord_printspace[x,y,w,h,_,_]
x = bb_coord_printspace[0]
y = bb_coord_printspace[1]
w = bb_coord_printspace[2]
h = bb_coord_printspace[3]
labels_con = labels_con[y:y+h, x:x+w, :]
img_poly = img_poly[y:y+h, x:x+w, :]
img_header_and_sep = img_header_and_sep[y:y+h, x:x+w]
img3= np.copy(img_poly)
labels_con = resize_image(labels_con, img_height, img_width)
img_header_and_sep = resize_image(img_header_and_sep, img_height, img_width)
img3= resize_image (img3, img_height, img_width)
img3 = img3.astype(np.uint16)
inference_bs = 1#4
input_1= np.zeros( (inference_bs, img_height, img_width,3))
starting_list_of_regions = []
starting_list_of_regions.append( list(range(labels_con.shape[2])) )
index_update = 0
index_selected = starting_list_of_regions[0]
scalibility_num = 0
while index_update>=0:
ij_list = starting_list_of_regions[index_update]
i = ij_list[0]
ij_list.pop(0)
pr_list = []
post_list = []
batch_counter = 0
tot_counter = 1
tot_iteration = len(ij_list)
full_bs_ite= tot_iteration//inference_bs
last_bs = tot_iteration % inference_bs
jbatch_indexer =[]
for j in ij_list:
img1= np.repeat(labels_con[:,:,i][:, :, np.newaxis], 3, axis=2)
img2 = np.repeat(labels_con[:,:,j][:, :, np.newaxis], 3, axis=2)
img2[:,:,0][img3[:,:,0]==5] = 2
img2[:,:,0][img_header_and_sep[:,:]==1] = 3
img1[:,:,0][img3[:,:,0]==5] = 2
img1[:,:,0][img_header_and_sep[:,:]==1] = 3
#input_1= np.zeros( (height1, width1,3))
jbatch_indexer.append(j)
input_1[batch_counter,:,:,0] = img1[:,:,0]/3.
input_1[batch_counter,:,:,2] = img2[:,:,0]/3.
input_1[batch_counter,:,:,1] = img3[:,:,0]/5.
#input_1[batch_counter,:,:,:]= np.zeros( (batch_counter, height1, width1,3))
batch_counter = batch_counter+1
#input_1[:,:,0] = img1[:,:,0]/3.
#input_1[:,:,2] = img2[:,:,0]/3.
#input_1[:,:,1] = img3[:,:,0]/5.
if batch_counter==inference_bs or ( (tot_counter//inference_bs)==full_bs_ite and tot_counter%inference_bs==last_bs):
y_pr = self.model.predict(input_1 , verbose=0)
scalibility_num = scalibility_num+1
if batch_counter==inference_bs:
iteration_batches = inference_bs
else:
iteration_batches = last_bs
for jb in range(iteration_batches):
if y_pr[jb][0]>=0.5:
post_list.append(jbatch_indexer[jb])
else:
pr_list.append(jbatch_indexer[jb])
batch_counter = 0
jbatch_indexer = []
tot_counter = tot_counter+1
starting_list_of_regions, index_update = update_list_and_return_first_with_length_bigger_than_one(index_update, i, pr_list, post_list,starting_list_of_regions)
index_sort = [i[0] for i in starting_list_of_regions ]
id_all_text = np.array(id_all_text)[index_sort]
alltags=[elem.tag for elem in root_xml.iter()]
link=alltags[0].split('}')[0]+'}'
name_space = alltags[0].split('}')[0]
name_space = name_space.split('{')[1]
page_element = root_xml.find(link+'Page')
"""
ro_subelement = ET.SubElement(page_element, 'ReadingOrder')
#print(page_element, 'page_element')
#new_element = ET.Element('ReadingOrder')
new_element_element = ET.Element('OrderedGroup')
new_element_element.set('id', "ro357564684568544579089")
for index, id_text in enumerate(id_all_text):
new_element_2 = ET.Element('RegionRefIndexed')
new_element_2.set('regionRef', id_all_text[index])
new_element_2.set('index', str(index_sort[index]))
new_element_element.append(new_element_2)
ro_subelement.append(new_element_element)
"""
##ro_subelement = ET.SubElement(page_element, 'ReadingOrder')
ro_subelement = ET.Element('ReadingOrder')
ro_subelement2 = ET.SubElement(ro_subelement, 'OrderedGroup')
ro_subelement2.set('id', "ro357564684568544579089")
for index, id_text in enumerate(id_all_text):
new_element_2 = ET.SubElement(ro_subelement2, 'RegionRefIndexed')
new_element_2.set('regionRef', id_all_text[index])
new_element_2.set('index', str(index))
if (link+'PrintSpace' in alltags) or (link+'Border' in alltags):
page_element.insert(1, ro_subelement)
else:
page_element.insert(0, ro_subelement)
alltags=[elem.tag for elem in root_xml.iter()]
ET.register_namespace("",name_space)
tree_xml.write(os.path.join(self.out, file_name+'.xml'),xml_declaration=True,method='xml',encoding="utf8",default_namespace=None)
#tree_xml.write('library2.xml')
else:
if self.patches:
#def textline_contours(img,input_width,input_height,n_classes,model):
img=cv2.imread(image_dir)
self.img_org = np.copy(img)
if img.shape[0] < self.img_height:
img = self.resize_image(img, self.img_height, img.shape[1])
if img.shape[1] < self.img_width:
img = self.resize_image(img, img.shape[0], self.img_width)
margin = int(0.1 * self.img_width)
width_mid = self.img_width - 2 * margin
height_mid = self.img_height - 2 * margin
img = img / float(255.0)
img_h = img.shape[0]
img_w = img.shape[1]
prediction_true = np.zeros((img_h, img_w, 3))
nxf = img_w / float(width_mid)
nyf = img_h / float(height_mid)
nxf = int(nxf) + 1 if nxf > int(nxf) else int(nxf)
nyf = int(nyf) + 1 if nyf > int(nyf) else int(nyf)
for i in range(nxf):
for j in range(nyf):
if i == 0:
index_x_d = i * width_mid
index_x_u = index_x_d + self.img_width
else:
index_x_d = i * width_mid
index_x_u = index_x_d + self.img_width
if j == 0:
index_y_d = j * height_mid
index_y_u = index_y_d + self.img_height
else:
index_y_d = j * height_mid
index_y_u = index_y_d + self.img_height
if index_x_u > img_w:
index_x_u = img_w
index_x_d = img_w - self.img_width
if index_y_u > img_h:
index_y_u = img_h
index_y_d = img_h - self.img_height
img_patch = img[index_y_d:index_y_u, index_x_d:index_x_u, :]
label_p_pred = self.model.predict(img_patch.reshape(1, img_patch.shape[0], img_patch.shape[1], img_patch.shape[2]),
verbose=0)
if self.task == 'enhancement':
seg = label_p_pred[0, :, :, :]
seg = seg * 255
elif self.task == 'segmentation' or self.task == 'binarization':
seg = np.argmax(label_p_pred, axis=3)[0]
seg = np.repeat(seg[:, :, np.newaxis], 3, axis=2)
if i == 0 and j == 0:
seg = seg[0 : seg.shape[0] - margin, 0 : seg.shape[1] - margin]
prediction_true[index_y_d + 0 : index_y_u - margin, index_x_d + 0 : index_x_u - margin, :] = seg
elif i == nxf - 1 and j == nyf - 1:
seg = seg[margin : seg.shape[0] - 0, margin : seg.shape[1] - 0]
prediction_true[index_y_d + margin : index_y_u - 0, index_x_d + margin : index_x_u - 0, :] = seg
elif i == 0 and j == nyf - 1:
seg = seg[margin : seg.shape[0] - 0, 0 : seg.shape[1] - margin]
prediction_true[index_y_d + margin : index_y_u - 0, index_x_d + 0 : index_x_u - margin, :] = seg
elif i == nxf - 1 and j == 0:
seg = seg[0 : seg.shape[0] - margin, margin : seg.shape[1] - 0]
prediction_true[index_y_d + 0 : index_y_u - margin, index_x_d + margin : index_x_u - 0, :] = seg
elif i == 0 and j != 0 and j != nyf - 1:
seg = seg[margin : seg.shape[0] - margin, 0 : seg.shape[1] - margin]
prediction_true[index_y_d + margin : index_y_u - margin, index_x_d + 0 : index_x_u - margin, :] = seg
elif i == nxf - 1 and j != 0 and j != nyf - 1:
seg = seg[margin : seg.shape[0] - margin, margin : seg.shape[1] - 0]
prediction_true[index_y_d + margin : index_y_u - margin, index_x_d + margin : index_x_u - 0, :] = seg
elif i != 0 and i != nxf - 1 and j == 0:
seg = seg[0 : seg.shape[0] - margin, margin : seg.shape[1] - margin]
prediction_true[index_y_d + 0 : index_y_u - margin, index_x_d + margin : index_x_u - margin, :] = seg
elif i != 0 and i != nxf - 1 and j == nyf - 1:
seg = seg[margin : seg.shape[0] - 0, margin : seg.shape[1] - margin]
prediction_true[index_y_d + margin : index_y_u - 0, index_x_d + margin : index_x_u - margin, :] = seg
else:
seg = seg[margin : seg.shape[0] - margin, margin : seg.shape[1] - margin]
prediction_true[index_y_d + margin : index_y_u - margin, index_x_d + margin : index_x_u - margin, :] = seg
prediction_true = prediction_true.astype(int)
prediction_true = cv2.resize(prediction_true, (self.img_org.shape[1], self.img_org.shape[0]), interpolation=cv2.INTER_NEAREST)
return prediction_true
else:
img=cv2.imread(image_dir)
self.img_org = np.copy(img)
width=self.img_width
height=self.img_height
img=img/255.0
img=self.resize_image(img,self.img_height,self.img_width)
label_p_pred=self.model.predict(
img.reshape(1,img.shape[0],img.shape[1],img.shape[2]))
if self.task == 'enhancement':
seg = label_p_pred[0, :, :, :]
seg = seg * 255
elif self.task == 'segmentation' or self.task == 'binarization':
seg = np.argmax(label_p_pred, axis=3)[0]
seg = np.repeat(seg[:, :, np.newaxis], 3, axis=2)
prediction_true = seg.astype(int)
prediction_true = cv2.resize(prediction_true, (self.img_org.shape[1], self.img_org.shape[0]), interpolation=cv2.INTER_NEAREST)
return prediction_true
def run(self):
self.start_new_session_and_model()
if self.image:
res=self.predict(image_dir = self.image)
if (self.task == 'classification' or self.task == 'reading_order'):
pass
elif self.task == 'enhancement':
if self.save:
cv2.imwrite(self.save,res)
else:
img_seg_overlayed, only_layout = self.visualize_model_output(res, self.img_org, self.task)
if self.save:
cv2.imwrite(self.save,img_seg_overlayed)
if self.save_layout:
cv2.imwrite(self.save_layout, only_layout)
if self.ground_truth:
gt_img=cv2.imread(self.ground_truth)
self.IoU(gt_img[:,:,0],res[:,:,0])
else:
ls_images = os.listdir(self.dir_in)
for ind_image in ls_images:
f_name = ind_image.split('.')[0]
image_dir = os.path.join(self.dir_in, ind_image)
res=self.predict(image_dir)
if (self.task == 'classification' or self.task == 'reading_order'):
pass
elif self.task == 'enhancement':
self.save = os.path.join(self.out, f_name+'.png')
cv2.imwrite(self.save,res)
else:
img_seg_overlayed, only_layout = self.visualize_model_output(res, self.img_org, self.task)
self.save = os.path.join(self.out, f_name+'_overlayed.png')
cv2.imwrite(self.save,img_seg_overlayed)
self.save_layout = os.path.join(self.out, f_name+'_layout.png')
cv2.imwrite(self.save_layout, only_layout)
if self.ground_truth:
gt_img=cv2.imread(self.ground_truth)
self.IoU(gt_img[:,:,0],res[:,:,0])
@click.command()
@click.option(
"--image",
"-i",
help="image filename",
type=click.Path(exists=True, dir_okay=False),
)
@click.option(
"--dir_in",
"-di",
help="directory of images",
type=click.Path(exists=True, file_okay=False),
)
@click.option(
"--out",
"-o",
help="output directory where xml with detected reading order will be written.",
type=click.Path(exists=True, file_okay=False),
)
@click.option(
"--patches/--no-patches",
"-p/-nop",
is_flag=True,
help="if this parameter set to true, this tool will try to do inference in patches.",
)
@click.option(
"--save",
"-s",
help="save prediction as a png file in current folder.",
)
@click.option(
"--save_layout",
"-sl",
help="save layout prediction only as a png file in current folder.",
)
@click.option(
"--model",
"-m",
help="directory of models",
type=click.Path(exists=True, file_okay=False),
required=True,
)
@click.option(
"--ground_truth",
"-gt",
help="ground truth directory if you want to see the iou of prediction.",
)
@click.option(
"--xml_file",
"-xml",
help="xml file with layout coordinates that reading order detection will be implemented on. The result will be written in the same xml file.",
)
@click.option(
"--min_area",
"-min",
help="min area size of regions considered for reading order detection. The default value is zero and means that all text regions are considered for reading order.",
)
def main(image, dir_in, model, patches, save, save_layout, ground_truth, xml_file, out, min_area):
assert image or dir_in, "Either a single image -i or a dir_in -di is required"
with open(os.path.join(model,'config.json')) as f:
config_params_model = json.load(f)
task = config_params_model['task']
if (task != 'classification' and task != 'reading_order'):
if image and not save:
print("Error: You used one of segmentation or binarization task with image input but not set -s, you need a filename to save visualized output with -s")
sys.exit(1)
if dir_in and not out:
print("Error: You used one of segmentation or binarization task with dir_in but not set -out")
sys.exit(1)
x=sbb_predict(image, dir_in, model, task, config_params_model, patches, save, save_layout, ground_truth, xml_file, out, min_area)
x.run()
if __name__=="__main__":
main()

357
train/metrics.py Normal file
View file

@ -0,0 +1,357 @@
from tensorflow.keras import backend as K
import tensorflow as tf
import numpy as np
def focal_loss(gamma=2., alpha=4.):
gamma = float(gamma)
alpha = float(alpha)
def focal_loss_fixed(y_true, y_pred):
"""Focal loss for multi-classification
FL(p_t)=-alpha(1-p_t)^{gamma}ln(p_t)
Notice: y_pred is probability after softmax
gradient is d(Fl)/d(p_t) not d(Fl)/d(x) as described in paper
d(Fl)/d(p_t) * [p_t(1-p_t)] = d(Fl)/d(x)
Focal Loss for Dense Object Detection
https://arxiv.org/abs/1708.02002
Arguments:
y_true {tensor} -- ground truth labels, shape of [batch_size, num_cls]
y_pred {tensor} -- model's output, shape of [batch_size, num_cls]
Keyword Arguments:
gamma {float} -- (default: {2.0})
alpha {float} -- (default: {4.0})
Returns:
[tensor] -- loss.
"""
epsilon = 1.e-9
y_true = tf.convert_to_tensor(y_true, tf.float32)
y_pred = tf.convert_to_tensor(y_pred, tf.float32)
model_out = tf.add(y_pred, epsilon)
ce = tf.multiply(y_true, -tf.log(model_out))
weight = tf.multiply(y_true, tf.pow(tf.subtract(1., model_out), gamma))
fl = tf.multiply(alpha, tf.multiply(weight, ce))
reduced_fl = tf.reduce_max(fl, axis=1)
return tf.reduce_mean(reduced_fl)
return focal_loss_fixed
def weighted_categorical_crossentropy(weights=None):
""" weighted_categorical_crossentropy
Args:
* weights<ktensor|nparray|list>: crossentropy weights
Returns:
* weighted categorical crossentropy function
"""
def loss(y_true, y_pred):
labels_floats = tf.cast(y_true, tf.float32)
per_pixel_loss = tf.nn.sigmoid_cross_entropy_with_logits(labels=labels_floats, logits=y_pred)
if weights is not None:
weight_mask = tf.maximum(tf.reduce_max(tf.constant(
np.array(weights, dtype=np.float32)[None, None, None])
* labels_floats, axis=-1), 1.0)
per_pixel_loss = per_pixel_loss * weight_mask[:, :, :, None]
return tf.reduce_mean(per_pixel_loss)
return loss
def image_categorical_cross_entropy(y_true, y_pred, weights=None):
"""
:param y_true: tensor of shape (batch_size, height, width) representing the ground truth.
:param y_pred: tensor of shape (batch_size, height, width) representing the prediction.
:return: The mean cross-entropy on softmaxed tensors.
"""
labels_floats = tf.cast(y_true, tf.float32)
per_pixel_loss = tf.nn.sigmoid_cross_entropy_with_logits(labels=labels_floats, logits=y_pred)
if weights is not None:
weight_mask = tf.maximum(
tf.reduce_max(tf.constant(
np.array(weights, dtype=np.float32)[None, None, None])
* labels_floats, axis=-1), 1.0)
per_pixel_loss = per_pixel_loss * weight_mask[:, :, :, None]
return tf.reduce_mean(per_pixel_loss)
def class_tversky(y_true, y_pred):
smooth = 1.0 # 1.00
y_true = K.permute_dimensions(y_true, (3, 1, 2, 0))
y_pred = K.permute_dimensions(y_pred, (3, 1, 2, 0))
y_true_pos = K.batch_flatten(y_true)
y_pred_pos = K.batch_flatten(y_pred)
true_pos = K.sum(y_true_pos * y_pred_pos, 1)
false_neg = K.sum(y_true_pos * (1 - y_pred_pos), 1)
false_pos = K.sum((1 - y_true_pos) * y_pred_pos, 1)
alpha = 0.2 # 0.5
beta = 0.8
return (true_pos + smooth) / (true_pos + alpha * false_neg + beta * false_pos + smooth)
def focal_tversky_loss(y_true, y_pred):
pt_1 = class_tversky(y_true, y_pred)
gamma = 1.3 # 4./3.0#1.3#4.0/3.00# 0.75
return K.sum(K.pow((1 - pt_1), gamma))
def generalized_dice_coeff2(y_true, y_pred):
n_el = 1
for dim in y_true.shape:
n_el *= int(dim)
n_cl = y_true.shape[-1]
w = K.zeros(shape=(n_cl,))
w = (K.sum(y_true, axis=(0, 1, 2))) / n_el
w = 1 / (w ** 2 + 0.000001)
numerator = y_true * y_pred
numerator = w * K.sum(numerator, (0, 1, 2))
numerator = K.sum(numerator)
denominator = y_true + y_pred
denominator = w * K.sum(denominator, (0, 1, 2))
denominator = K.sum(denominator)
return 2 * numerator / denominator
def generalized_dice_coeff(y_true, y_pred):
axes = tuple(range(1, len(y_pred.shape) - 1))
Ncl = y_pred.shape[-1]
w = K.zeros(shape=(Ncl,))
w = K.sum(y_true, axis=axes)
w = 1 / (w ** 2 + 0.000001)
# Compute gen dice coef:
numerator = y_true * y_pred
numerator = w * K.sum(numerator, axes)
numerator = K.sum(numerator)
denominator = y_true + y_pred
denominator = w * K.sum(denominator, axes)
denominator = K.sum(denominator)
gen_dice_coef = 2 * numerator / denominator
return gen_dice_coef
def generalized_dice_loss(y_true, y_pred):
return 1 - generalized_dice_coeff2(y_true, y_pred)
def soft_dice_loss(y_true, y_pred, epsilon=1e-6):
"""
Soft dice loss calculation for arbitrary batch size, number of classes, and number of spatial dimensions.
Assumes the `channels_last` format.
# Arguments
y_true: b x X x Y( x Z...) x c One hot encoding of ground truth
y_pred: b x X x Y( x Z...) x c Network output, must sum to 1 over c channel (such as after softmax)
epsilon: Used for numerical stability to avoid divide by zero errors
# References
V-Net: Fully Convolutional Neural Networks for Volumetric Medical Image Segmentation
https://arxiv.org/abs/1606.04797
More details on Dice loss formulation
https://mediatum.ub.tum.de/doc/1395260/1395260.pdf (page 72)
Adapted from https://github.com/Lasagne/Recipes/issues/99#issuecomment-347775022
"""
# skip the batch and class axis for calculating Dice score
axes = tuple(range(1, len(y_pred.shape) - 1))
numerator = 2. * K.sum(y_pred * y_true, axes)
denominator = K.sum(K.square(y_pred) + K.square(y_true), axes)
return 1.00 - K.mean(numerator / (denominator + epsilon)) # average over classes and batch
def seg_metrics(y_true, y_pred, metric_name, metric_type='standard', drop_last=True, mean_per_class=False,
verbose=False):
"""
Compute mean metrics of two segmentation masks, via Keras.
IoU(A,B) = |A & B| / (| A U B|)
Dice(A,B) = 2*|A & B| / (|A| + |B|)
Args:
y_true: true masks, one-hot encoded.
y_pred: predicted masks, either softmax outputs, or one-hot encoded.
metric_name: metric to be computed, either 'iou' or 'dice'.
metric_type: one of 'standard' (default), 'soft', 'naive'.
In the standard version, y_pred is one-hot encoded and the mean
is taken only over classes that are present (in y_true or y_pred).
The 'soft' version of the metrics are computed without one-hot
encoding y_pred.
The 'naive' version return mean metrics where absent classes contribute
to the class mean as 1.0 (instead of being dropped from the mean).
drop_last = True: boolean flag to drop last class (usually reserved
for background class in semantic segmentation)
mean_per_class = False: return mean along batch axis for each class.
verbose = False: print intermediate results such as intersection, union
(as number of pixels).
Returns:
IoU/Dice of y_true and y_pred, as a float, unless mean_per_class == True
in which case it returns the per-class metric, averaged over the batch.
Inputs are B*W*H*N tensors, with
B = batch size,
W = width,
H = height,
N = number of classes
"""
flag_soft = (metric_type == 'soft')
flag_naive_mean = (metric_type == 'naive')
# always assume one or more classes
num_classes = K.shape(y_true)[-1]
if not flag_soft:
# get one-hot encoded masks from y_pred (true masks should already be one-hot)
y_pred = K.one_hot(K.argmax(y_pred), num_classes)
y_true = K.one_hot(K.argmax(y_true), num_classes)
# if already one-hot, could have skipped above command
# keras uses float32 instead of float64, would give error down (but numpy arrays or keras.to_categorical gives float64)
y_true = K.cast(y_true, 'float32')
y_pred = K.cast(y_pred, 'float32')
# intersection and union shapes are batch_size * n_classes (values = area in pixels)
axes = (1, 2) # W,H axes of each image
intersection = K.sum(K.abs(y_true * y_pred), axis=axes)
mask_sum = K.sum(K.abs(y_true), axis=axes) + K.sum(K.abs(y_pred), axis=axes)
union = mask_sum - intersection # or, np.logical_or(y_pred, y_true) for one-hot
smooth = .001
iou = (intersection + smooth) / (union + smooth)
dice = 2 * (intersection + smooth) / (mask_sum + smooth)
metric = {'iou': iou, 'dice': dice}[metric_name]
# define mask to be 0 when no pixels are present in either y_true or y_pred, 1 otherwise
mask = K.cast(K.not_equal(union, 0), 'float32')
if drop_last:
metric = metric[:, :-1]
mask = mask[:, :-1]
if verbose:
print('intersection, union')
print(K.eval(intersection), K.eval(union))
print(K.eval(intersection / union))
# return mean metrics: remaining axes are (batch, classes)
if flag_naive_mean:
return K.mean(metric)
# take mean only over non-absent classes
class_count = K.sum(mask, axis=0)
non_zero = tf.greater(class_count, 0)
non_zero_sum = tf.boolean_mask(K.sum(metric * mask, axis=0), non_zero)
non_zero_count = tf.boolean_mask(class_count, non_zero)
if verbose:
print('Counts of inputs with class present, metrics for non-absent classes')
print(K.eval(class_count), K.eval(non_zero_sum / non_zero_count))
return K.mean(non_zero_sum / non_zero_count)
def mean_iou(y_true, y_pred, **kwargs):
"""
Compute mean Intersection over Union of two segmentation masks, via Keras.
Calls metrics_k(y_true, y_pred, metric_name='iou'), see there for allowed kwargs.
"""
return seg_metrics(y_true, y_pred, metric_name='iou', **kwargs)
def Mean_IOU(y_true, y_pred):
nb_classes = K.int_shape(y_pred)[-1]
iou = []
true_pixels = K.argmax(y_true, axis=-1)
pred_pixels = K.argmax(y_pred, axis=-1)
void_labels = K.equal(K.sum(y_true, axis=-1), 0)
for i in range(0, nb_classes): # exclude first label (background) and last label (void)
true_labels = K.equal(true_pixels, i) # & ~void_labels
pred_labels = K.equal(pred_pixels, i) # & ~void_labels
inter = tf.to_int32(true_labels & pred_labels)
union = tf.to_int32(true_labels | pred_labels)
legal_batches = K.sum(tf.to_int32(true_labels), axis=1) > 0
ious = K.sum(inter, axis=1) / K.sum(union, axis=1)
iou.append(K.mean(tf.gather(ious, indices=tf.where(legal_batches)))) # returns average IoU of the same objects
iou = tf.stack(iou)
legal_labels = ~tf.debugging.is_nan(iou)
iou = tf.gather(iou, indices=tf.where(legal_labels))
return K.mean(iou)
def iou_vahid(y_true, y_pred):
nb_classes = tf.shape(y_true)[-1] + tf.to_int32(1)
true_pixels = K.argmax(y_true, axis=-1)
pred_pixels = K.argmax(y_pred, axis=-1)
iou = []
for i in tf.range(nb_classes):
tp = K.sum(tf.to_int32(K.equal(true_pixels, i) & K.equal(pred_pixels, i)))
fp = K.sum(tf.to_int32(K.not_equal(true_pixels, i) & K.equal(pred_pixels, i)))
fn = K.sum(tf.to_int32(K.equal(true_pixels, i) & K.not_equal(pred_pixels, i)))
iouh = tp / (tp + fp + fn)
iou.append(iouh)
return K.mean(iou)
def IoU_metric(Yi, y_predi):
# mean Intersection over Union
# Mean IoU = TP/(FN + TP + FP)
y_predi = np.argmax(y_predi, axis=3)
y_testi = np.argmax(Yi, axis=3)
IoUs = []
Nclass = int(np.max(Yi)) + 1
for c in range(Nclass):
TP = np.sum((Yi == c) & (y_predi == c))
FP = np.sum((Yi != c) & (y_predi == c))
FN = np.sum((Yi == c) & (y_predi != c))
IoU = TP / float(TP + FP + FN)
IoUs.append(IoU)
return K.cast(np.mean(IoUs), dtype='float32')
def IoU_metric_keras(y_true, y_pred):
# mean Intersection over Union
# Mean IoU = TP/(FN + TP + FP)
init = tf.global_variables_initializer()
sess = tf.Session()
sess.run(init)
return IoU_metric(y_true.eval(session=sess), y_pred.eval(session=sess))
def jaccard_distance_loss(y_true, y_pred, smooth=100):
"""
Jaccard = (|X & Y|)/ (|X|+ |Y| - |X & Y|)
= sum(|A*B|)/(sum(|A|)+sum(|B|)-sum(|A*B|))
The jaccard distance loss is usefull for unbalanced datasets. This has been
shifted so it converges on 0 and is smoothed to avoid exploding or disapearing
gradient.
Ref: https://en.wikipedia.org/wiki/Jaccard_index
@url: https://gist.github.com/wassname/f1452b748efcbeb4cb9b1d059dce6f96
@author: wassname
"""
intersection = K.sum(K.abs(y_true * y_pred), axis=-1)
sum_ = K.sum(K.abs(y_true) + K.abs(y_pred), axis=-1)
jac = (intersection + smooth) / (sum_ - intersection + smooth)
return (1 - jac) * smooth

756
train/models.py Normal file
View file

@ -0,0 +1,756 @@
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras.models import *
from tensorflow.keras.layers import *
from tensorflow.keras import layers
from tensorflow.keras.regularizers import l2
##mlp_head_units = [512, 256]#[2048, 1024]
###projection_dim = 64
##transformer_layers = 2#8
##num_heads = 1#4
resnet50_Weights_path = './pretrained_model/resnet50_weights_tf_dim_ordering_tf_kernels_notop.h5'
IMAGE_ORDERING = 'channels_last'
MERGE_AXIS = -1
def mlp(x, hidden_units, dropout_rate):
for units in hidden_units:
x = layers.Dense(units, activation=tf.nn.gelu)(x)
x = layers.Dropout(dropout_rate)(x)
return x
class Patches(layers.Layer):
def __init__(self, patch_size_x, patch_size_y):#__init__(self, **kwargs):#:__init__(self, patch_size):#__init__(self, **kwargs):
super(Patches, self).__init__()
self.patch_size_x = patch_size_x
self.patch_size_y = patch_size_y
def call(self, images):
#print(tf.shape(images)[1],'images')
#print(self.patch_size,'self.patch_size')
batch_size = tf.shape(images)[0]
patches = tf.image.extract_patches(
images=images,
sizes=[1, self.patch_size_y, self.patch_size_x, 1],
strides=[1, self.patch_size_y, self.patch_size_x, 1],
rates=[1, 1, 1, 1],
padding="VALID",
)
#patch_dims = patches.shape[-1]
patch_dims = tf.shape(patches)[-1]
patches = tf.reshape(patches, [batch_size, -1, patch_dims])
return patches
def get_config(self):
config = super().get_config().copy()
config.update({
'patch_size_x': self.patch_size_x,
'patch_size_y': self.patch_size_y,
})
return config
class Patches_old(layers.Layer):
def __init__(self, patch_size):#__init__(self, **kwargs):#:__init__(self, patch_size):#__init__(self, **kwargs):
super(Patches, self).__init__()
self.patch_size = patch_size
def call(self, images):
#print(tf.shape(images)[1],'images')
#print(self.patch_size,'self.patch_size')
batch_size = tf.shape(images)[0]
patches = tf.image.extract_patches(
images=images,
sizes=[1, self.patch_size, self.patch_size, 1],
strides=[1, self.patch_size, self.patch_size, 1],
rates=[1, 1, 1, 1],
padding="VALID",
)
patch_dims = patches.shape[-1]
#print(patches.shape,patch_dims,'patch_dims')
patches = tf.reshape(patches, [batch_size, -1, patch_dims])
return patches
def get_config(self):
config = super().get_config().copy()
config.update({
'patch_size': self.patch_size,
})
return config
class PatchEncoder(layers.Layer):
def __init__(self, num_patches, projection_dim):
super(PatchEncoder, self).__init__()
self.num_patches = num_patches
self.projection = layers.Dense(units=projection_dim)
self.position_embedding = layers.Embedding(
input_dim=num_patches, output_dim=projection_dim
)
def call(self, patch):
positions = tf.range(start=0, limit=self.num_patches, delta=1)
encoded = self.projection(patch) + self.position_embedding(positions)
return encoded
def get_config(self):
config = super().get_config().copy()
config.update({
'num_patches': self.num_patches,
'projection': self.projection,
'position_embedding': self.position_embedding,
})
return config
def one_side_pad(x):
x = ZeroPadding2D((1, 1), data_format=IMAGE_ORDERING)(x)
if IMAGE_ORDERING == 'channels_first':
x = Lambda(lambda x: x[:, :, :-1, :-1])(x)
elif IMAGE_ORDERING == 'channels_last':
x = Lambda(lambda x: x[:, :-1, :-1, :])(x)
return x
def identity_block(input_tensor, kernel_size, filters, stage, block):
"""The identity block is the block that has no conv layer at shortcut.
# Arguments
input_tensor: input tensor
kernel_size: defualt 3, the kernel size of middle conv layer at main path
filters: list of integers, the filterss of 3 conv layer at main path
stage: integer, current stage label, used for generating layer names
block: 'a','b'..., current block label, used for generating layer names
# Returns
Output tensor for the block.
"""
filters1, filters2, filters3 = filters
if IMAGE_ORDERING == 'channels_last':
bn_axis = 3
else:
bn_axis = 1
conv_name_base = 'res' + str(stage) + block + '_branch'
bn_name_base = 'bn' + str(stage) + block + '_branch'
x = Conv2D(filters1, (1, 1), data_format=IMAGE_ORDERING, name=conv_name_base + '2a')(input_tensor)
x = BatchNormalization(axis=bn_axis, name=bn_name_base + '2a')(x)
x = Activation('relu')(x)
x = Conv2D(filters2, kernel_size, data_format=IMAGE_ORDERING,
padding='same', name=conv_name_base + '2b')(x)
x = BatchNormalization(axis=bn_axis, name=bn_name_base + '2b')(x)
x = Activation('relu')(x)
x = Conv2D(filters3, (1, 1), data_format=IMAGE_ORDERING, name=conv_name_base + '2c')(x)
x = BatchNormalization(axis=bn_axis, name=bn_name_base + '2c')(x)
x = layers.add([x, input_tensor])
x = Activation('relu')(x)
return x
def conv_block(input_tensor, kernel_size, filters, stage, block, strides=(2, 2)):
"""conv_block is the block that has a conv layer at shortcut
# Arguments
input_tensor: input tensor
kernel_size: defualt 3, the kernel size of middle conv layer at main path
filters: list of integers, the filterss of 3 conv layer at main path
stage: integer, current stage label, used for generating layer names
block: 'a','b'..., current block label, used for generating layer names
# Returns
Output tensor for the block.
Note that from stage 3, the first conv layer at main path is with strides=(2,2)
And the shortcut should have strides=(2,2) as well
"""
filters1, filters2, filters3 = filters
if IMAGE_ORDERING == 'channels_last':
bn_axis = 3
else:
bn_axis = 1
conv_name_base = 'res' + str(stage) + block + '_branch'
bn_name_base = 'bn' + str(stage) + block + '_branch'
x = Conv2D(filters1, (1, 1), data_format=IMAGE_ORDERING, strides=strides,
name=conv_name_base + '2a')(input_tensor)
x = BatchNormalization(axis=bn_axis, name=bn_name_base + '2a')(x)
x = Activation('relu')(x)
x = Conv2D(filters2, kernel_size, data_format=IMAGE_ORDERING, padding='same',
name=conv_name_base + '2b')(x)
x = BatchNormalization(axis=bn_axis, name=bn_name_base + '2b')(x)
x = Activation('relu')(x)
x = Conv2D(filters3, (1, 1), data_format=IMAGE_ORDERING, name=conv_name_base + '2c')(x)
x = BatchNormalization(axis=bn_axis, name=bn_name_base + '2c')(x)
shortcut = Conv2D(filters3, (1, 1), data_format=IMAGE_ORDERING, strides=strides,
name=conv_name_base + '1')(input_tensor)
shortcut = BatchNormalization(axis=bn_axis, name=bn_name_base + '1')(shortcut)
x = layers.add([x, shortcut])
x = Activation('relu')(x)
return x
def resnet50_unet_light(n_classes, input_height=224, input_width=224, taks="segmentation", weight_decay=1e-6, pretraining=False):
assert input_height % 32 == 0
assert input_width % 32 == 0
img_input = Input(shape=(input_height, input_width, 3))
if IMAGE_ORDERING == 'channels_last':
bn_axis = 3
else:
bn_axis = 1
x = ZeroPadding2D((3, 3), data_format=IMAGE_ORDERING)(img_input)
x = Conv2D(64, (7, 7), data_format=IMAGE_ORDERING, strides=(2, 2), kernel_regularizer=l2(weight_decay),
name='conv1')(x)
f1 = x
x = BatchNormalization(axis=bn_axis, name='bn_conv1')(x)
x = Activation('relu')(x)
x = MaxPooling2D((3, 3), data_format=IMAGE_ORDERING, strides=(2, 2))(x)
x = conv_block(x, 3, [64, 64, 256], stage=2, block='a', strides=(1, 1))
x = identity_block(x, 3, [64, 64, 256], stage=2, block='b')
x = identity_block(x, 3, [64, 64, 256], stage=2, block='c')
f2 = one_side_pad(x)
x = conv_block(x, 3, [128, 128, 512], stage=3, block='a')
x = identity_block(x, 3, [128, 128, 512], stage=3, block='b')
x = identity_block(x, 3, [128, 128, 512], stage=3, block='c')
x = identity_block(x, 3, [128, 128, 512], stage=3, block='d')
f3 = x
x = conv_block(x, 3, [256, 256, 1024], stage=4, block='a')
x = identity_block(x, 3, [256, 256, 1024], stage=4, block='b')
x = identity_block(x, 3, [256, 256, 1024], stage=4, block='c')
x = identity_block(x, 3, [256, 256, 1024], stage=4, block='d')
x = identity_block(x, 3, [256, 256, 1024], stage=4, block='e')
x = identity_block(x, 3, [256, 256, 1024], stage=4, block='f')
f4 = x
x = conv_block(x, 3, [512, 512, 2048], stage=5, block='a')
x = identity_block(x, 3, [512, 512, 2048], stage=5, block='b')
x = identity_block(x, 3, [512, 512, 2048], stage=5, block='c')
f5 = x
if pretraining:
model = Model(img_input, x).load_weights(resnet50_Weights_path)
v512_2048 = Conv2D(512, (1, 1), padding='same', data_format=IMAGE_ORDERING, kernel_regularizer=l2(weight_decay))(f5)
v512_2048 = (BatchNormalization(axis=bn_axis))(v512_2048)
v512_2048 = Activation('relu')(v512_2048)
v512_1024 = Conv2D(512, (1, 1), padding='same', data_format=IMAGE_ORDERING, kernel_regularizer=l2(weight_decay))(f4)
v512_1024 = (BatchNormalization(axis=bn_axis))(v512_1024)
v512_1024 = Activation('relu')(v512_1024)
o = (UpSampling2D((2, 2), data_format=IMAGE_ORDERING))(v512_2048)
o = (concatenate([o, v512_1024], axis=MERGE_AXIS))
o = (ZeroPadding2D((1, 1), data_format=IMAGE_ORDERING))(o)
o = (Conv2D(512, (3, 3), padding='valid', data_format=IMAGE_ORDERING, kernel_regularizer=l2(weight_decay)))(o)
o = (BatchNormalization(axis=bn_axis))(o)
o = Activation('relu')(o)
o = (UpSampling2D((2, 2), data_format=IMAGE_ORDERING))(o)
o = (concatenate([o, f3], axis=MERGE_AXIS))
o = (ZeroPadding2D((1, 1), data_format=IMAGE_ORDERING))(o)
o = (Conv2D(256, (3, 3), padding='valid', data_format=IMAGE_ORDERING, kernel_regularizer=l2(weight_decay)))(o)
o = (BatchNormalization(axis=bn_axis))(o)
o = Activation('relu')(o)
o = (UpSampling2D((2, 2), data_format=IMAGE_ORDERING))(o)
o = (concatenate([o, f2], axis=MERGE_AXIS))
o = (ZeroPadding2D((1, 1), data_format=IMAGE_ORDERING))(o)
o = (Conv2D(128, (3, 3), padding='valid', data_format=IMAGE_ORDERING, kernel_regularizer=l2(weight_decay)))(o)
o = (BatchNormalization(axis=bn_axis))(o)
o = Activation('relu')(o)
o = (UpSampling2D((2, 2), data_format=IMAGE_ORDERING))(o)
o = (concatenate([o, f1], axis=MERGE_AXIS))
o = (ZeroPadding2D((1, 1), data_format=IMAGE_ORDERING))(o)
o = (Conv2D(64, (3, 3), padding='valid', data_format=IMAGE_ORDERING, kernel_regularizer=l2(weight_decay)))(o)
o = (BatchNormalization(axis=bn_axis))(o)
o = Activation('relu')(o)
o = (UpSampling2D((2, 2), data_format=IMAGE_ORDERING))(o)
o = (concatenate([o, img_input], axis=MERGE_AXIS))
o = (ZeroPadding2D((1, 1), data_format=IMAGE_ORDERING))(o)
o = (Conv2D(32, (3, 3), padding='valid', data_format=IMAGE_ORDERING, kernel_regularizer=l2(weight_decay)))(o)
o = (BatchNormalization(axis=bn_axis))(o)
o = Activation('relu')(o)
o = Conv2D(n_classes, (1, 1), padding='same', data_format=IMAGE_ORDERING, kernel_regularizer=l2(weight_decay))(o)
if task == "segmentation":
o = (BatchNormalization(axis=bn_axis))(o)
o = (Activation('softmax'))(o)
else:
o = (Activation('sigmoid'))(o)
model = Model(img_input, o)
return model
def resnet50_unet(n_classes, input_height=224, input_width=224, task="segmentation", weight_decay=1e-6, pretraining=False):
assert input_height % 32 == 0
assert input_width % 32 == 0
img_input = Input(shape=(input_height, input_width, 3))
if IMAGE_ORDERING == 'channels_last':
bn_axis = 3
else:
bn_axis = 1
x = ZeroPadding2D((3, 3), data_format=IMAGE_ORDERING)(img_input)
x = Conv2D(64, (7, 7), data_format=IMAGE_ORDERING, strides=(2, 2), kernel_regularizer=l2(weight_decay),
name='conv1')(x)
f1 = x
x = BatchNormalization(axis=bn_axis, name='bn_conv1')(x)
x = Activation('relu')(x)
x = MaxPooling2D((3, 3), data_format=IMAGE_ORDERING, strides=(2, 2))(x)
x = conv_block(x, 3, [64, 64, 256], stage=2, block='a', strides=(1, 1))
x = identity_block(x, 3, [64, 64, 256], stage=2, block='b')
x = identity_block(x, 3, [64, 64, 256], stage=2, block='c')
f2 = one_side_pad(x)
x = conv_block(x, 3, [128, 128, 512], stage=3, block='a')
x = identity_block(x, 3, [128, 128, 512], stage=3, block='b')
x = identity_block(x, 3, [128, 128, 512], stage=3, block='c')
x = identity_block(x, 3, [128, 128, 512], stage=3, block='d')
f3 = x
x = conv_block(x, 3, [256, 256, 1024], stage=4, block='a')
x = identity_block(x, 3, [256, 256, 1024], stage=4, block='b')
x = identity_block(x, 3, [256, 256, 1024], stage=4, block='c')
x = identity_block(x, 3, [256, 256, 1024], stage=4, block='d')
x = identity_block(x, 3, [256, 256, 1024], stage=4, block='e')
x = identity_block(x, 3, [256, 256, 1024], stage=4, block='f')
f4 = x
x = conv_block(x, 3, [512, 512, 2048], stage=5, block='a')
x = identity_block(x, 3, [512, 512, 2048], stage=5, block='b')
x = identity_block(x, 3, [512, 512, 2048], stage=5, block='c')
f5 = x
if pretraining:
Model(img_input, x).load_weights(resnet50_Weights_path)
v1024_2048 = Conv2D(1024, (1, 1), padding='same', data_format=IMAGE_ORDERING, kernel_regularizer=l2(weight_decay))(
f5)
v1024_2048 = (BatchNormalization(axis=bn_axis))(v1024_2048)
v1024_2048 = Activation('relu')(v1024_2048)
o = (UpSampling2D((2, 2), data_format=IMAGE_ORDERING))(v1024_2048)
o = (concatenate([o, f4], axis=MERGE_AXIS))
o = (ZeroPadding2D((1, 1), data_format=IMAGE_ORDERING))(o)
o = (Conv2D(512, (3, 3), padding='valid', data_format=IMAGE_ORDERING, kernel_regularizer=l2(weight_decay)))(o)
o = (BatchNormalization(axis=bn_axis))(o)
o = Activation('relu')(o)
o = (UpSampling2D((2, 2), data_format=IMAGE_ORDERING))(o)
o = (concatenate([o, f3], axis=MERGE_AXIS))
o = (ZeroPadding2D((1, 1), data_format=IMAGE_ORDERING))(o)
o = (Conv2D(256, (3, 3), padding='valid', data_format=IMAGE_ORDERING, kernel_regularizer=l2(weight_decay)))(o)
o = (BatchNormalization(axis=bn_axis))(o)
o = Activation('relu')(o)
o = (UpSampling2D((2, 2), data_format=IMAGE_ORDERING))(o)
o = (concatenate([o, f2], axis=MERGE_AXIS))
o = (ZeroPadding2D((1, 1), data_format=IMAGE_ORDERING))(o)
o = (Conv2D(128, (3, 3), padding='valid', data_format=IMAGE_ORDERING, kernel_regularizer=l2(weight_decay)))(o)
o = (BatchNormalization(axis=bn_axis))(o)
o = Activation('relu')(o)
o = (UpSampling2D((2, 2), data_format=IMAGE_ORDERING))(o)
o = (concatenate([o, f1], axis=MERGE_AXIS))
o = (ZeroPadding2D((1, 1), data_format=IMAGE_ORDERING))(o)
o = (Conv2D(64, (3, 3), padding='valid', data_format=IMAGE_ORDERING, kernel_regularizer=l2(weight_decay)))(o)
o = (BatchNormalization(axis=bn_axis))(o)
o = Activation('relu')(o)
o = (UpSampling2D((2, 2), data_format=IMAGE_ORDERING))(o)
o = (concatenate([o, img_input], axis=MERGE_AXIS))
o = (ZeroPadding2D((1, 1), data_format=IMAGE_ORDERING))(o)
o = (Conv2D(32, (3, 3), padding='valid', data_format=IMAGE_ORDERING, kernel_regularizer=l2(weight_decay)))(o)
o = (BatchNormalization(axis=bn_axis))(o)
o = Activation('relu')(o)
o = Conv2D(n_classes, (1, 1), padding='same', data_format=IMAGE_ORDERING, kernel_regularizer=l2(weight_decay))(o)
if task == "segmentation":
o = (BatchNormalization(axis=bn_axis))(o)
o = (Activation('softmax'))(o)
else:
o = (Activation('sigmoid'))(o)
model = Model(img_input, o)
return model
def vit_resnet50_unet(n_classes, patch_size_x, patch_size_y, num_patches, mlp_head_units=[128, 64], transformer_layers=8, num_heads =4, projection_dim = 64, input_height=224, input_width=224, task="segmentation", weight_decay=1e-6, pretraining=False):
inputs = layers.Input(shape=(input_height, input_width, 3))
#transformer_units = [
#projection_dim * 2,
#projection_dim,
#] # Size of the transformer layers
IMAGE_ORDERING = 'channels_last'
bn_axis=3
x = ZeroPadding2D((3, 3), data_format=IMAGE_ORDERING)(inputs)
x = Conv2D(64, (7, 7), data_format=IMAGE_ORDERING, strides=(2, 2),kernel_regularizer=l2(weight_decay), name='conv1')(x)
f1 = x
x = BatchNormalization(axis=bn_axis, name='bn_conv1')(x)
x = Activation('relu')(x)
x = MaxPooling2D((3, 3), data_format=IMAGE_ORDERING, strides=(2, 2))(x)
x = conv_block(x, 3, [64, 64, 256], stage=2, block='a', strides=(1, 1))
x = identity_block(x, 3, [64, 64, 256], stage=2, block='b')
x = identity_block(x, 3, [64, 64, 256], stage=2, block='c')
f2 = one_side_pad(x)
x = conv_block(x, 3, [128, 128, 512], stage=3, block='a')
x = identity_block(x, 3, [128, 128, 512], stage=3, block='b')
x = identity_block(x, 3, [128, 128, 512], stage=3, block='c')
x = identity_block(x, 3, [128, 128, 512], stage=3, block='d')
f3 = x
x = conv_block(x, 3, [256, 256, 1024], stage=4, block='a')
x = identity_block(x, 3, [256, 256, 1024], stage=4, block='b')
x = identity_block(x, 3, [256, 256, 1024], stage=4, block='c')
x = identity_block(x, 3, [256, 256, 1024], stage=4, block='d')
x = identity_block(x, 3, [256, 256, 1024], stage=4, block='e')
x = identity_block(x, 3, [256, 256, 1024], stage=4, block='f')
f4 = x
x = conv_block(x, 3, [512, 512, 2048], stage=5, block='a')
x = identity_block(x, 3, [512, 512, 2048], stage=5, block='b')
x = identity_block(x, 3, [512, 512, 2048], stage=5, block='c')
f5 = x
if pretraining:
model = Model(inputs, x).load_weights(resnet50_Weights_path)
#num_patches = x.shape[1]*x.shape[2]
#patch_size_y = input_height / x.shape[1]
#patch_size_x = input_width / x.shape[2]
#patch_size = patch_size_x * patch_size_y
patches = Patches(patch_size_x, patch_size_y)(x)
# Encode patches.
encoded_patches = PatchEncoder(num_patches, projection_dim)(patches)
for _ in range(transformer_layers):
# Layer normalization 1.
x1 = layers.LayerNormalization(epsilon=1e-6)(encoded_patches)
# Create a multi-head attention layer.
attention_output = layers.MultiHeadAttention(
num_heads=num_heads, key_dim=projection_dim, dropout=0.1
)(x1, x1)
# Skip connection 1.
x2 = layers.Add()([attention_output, encoded_patches])
# Layer normalization 2.
x3 = layers.LayerNormalization(epsilon=1e-6)(x2)
# MLP.
x3 = mlp(x3, hidden_units=mlp_head_units, dropout_rate=0.1)
# Skip connection 2.
encoded_patches = layers.Add()([x3, x2])
encoded_patches = tf.reshape(encoded_patches, [-1, x.shape[1], x.shape[2] , int( projection_dim / (patch_size_x * patch_size_y) )])
v1024_2048 = Conv2D( 1024 , (1, 1), padding='same', data_format=IMAGE_ORDERING,kernel_regularizer=l2(weight_decay))(encoded_patches)
v1024_2048 = (BatchNormalization(axis=bn_axis))(v1024_2048)
v1024_2048 = Activation('relu')(v1024_2048)
o = (UpSampling2D( (2, 2), data_format=IMAGE_ORDERING))(v1024_2048)
o = (concatenate([o, f4],axis=MERGE_AXIS))
o = (ZeroPadding2D((1, 1), data_format=IMAGE_ORDERING))(o)
o = (Conv2D(512, (3, 3), padding='valid', data_format=IMAGE_ORDERING,kernel_regularizer=l2(weight_decay)))(o)
o = (BatchNormalization(axis=bn_axis))(o)
o = Activation('relu')(o)
o = (UpSampling2D((2, 2), data_format=IMAGE_ORDERING))(o)
o = (concatenate([o ,f3], axis=MERGE_AXIS))
o = (ZeroPadding2D((1, 1), data_format=IMAGE_ORDERING))(o)
o = (Conv2D(256, (3, 3), padding='valid', data_format=IMAGE_ORDERING,kernel_regularizer=l2(weight_decay)))(o)
o = (BatchNormalization(axis=bn_axis))(o)
o = Activation('relu')(o)
o = (UpSampling2D((2, 2), data_format=IMAGE_ORDERING))(o)
o = (concatenate([o, f2], axis=MERGE_AXIS))
o = (ZeroPadding2D((1, 1), data_format=IMAGE_ORDERING))(o)
o = (Conv2D(128, (3, 3), padding='valid', data_format=IMAGE_ORDERING,kernel_regularizer=l2(weight_decay)))(o)
o = (BatchNormalization(axis=bn_axis))(o)
o = Activation('relu')(o)
o = (UpSampling2D((2, 2), data_format=IMAGE_ORDERING))(o)
o = (concatenate([o, f1], axis=MERGE_AXIS))
o = (ZeroPadding2D((1, 1), data_format=IMAGE_ORDERING))(o)
o = (Conv2D(64, (3, 3), padding='valid', data_format=IMAGE_ORDERING,kernel_regularizer=l2(weight_decay)))(o)
o = (BatchNormalization(axis=bn_axis))(o)
o = Activation('relu')(o)
o = (UpSampling2D((2, 2), data_format=IMAGE_ORDERING))(o)
o = (concatenate([o, inputs],axis=MERGE_AXIS))
o = (ZeroPadding2D((1, 1), data_format=IMAGE_ORDERING))(o)
o = (Conv2D(32, (3, 3), padding='valid', data_format=IMAGE_ORDERING,kernel_regularizer=l2(weight_decay)))(o)
o = (BatchNormalization(axis=bn_axis))(o)
o = Activation('relu')(o)
o = Conv2D(n_classes, (1, 1), padding='same', data_format=IMAGE_ORDERING,kernel_regularizer=l2(weight_decay))(o)
if task == "segmentation":
o = (BatchNormalization(axis=bn_axis))(o)
o = (Activation('softmax'))(o)
else:
o = (Activation('sigmoid'))(o)
model = Model(inputs=inputs, outputs=o)
return model
def vit_resnet50_unet_transformer_before_cnn(n_classes, patch_size_x, patch_size_y, num_patches, mlp_head_units=[128, 64], transformer_layers=8, num_heads =4, projection_dim = 64, input_height=224, input_width=224, task="segmentation", weight_decay=1e-6, pretraining=False):
inputs = layers.Input(shape=(input_height, input_width, 3))
##transformer_units = [
##projection_dim * 2,
##projection_dim,
##] # Size of the transformer layers
IMAGE_ORDERING = 'channels_last'
bn_axis=3
patches = Patches(patch_size_x, patch_size_y)(inputs)
# Encode patches.
encoded_patches = PatchEncoder(num_patches, projection_dim)(patches)
for _ in range(transformer_layers):
# Layer normalization 1.
x1 = layers.LayerNormalization(epsilon=1e-6)(encoded_patches)
# Create a multi-head attention layer.
attention_output = layers.MultiHeadAttention(
num_heads=num_heads, key_dim=projection_dim, dropout=0.1
)(x1, x1)
# Skip connection 1.
x2 = layers.Add()([attention_output, encoded_patches])
# Layer normalization 2.
x3 = layers.LayerNormalization(epsilon=1e-6)(x2)
# MLP.
x3 = mlp(x3, hidden_units=mlp_head_units, dropout_rate=0.1)
# Skip connection 2.
encoded_patches = layers.Add()([x3, x2])
encoded_patches = tf.reshape(encoded_patches, [-1, input_height, input_width , int( projection_dim / (patch_size_x * patch_size_y) )])
encoded_patches = Conv2D(3, (1, 1), padding='same', data_format=IMAGE_ORDERING, kernel_regularizer=l2(weight_decay), name='convinput')(encoded_patches)
x = ZeroPadding2D((3, 3), data_format=IMAGE_ORDERING)(encoded_patches)
x = Conv2D(64, (7, 7), data_format=IMAGE_ORDERING, strides=(2, 2),kernel_regularizer=l2(weight_decay), name='conv1')(x)
f1 = x
x = BatchNormalization(axis=bn_axis, name='bn_conv1')(x)
x = Activation('relu')(x)
x = MaxPooling2D((3, 3), data_format=IMAGE_ORDERING, strides=(2, 2))(x)
x = conv_block(x, 3, [64, 64, 256], stage=2, block='a', strides=(1, 1))
x = identity_block(x, 3, [64, 64, 256], stage=2, block='b')
x = identity_block(x, 3, [64, 64, 256], stage=2, block='c')
f2 = one_side_pad(x)
x = conv_block(x, 3, [128, 128, 512], stage=3, block='a')
x = identity_block(x, 3, [128, 128, 512], stage=3, block='b')
x = identity_block(x, 3, [128, 128, 512], stage=3, block='c')
x = identity_block(x, 3, [128, 128, 512], stage=3, block='d')
f3 = x
x = conv_block(x, 3, [256, 256, 1024], stage=4, block='a')
x = identity_block(x, 3, [256, 256, 1024], stage=4, block='b')
x = identity_block(x, 3, [256, 256, 1024], stage=4, block='c')
x = identity_block(x, 3, [256, 256, 1024], stage=4, block='d')
x = identity_block(x, 3, [256, 256, 1024], stage=4, block='e')
x = identity_block(x, 3, [256, 256, 1024], stage=4, block='f')
f4 = x
x = conv_block(x, 3, [512, 512, 2048], stage=5, block='a')
x = identity_block(x, 3, [512, 512, 2048], stage=5, block='b')
x = identity_block(x, 3, [512, 512, 2048], stage=5, block='c')
f5 = x
if pretraining:
model = Model(encoded_patches, x).load_weights(resnet50_Weights_path)
v1024_2048 = Conv2D( 1024 , (1, 1), padding='same', data_format=IMAGE_ORDERING,kernel_regularizer=l2(weight_decay))(x)
v1024_2048 = (BatchNormalization(axis=bn_axis))(v1024_2048)
v1024_2048 = Activation('relu')(v1024_2048)
o = (UpSampling2D( (2, 2), data_format=IMAGE_ORDERING))(v1024_2048)
o = (concatenate([o, f4],axis=MERGE_AXIS))
o = (ZeroPadding2D((1, 1), data_format=IMAGE_ORDERING))(o)
o = (Conv2D(512, (3, 3), padding='valid', data_format=IMAGE_ORDERING,kernel_regularizer=l2(weight_decay)))(o)
o = (BatchNormalization(axis=bn_axis))(o)
o = Activation('relu')(o)
o = (UpSampling2D((2, 2), data_format=IMAGE_ORDERING))(o)
o = (concatenate([o ,f3], axis=MERGE_AXIS))
o = (ZeroPadding2D((1, 1), data_format=IMAGE_ORDERING))(o)
o = (Conv2D(256, (3, 3), padding='valid', data_format=IMAGE_ORDERING,kernel_regularizer=l2(weight_decay)))(o)
o = (BatchNormalization(axis=bn_axis))(o)
o = Activation('relu')(o)
o = (UpSampling2D((2, 2), data_format=IMAGE_ORDERING))(o)
o = (concatenate([o, f2], axis=MERGE_AXIS))
o = (ZeroPadding2D((1, 1), data_format=IMAGE_ORDERING))(o)
o = (Conv2D(128, (3, 3), padding='valid', data_format=IMAGE_ORDERING,kernel_regularizer=l2(weight_decay)))(o)
o = (BatchNormalization(axis=bn_axis))(o)
o = Activation('relu')(o)
o = (UpSampling2D((2, 2), data_format=IMAGE_ORDERING))(o)
o = (concatenate([o, f1], axis=MERGE_AXIS))
o = (ZeroPadding2D((1, 1), data_format=IMAGE_ORDERING))(o)
o = (Conv2D(64, (3, 3), padding='valid', data_format=IMAGE_ORDERING,kernel_regularizer=l2(weight_decay)))(o)
o = (BatchNormalization(axis=bn_axis))(o)
o = Activation('relu')(o)
o = (UpSampling2D((2, 2), data_format=IMAGE_ORDERING))(o)
o = (concatenate([o, inputs],axis=MERGE_AXIS))
o = (ZeroPadding2D((1, 1), data_format=IMAGE_ORDERING))(o)
o = (Conv2D(32, (3, 3), padding='valid', data_format=IMAGE_ORDERING,kernel_regularizer=l2(weight_decay)))(o)
o = (BatchNormalization(axis=bn_axis))(o)
o = Activation('relu')(o)
o = Conv2D(n_classes, (1, 1), padding='same', data_format=IMAGE_ORDERING,kernel_regularizer=l2(weight_decay))(o)
if task == "segmentation":
o = (BatchNormalization(axis=bn_axis))(o)
o = (Activation('softmax'))(o)
else:
o = (Activation('sigmoid'))(o)
model = Model(inputs=inputs, outputs=o)
return model
def resnet50_classifier(n_classes,input_height=224,input_width=224,weight_decay=1e-6,pretraining=False):
include_top=True
assert input_height%32 == 0
assert input_width%32 == 0
img_input = Input(shape=(input_height,input_width , 3 ))
if IMAGE_ORDERING == 'channels_last':
bn_axis = 3
else:
bn_axis = 1
x = ZeroPadding2D((3, 3), data_format=IMAGE_ORDERING)(img_input)
x = Conv2D(64, (7, 7), data_format=IMAGE_ORDERING, strides=(2, 2),kernel_regularizer=l2(weight_decay), name='conv1')(x)
f1 = x
x = BatchNormalization(axis=bn_axis, name='bn_conv1')(x)
x = Activation('relu')(x)
x = MaxPooling2D((3, 3) , data_format=IMAGE_ORDERING , strides=(2, 2))(x)
x = conv_block(x, 3, [64, 64, 256], stage=2, block='a', strides=(1, 1))
x = identity_block(x, 3, [64, 64, 256], stage=2, block='b')
x = identity_block(x, 3, [64, 64, 256], stage=2, block='c')
f2 = one_side_pad(x )
x = conv_block(x, 3, [128, 128, 512], stage=3, block='a')
x = identity_block(x, 3, [128, 128, 512], stage=3, block='b')
x = identity_block(x, 3, [128, 128, 512], stage=3, block='c')
x = identity_block(x, 3, [128, 128, 512], stage=3, block='d')
f3 = x
x = conv_block(x, 3, [256, 256, 1024], stage=4, block='a')
x = identity_block(x, 3, [256, 256, 1024], stage=4, block='b')
x = identity_block(x, 3, [256, 256, 1024], stage=4, block='c')
x = identity_block(x, 3, [256, 256, 1024], stage=4, block='d')
x = identity_block(x, 3, [256, 256, 1024], stage=4, block='e')
x = identity_block(x, 3, [256, 256, 1024], stage=4, block='f')
f4 = x
x = conv_block(x, 3, [512, 512, 2048], stage=5, block='a')
x = identity_block(x, 3, [512, 512, 2048], stage=5, block='b')
x = identity_block(x, 3, [512, 512, 2048], stage=5, block='c')
f5 = x
if pretraining:
Model(img_input, x).load_weights(resnet50_Weights_path)
x = AveragePooling2D((7, 7), name='avg_pool')(x)
x = Flatten()(x)
##
x = Dense(256, activation='relu', name='fc512')(x)
x=Dropout(0.2)(x)
##
x = Dense(n_classes, activation='softmax', name='fc1000')(x)
model = Model(img_input, x)
return model
def machine_based_reading_order_model(n_classes,input_height=224,input_width=224,weight_decay=1e-6,pretraining=False):
assert input_height%32 == 0
assert input_width%32 == 0
img_input = Input(shape=(input_height,input_width , 3 ))
if IMAGE_ORDERING == 'channels_last':
bn_axis = 3
else:
bn_axis = 1
x1 = ZeroPadding2D((3, 3), data_format=IMAGE_ORDERING)(img_input)
x1 = Conv2D(64, (7, 7), data_format=IMAGE_ORDERING, strides=(2, 2),kernel_regularizer=l2(weight_decay), name='conv1')(x1)
x1 = BatchNormalization(axis=bn_axis, name='bn_conv1')(x1)
x1 = Activation('relu')(x1)
x1 = MaxPooling2D((3, 3) , data_format=IMAGE_ORDERING , strides=(2, 2))(x1)
x1 = conv_block(x1, 3, [64, 64, 256], stage=2, block='a', strides=(1, 1))
x1 = identity_block(x1, 3, [64, 64, 256], stage=2, block='b')
x1 = identity_block(x1, 3, [64, 64, 256], stage=2, block='c')
x1 = conv_block(x1, 3, [128, 128, 512], stage=3, block='a')
x1 = identity_block(x1, 3, [128, 128, 512], stage=3, block='b')
x1 = identity_block(x1, 3, [128, 128, 512], stage=3, block='c')
x1 = identity_block(x1, 3, [128, 128, 512], stage=3, block='d')
x1 = conv_block(x1, 3, [256, 256, 1024], stage=4, block='a')
x1 = identity_block(x1, 3, [256, 256, 1024], stage=4, block='b')
x1 = identity_block(x1, 3, [256, 256, 1024], stage=4, block='c')
x1 = identity_block(x1, 3, [256, 256, 1024], stage=4, block='d')
x1 = identity_block(x1, 3, [256, 256, 1024], stage=4, block='e')
x1 = identity_block(x1, 3, [256, 256, 1024], stage=4, block='f')
x1 = conv_block(x1, 3, [512, 512, 2048], stage=5, block='a')
x1 = identity_block(x1, 3, [512, 512, 2048], stage=5, block='b')
x1 = identity_block(x1, 3, [512, 512, 2048], stage=5, block='c')
if pretraining:
Model(img_input , x1).load_weights(resnet50_Weights_path)
x1 = AveragePooling2D((7, 7), name='avg_pool1')(x1)
flattened = Flatten()(x1)
o = Dense(256, activation='relu', name='fc512')(flattened)
o=Dropout(0.2)(o)
o = Dense(256, activation='relu', name='fc512a')(o)
o=Dropout(0.2)(o)
o = Dense(n_classes, activation='sigmoid', name='fc1000')(o)
model = Model(img_input , o)
return model

11
train/requirements.txt Normal file
View file

@ -0,0 +1,11 @@
tensorflow == 2.12.1
sacred
opencv-python-headless
seaborn
tqdm
imutils
numpy
scipy
scikit-learn
shapely
click

View file

@ -0,0 +1,3 @@
{
"scales" : [ 0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9]
}

576
train/train.md Normal file
View file

@ -0,0 +1,576 @@
# Documentation for Training Models
This repository assists users in preparing training datasets, training models, and performing inference with trained models. We cover various use cases including pixel-wise segmentation, image classification, image enhancement, and machine-based reading order. For each use case, we provide guidance on how to generate the corresponding training dataset.
All these use cases are now utilized in the Eynollah workflow.
As mentioned, the following three tasks can be accomplished using this repository:
* Generate training dataset
* Train a model
* Inference with the trained model
## Generate training dataset
The script generate_gt_for_training.py is used for generating training datasets. As the results of the following command demonstrate, the dataset generator provides three different commands:
`python generate_gt_for_training.py --help`
These three commands are:
* image-enhancement
* machine-based-reading-order
* pagexml2label
### image-enhancement
Generating a training dataset for image enhancement is quite straightforward. All that is needed is a set of high-resolution images. The training dataset can then be generated using the following command:
`python generate_gt_for_training.py image-enhancement -dis "dir of high resolution images" -dois "dir where degraded images will be written" -dols "dir where the corresponding high resolution image will be written as label" -scs "degrading scales json file"`
The scales JSON file is a dictionary with a key named 'scales' and values representing scales smaller than 1. Images are downscaled based on these scales and then upscaled again to their original size. This process causes the images to lose resolution at different scales. The degraded images are used as input images, and the original high-resolution images serve as labels. The enhancement model can be trained with this generated dataset. The scales JSON file looks like this:
```yaml
{
"scales": [0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9]
}
```
### machine-based-reading-order
For machine-based reading order, we aim to determine the reading priority between two sets of text regions. The model's input is a three-channel image: the first and last channels contain information about each of the two text regions, while the middle channel encodes prominent layout elements necessary for reading order, such as separators and headers. To generate the training dataset, our script requires a page XML file that specifies the image layout with the correct reading order.
For output images, it is necessary to specify the width and height. Additionally, a minimum text region size can be set to filter out regions smaller than this minimum size. This minimum size is defined as the ratio of the text region area to the image area, with a default value of zero. To run the dataset generator, use the following command:
`python generate_gt_for_training.py machine-based-reading-order -dx "dir of GT xml files" -domi "dir where output images will be written" -docl "dir where the labels will be written" -ih "height" -iw "width" -min "min area ratio"`
### pagexml2label
pagexml2label is designed to generate labels from GT page XML files for various pixel-wise segmentation use cases, including 'layout,' 'textline,' 'printspace,' 'glyph,' and 'word' segmentation.
To train a pixel-wise segmentation model, we require images along with their corresponding labels. Our training script expects a PNG image where each pixel corresponds to a label, represented by an integer. The background is always labeled as zero, while other elements are assigned different integers. For instance, if we have ground truth data with four elements including the background, the classes would be labeled as 0, 1, 2, and 3 respectively.
In binary segmentation scenarios such as textline or page extraction, the background is encoded as 0, and the desired element is automatically encoded as 1 in the PNG label.
To specify the desired use case and the elements to be extracted in the PNG labels, a custom JSON file can be passed. For example, in the case of 'textline' detection, the JSON file would resemble this:
```yaml
{
"use_case": "textline"
}
```
In the case of layout segmentation a possible custom config json file can be like this:
```yaml
{
"use_case": "layout",
"textregions":{"rest_as_paragraph":1 , "drop-capital": 1, "header":2, "heading":2, "marginalia":3},
"imageregion":4,
"separatorregion":5,
"graphicregions" :{"rest_as_decoration":6 ,"stamp":7}
}
```
A possible custom config json file for layout segmentation where the "printspace" is wished to be a class:
```yaml
{
"use_case": "layout",
"textregions":{"rest_as_paragraph":1 , "drop-capital": 1, "header":2, "heading":2, "marginalia":3},
"imageregion":4,
"separatorregion":5,
"graphicregions" :{"rest_as_decoration":6 ,"stamp":7}
"printspace_as_class_in_layout" : 8
}
```
For the layout use case, it is beneficial to first understand the structure of the page XML file and its elements. In a given image, the annotations of elements are recorded in a page XML file, including their contours and classes. For an image document, the known regions are 'textregion', 'separatorregion', 'imageregion', 'graphicregion', 'noiseregion', and 'tableregion'.
Text regions and graphic regions also have their own specific types. The known types for us for text regions are 'paragraph', 'header', 'heading', 'marginalia', 'drop-capital', 'footnote', 'footnote-continued', 'signature-mark', 'page-number', and 'catch-word'. The known types for graphic regions are 'handwritten-annotation', 'decoration', 'stamp', and 'signature'.
Since we don't know all types of text and graphic regions, unknown cases can arise. To handle these, we have defined two additional types: "rest_as_paragraph" and "rest_as_decoration" to ensure that no unknown types are missed. This way, users can extract all known types from the labels and be confident that no unknown types are overlooked.
In the custom JSON file shown above, "header" and "heading" are extracted as the same class, while "marginalia" is shown as a different class. All other text region types, including "drop-capital," are grouped into the same class. For the graphic region, "stamp" has its own class, while all other types are classified together. "Image region" and "separator region" are also present in the label. However, other regions like "noise region" and "table region" will not be included in the label PNG file, even if they have information in the page XML files, as we chose not to include them.
`python generate_gt_for_training.py pagexml2label -dx "dir of GT xml files" -do "dir where output label png files will be written" -cfg "custom config json file" -to "output type which has 2d and 3d. 2d is used for training and 3d is just to visualise the labels" "`
We have also defined an artificial class that can be added to the boundary of text region types or text lines. This key is called "artificial_class_on_boundary." If users want to apply this to certain text regions in the layout use case, the example JSON config file should look like this:
```yaml
{
"use_case": "layout",
"textregions": {
"paragraph": 1,
"drop-capital": 1,
"header": 2,
"heading": 2,
"marginalia": 3
},
"imageregion": 4,
"separatorregion": 5,
"graphicregions": {
"rest_as_decoration": 6
},
"artificial_class_on_boundary": ["paragraph", "header", "heading", "marginalia"],
"artificial_class_label": 7
}
```
This implies that the artificial class label, denoted by 7, will be present on PNG files and will only be added to the elements labeled as "paragraph," "header," "heading," and "marginalia."
For "textline," "word," and "glyph," the artificial class on the boundaries will be activated only if the "artificial_class_label" key is specified in the config file. Its value should be set as 2 since these elements represent binary cases. For example, if the background and textline are denoted as 0 and 1 respectively, then the artificial class should be assigned the value 2. The example JSON config file should look like this for "textline" use case:
```yaml
{
"use_case": "textline",
"artificial_class_label": 2
}
```
If the coordinates of "PrintSpace" or "Border" are present in the page XML ground truth files, and the user wishes to crop only the print space area, this can be achieved by activating the "-ps" argument. However, it should be noted that in this scenario, since cropping will be applied to the label files, the directory of the original images must be provided to ensure that they are cropped in sync with the labels. This ensures that the correct images and labels required for training are obtained. The command should resemble the following:
`python generate_gt_for_training.py pagexml2label -dx "dir of GT xml files" -do "dir where output label png files will be written" -cfg "custom config json file" -to "output type which has 2d and 3d. 2d is used for training and 3d is just to visualise the labels" -ps -di "dir where the org images are located" -doi "dir where the cropped output images will be written" `
## Train a model
### classification
For the classification use case, we haven't provided a ground truth generator, as it's unnecessary. For classification, all we require is a training directory with subdirectories, each containing images of its respective classes. We need separate directories for training and evaluation, and the class names (subdirectories) must be consistent across both directories. Additionally, the class names should be specified in the config JSON file, as shown in the following example. If, for instance, we aim to classify "apple" and "orange," with a total of 2 classes, the "classification_classes_name" key in the config file should appear as follows:
```yaml
{
"backbone_type" : "nontransformer",
"task": "classification",
"n_classes" : 2,
"n_epochs" : 10,
"input_height" : 448,
"input_width" : 448,
"weight_decay" : 1e-6,
"n_batch" : 4,
"learning_rate": 1e-4,
"f1_threshold_classification": 0.8,
"pretraining" : true,
"classification_classes_name" : {"0":"apple", "1":"orange"},
"dir_train": "./train",
"dir_eval": "./eval",
"dir_output": "./output"
}
```
The "dir_train" should be like this:
```
.
└── train # train directory
├── apple # directory of images for apple class
└── orange # directory of images for orange class
```
And the "dir_eval" the same structure as train directory:
```
.
└── eval # evaluation directory
├── apple # directory of images for apple class
└── orange # directory of images for orange class
```
The classification model can be trained using the following command line:
`python train.py with config_classification.json`
As evident in the example JSON file above, for classification, we utilize a "f1_threshold_classification" parameter. This parameter is employed to gather all models with an evaluation f1 score surpassing this threshold. Subsequently, an ensemble of these model weights is executed, and a model is saved in the output directory as "model_ens_avg". Additionally, the weight of the best model based on the evaluation f1 score is saved as "model_best".
### reading order
An example config json file for machine based reading order should be like this:
```yaml
{
"backbone_type" : "nontransformer",
"task": "reading_order",
"n_classes" : 1,
"n_epochs" : 5,
"input_height" : 672,
"input_width" : 448,
"weight_decay" : 1e-6,
"n_batch" : 4,
"learning_rate": 1e-4,
"pretraining" : true,
"dir_train": "./train",
"dir_eval": "./eval",
"dir_output": "./output"
}
```
The "dir_train" should be like this:
```
.
└── train # train directory
├── images # directory of images
└── labels # directory of labels
```
And the "dir_eval" the same structure as train directory:
```
.
└── eval # evaluation directory
├── images # directory of images
└── labels # directory of labels
```
The classification model can be trained like the classification case command line.
### Segmentation (Textline, Binarization, Page extraction and layout) and enhancement
#### Parameter configuration for segmentation or enhancement usecases
The following parameter configuration can be applied to all segmentation use cases and enhancements. The augmentation, its sub-parameters, and continued training are defined only for segmentation use cases and enhancements, not for classification and machine-based reading order, as you can see in their example config files.
* backbone_type: For segmentation tasks (such as text line, binarization, and layout detection) and enhancement, we offer two backbone options: a "nontransformer" and a "transformer" backbone. For the "transformer" backbone, we first apply a CNN followed by a transformer. In contrast, the "nontransformer" backbone utilizes only a CNN ResNet-50.
* task : The task parameter can have values such as "segmentation", "enhancement", "classification", and "reading_order".
* patches: If you want to break input images into smaller patches (input size of the model) you need to set this parameter to ``true``. In the case that the model should see the image once, like page extraction, patches should be set to ``false``.
* n_batch: Number of batches at each iteration.
* n_classes: Number of classes. In the case of binary classification this should be 2. In the case of reading_order it should set to 1. And for the case of layout detection just the unique number of classes should be given.
* n_epochs: Number of epochs.
* input_height: This indicates the height of model's input.
* input_width: This indicates the width of model's input.
* weight_decay: Weight decay of l2 regularization of model layers.
* pretraining: Set to ``true`` to load pretrained weights of ResNet50 encoder. The downloaded weights should be saved in a folder named "pretrained_model" in the same directory of "train.py" script.
* augmentation: If you want to apply any kind of augmentation this parameter should first set to ``true``.
* flip_aug: If ``true``, different types of filp will be applied on image. Type of flips is given with "flip_index" parameter.
* blur_aug: If ``true``, different types of blurring will be applied on image. Type of blurrings is given with "blur_k" parameter.
* scaling: If ``true``, scaling will be applied on image. Scale of scaling is given with "scales" parameter.
* degrading: If ``true``, degrading will be applied to the image. The amount of degrading is defined with "degrade_scales" parameter.
* brightening: If ``true``, brightening will be applied to the image. The amount of brightening is defined with "brightness" parameter.
* rotation_not_90: If ``true``, rotation (not 90 degree) will be applied on image. Rotation angles are given with "thetha" parameter.
* rotation: If ``true``, 90 degree rotation will be applied on image.
* binarization: If ``true``,Otsu thresholding will be applied to augment the input data with binarized images.
* scaling_bluring: If ``true``, combination of scaling and blurring will be applied on image.
* scaling_binarization: If ``true``, combination of scaling and binarization will be applied on image.
* scaling_flip: If ``true``, combination of scaling and flip will be applied on image.
* flip_index: Type of flips.
* blur_k: Type of blurrings.
* scales: Scales of scaling.
* brightness: The amount of brightenings.
* thetha: Rotation angles.
* degrade_scales: The amount of degradings.
* continue_training: If ``true``, it means that you have already trained a model and you would like to continue the training. So it is needed to provide the dir of trained model with "dir_of_start_model" and index for naming the models. For example if you have already trained for 3 epochs then your last index is 2 and if you want to continue from model_1.h5, you can set ``index_start`` to 3 to start naming model with index 3.
* weighted_loss: If ``true``, this means that you want to apply weighted categorical_crossentropy as loss fucntion. Be carefull if you set to ``true``the parameter "is_loss_soft_dice" should be ``false``
* data_is_provided: If you have already provided the input data you can set this to ``true``. Be sure that the train and eval data are in "dir_output". Since when once we provide training data we resize and augment them and then we write them in sub-directories train and eval in "dir_output".
* dir_train: This is the directory of "images" and "labels" (dir_train should include two subdirectories with names of images and labels ) for raw images and labels. Namely they are not prepared (not resized and not augmented) yet for training the model. When we run this tool these raw data will be transformed to suitable size needed for the model and they will be written in "dir_output" in train and eval directories. Each of train and eval include "images" and "labels" sub-directories.
* index_start: Starting index for saved models in the case that "continue_training" is ``true``.
* dir_of_start_model: Directory containing pretrained model to continue training the model in the case that "continue_training" is ``true``.
* transformer_num_patches_xy: Number of patches for vision transformer in x and y direction respectively.
* transformer_patchsize_x: Patch size of vision transformer patches in x direction.
* transformer_patchsize_y: Patch size of vision transformer patches in y direction.
* transformer_projection_dim: Transformer projection dimension. Default value is 64.
* transformer_mlp_head_units: Transformer Multilayer Perceptron (MLP) head units. Default value is [128, 64].
* transformer_layers: transformer layers. Default value is 8.
* transformer_num_heads: Transformer number of heads. Default value is 4.
* transformer_cnn_first: We have two types of vision transformers. In one type, a CNN is applied first, followed by a transformer. In the other type, this order is reversed. If transformer_cnn_first is true, it means the CNN will be applied before the transformer. Default value is true.
In the case of segmentation and enhancement the train and evaluation directory should be as following.
The "dir_train" should be like this:
```
.
└── train # train directory
├── images # directory of images
└── labels # directory of labels
```
And the "dir_eval" the same structure as train directory:
```
.
└── eval # evaluation directory
├── images # directory of images
└── labels # directory of labels
```
After configuring the JSON file for segmentation or enhancement, training can be initiated by running the following command, similar to the process for classification and reading order:
`python train.py with config_classification.json`
#### Binarization
An example config json file for binarization can be like this:
```yaml
{
"backbone_type" : "transformer",
"task": "binarization",
"n_classes" : 2,
"n_epochs" : 4,
"input_height" : 224,
"input_width" : 672,
"weight_decay" : 1e-6,
"n_batch" : 1,
"learning_rate": 1e-4,
"patches" : true,
"pretraining" : true,
"augmentation" : true,
"flip_aug" : false,
"blur_aug" : false,
"scaling" : true,
"degrading": false,
"brightening": false,
"binarization" : false,
"scaling_bluring" : false,
"scaling_binarization" : false,
"scaling_flip" : false,
"rotation": false,
"rotation_not_90": false,
"transformer_num_patches_xy": [7, 7],
"transformer_patchsize_x": 3,
"transformer_patchsize_y": 1,
"transformer_projection_dim": 192,
"transformer_mlp_head_units": [128, 64],
"transformer_layers": 8,
"transformer_num_heads": 4,
"transformer_cnn_first": true,
"blur_k" : ["blur","guass","median"],
"scales" : [0.6, 0.7, 0.8, 0.9, 1.1, 1.2, 1.4],
"brightness" : [1.3, 1.5, 1.7, 2],
"degrade_scales" : [0.2, 0.4],
"flip_index" : [0, 1, -1],
"thetha" : [10, -10],
"continue_training": false,
"index_start" : 0,
"dir_of_start_model" : " ",
"weighted_loss": false,
"is_loss_soft_dice": false,
"data_is_provided": false,
"dir_train": "./train",
"dir_eval": "./eval",
"dir_output": "./output"
}
```
#### Textline
```yaml
{
"backbone_type" : "nontransformer",
"task": "segmentation",
"n_classes" : 2,
"n_epochs" : 4,
"input_height" : 448,
"input_width" : 224,
"weight_decay" : 1e-6,
"n_batch" : 1,
"learning_rate": 1e-4,
"patches" : true,
"pretraining" : true,
"augmentation" : true,
"flip_aug" : false,
"blur_aug" : false,
"scaling" : true,
"degrading": false,
"brightening": false,
"binarization" : false,
"scaling_bluring" : false,
"scaling_binarization" : false,
"scaling_flip" : false,
"rotation": false,
"rotation_not_90": false,
"blur_k" : ["blur","guass","median"],
"scales" : [0.6, 0.7, 0.8, 0.9, 1.1, 1.2, 1.4],
"brightness" : [1.3, 1.5, 1.7, 2],
"degrade_scales" : [0.2, 0.4],
"flip_index" : [0, 1, -1],
"thetha" : [10, -10],
"continue_training": false,
"index_start" : 0,
"dir_of_start_model" : " ",
"weighted_loss": false,
"is_loss_soft_dice": false,
"data_is_provided": false,
"dir_train": "./train",
"dir_eval": "./eval",
"dir_output": "./output"
}
```
#### Enhancement
```yaml
{
"backbone_type" : "nontransformer",
"task": "enhancement",
"n_classes" : 3,
"n_epochs" : 4,
"input_height" : 448,
"input_width" : 224,
"weight_decay" : 1e-6,
"n_batch" : 4,
"learning_rate": 1e-4,
"patches" : true,
"pretraining" : true,
"augmentation" : true,
"flip_aug" : false,
"blur_aug" : false,
"scaling" : true,
"degrading": false,
"brightening": false,
"binarization" : false,
"scaling_bluring" : false,
"scaling_binarization" : false,
"scaling_flip" : false,
"rotation": false,
"rotation_not_90": false,
"blur_k" : ["blur","guass","median"],
"scales" : [0.6, 0.7, 0.8, 0.9, 1.1, 1.2, 1.4],
"brightness" : [1.3, 1.5, 1.7, 2],
"degrade_scales" : [0.2, 0.4],
"flip_index" : [0, 1, -1],
"thetha" : [10, -10],
"continue_training": false,
"index_start" : 0,
"dir_of_start_model" : " ",
"weighted_loss": false,
"is_loss_soft_dice": false,
"data_is_provided": false,
"dir_train": "./train",
"dir_eval": "./eval",
"dir_output": "./output"
}
```
It's important to mention that the value of n_classes for enhancement should be 3, as the model's output is a 3-channel image.
#### Page extraction
```yaml
{
"backbone_type" : "nontransformer",
"task": "segmentation",
"n_classes" : 2,
"n_epochs" : 4,
"input_height" : 448,
"input_width" : 224,
"weight_decay" : 1e-6,
"n_batch" : 1,
"learning_rate": 1e-4,
"patches" : false,
"pretraining" : true,
"augmentation" : false,
"flip_aug" : false,
"blur_aug" : false,
"scaling" : true,
"degrading": false,
"brightening": false,
"binarization" : false,
"scaling_bluring" : false,
"scaling_binarization" : false,
"scaling_flip" : false,
"rotation": false,
"rotation_not_90": false,
"blur_k" : ["blur","guass","median"],
"scales" : [0.6, 0.7, 0.8, 0.9, 1.1, 1.2, 1.4],
"brightness" : [1.3, 1.5, 1.7, 2],
"degrade_scales" : [0.2, 0.4],
"flip_index" : [0, 1, -1],
"thetha" : [10, -10],
"continue_training": false,
"index_start" : 0,
"dir_of_start_model" : " ",
"weighted_loss": false,
"is_loss_soft_dice": false,
"data_is_provided": false,
"dir_train": "./train",
"dir_eval": "./eval",
"dir_output": "./output"
}
```
For page segmentation (or print space or border segmentation), the model needs to view the input image in its entirety, hence the patches parameter should be set to false.
#### layout segmentation
An example config json file for layout segmentation with 5 classes (including background) can be like this:
```yaml
{
"backbone_type" : "transformer",
"task": "segmentation",
"n_classes" : 5,
"n_epochs" : 4,
"input_height" : 448,
"input_width" : 224,
"weight_decay" : 1e-6,
"n_batch" : 1,
"learning_rate": 1e-4,
"patches" : true,
"pretraining" : true,
"augmentation" : true,
"flip_aug" : false,
"blur_aug" : false,
"scaling" : true,
"degrading": false,
"brightening": false,
"binarization" : false,
"scaling_bluring" : false,
"scaling_binarization" : false,
"scaling_flip" : false,
"rotation": false,
"rotation_not_90": false,
"transformer_num_patches_xy": [7, 14],
"transformer_patchsize_x": 1,
"transformer_patchsize_y": 1,
"transformer_projection_dim": 64,
"transformer_mlp_head_units": [128, 64],
"transformer_layers": 8,
"transformer_num_heads": 4,
"transformer_cnn_first": true,
"blur_k" : ["blur","guass","median"],
"scales" : [0.6, 0.7, 0.8, 0.9, 1.1, 1.2, 1.4],
"brightness" : [1.3, 1.5, 1.7, 2],
"degrade_scales" : [0.2, 0.4],
"flip_index" : [0, 1, -1],
"thetha" : [10, -10],
"continue_training": false,
"index_start" : 0,
"dir_of_start_model" : " ",
"weighted_loss": false,
"is_loss_soft_dice": false,
"data_is_provided": false,
"dir_train": "./train",
"dir_eval": "./eval",
"dir_output": "./output"
}
```
## Inference with the trained model
### classification
For conducting inference with a trained model, you simply need to execute the following command line, specifying the directory of the model and the image on which to perform inference:
`python inference.py -m "model dir" -i "image" `
This will straightforwardly return the class of the image.
### machine based reading order
To infer the reading order using an reading order model, we need a page XML file containing layout information but without the reading order. We simply need to provide the model directory, the XML file, and the output directory. The new XML file with the added reading order will be written to the output directory with the same name. We need to run:
`python inference.py -m "model dir" -xml "page xml file" -o "output dir to write new xml with reading order" `
### Segmentation (Textline, Binarization, Page extraction and layout) and enhancement
For conducting inference with a trained model for segmentation and enhancement you need to run the following command line:
`python inference.py -m "model dir" -i "image" -p -s "output image" `
Note that in the case of page extraction the -p flag is not needed.
For segmentation or binarization tasks, if a ground truth (GT) label is available, the IOU evaluation metric can be calculated for the output. To do this, you need to provide the GT label using the argument -gt.

451
train/train.py Normal file
View file

@ -0,0 +1,451 @@
import os
import sys
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
import tensorflow as tf
from tensorflow.compat.v1.keras.backend import set_session
import warnings
from tensorflow.keras.optimizers import *
from sacred import Experiment
from models import *
from utils import *
from metrics import *
from tensorflow.keras.models import load_model
from tqdm import tqdm
import json
from sklearn.metrics import f1_score
from tensorflow.keras.callbacks import Callback
class SaveWeightsAfterSteps(Callback):
def __init__(self, save_interval, save_path, _config):
super(SaveWeightsAfterSteps, self).__init__()
self.save_interval = save_interval
self.save_path = save_path
self.step_count = 0
self._config = _config
def on_train_batch_end(self, batch, logs=None):
self.step_count += 1
if self.step_count % self.save_interval ==0:
save_file = f"{self.save_path}/model_step_{self.step_count}"
#os.system('mkdir '+save_file)
self.model.save(save_file)
with open(os.path.join(os.path.join(self.save_path, f"model_step_{self.step_count}"),"config.json"), "w") as fp:
json.dump(self._config, fp) # encode dict into JSON
print(f"saved model as steps {self.step_count} to {save_file}")
def configuration():
config = tf.compat.v1.ConfigProto()
config.gpu_options.allow_growth = True
session = tf.compat.v1.Session(config=config)
set_session(session)
def get_dirs_or_files(input_data):
if os.path.isdir(input_data):
image_input, labels_input = os.path.join(input_data, 'images/'), os.path.join(input_data, 'labels/')
# Check if training dir exists
assert os.path.isdir(image_input), "{} is not a directory".format(image_input)
assert os.path.isdir(labels_input), "{} is not a directory".format(labels_input)
return image_input, labels_input
ex = Experiment(save_git_info=False)
@ex.config
def config_params():
n_classes = None # Number of classes. In the case of binary classification this should be 2.
n_epochs = 1 # Number of epochs.
input_height = 224 * 1 # Height of model's input in pixels.
input_width = 224 * 1 # Width of model's input in pixels.
weight_decay = 1e-6 # Weight decay of l2 regularization of model layers.
n_batch = 1 # Number of batches at each iteration.
learning_rate = 1e-4 # Set the learning rate.
patches = False # Divides input image into smaller patches (input size of the model) when set to true. For the model to see the full image, like page extraction, set this to false.
augmentation = False # To apply any kind of augmentation, this parameter must be set to true.
flip_aug = False # If true, different types of flipping will be applied to the image. Types of flips are defined with "flip_index" in config_params.json.
blur_aug = False # If true, different types of blurring will be applied to the image. Types of blur are defined with "blur_k" in config_params.json.
padding_white = False # If true, white padding will be applied to the image.
padding_black = False # If true, black padding will be applied to the image.
scaling = False # If true, scaling will be applied to the image. The amount of scaling is defined with "scales" in config_params.json.
shifting = False
degrading = False # If true, degrading will be applied to the image. The amount of degrading is defined with "degrade_scales" in config_params.json.
brightening = False # If true, brightening will be applied to the image. The amount of brightening is defined with "brightness" in config_params.json.
binarization = False # If true, Otsu thresholding will be applied to augment the input with binarized images.
adding_rgb_background = False
adding_rgb_foreground = False
add_red_textlines = False
channels_shuffling = False
dir_train = None # Directory of training dataset with subdirectories having the names "images" and "labels".
dir_eval = None # Directory of validation dataset with subdirectories having the names "images" and "labels".
dir_output = None # Directory where the output model will be saved.
pretraining = False # Set to true to load pretrained weights of ResNet50 encoder.
scaling_bluring = False # If true, a combination of scaling and blurring will be applied to the image.
scaling_binarization = False # If true, a combination of scaling and binarization will be applied to the image.
rotation = False # If true, a 90 degree rotation will be implemeneted.
rotation_not_90 = False # If true rotation based on provided angles with thetha will be implemeneted.
scaling_brightness = False # If true, a combination of scaling and brightening will be applied to the image.
scaling_flip = False # If true, a combination of scaling and flipping will be applied to the image.
thetha = None # Rotate image by these angles for augmentation.
shuffle_indexes = None
blur_k = None # Blur image for augmentation.
scales = None # Scale patches for augmentation.
degrade_scales = None # Degrade image for augmentation.
brightness = None # Brighten image for augmentation.
flip_index = None # Flip image for augmentation.
continue_training = False # Set to true if you would like to continue training an already trained a model.
transformer_patchsize_x = None # Patch size of vision transformer patches in x direction.
transformer_patchsize_y = None # Patch size of vision transformer patches in y direction.
transformer_num_patches_xy = None # Number of patches for vision transformer in x and y direction respectively.
transformer_projection_dim = 64 # Transformer projection dimension. Default value is 64.
transformer_mlp_head_units = [128, 64] # Transformer Multilayer Perceptron (MLP) head units. Default value is [128, 64]
transformer_layers = 8 # transformer layers. Default value is 8.
transformer_num_heads = 4 # Transformer number of heads. Default value is 4.
transformer_cnn_first = True # We have two types of vision transformers. In one type, a CNN is applied first, followed by a transformer. In the other type, this order is reversed. If transformer_cnn_first is true, it means the CNN will be applied before the transformer. Default value is true.
index_start = 0 # Index of model to continue training from. E.g. if you trained for 3 epochs and last index is 2, to continue from model_1.h5, set "index_start" to 3 to start naming model with index 3.
dir_of_start_model = '' # Directory containing pretrained encoder to continue training the model.
is_loss_soft_dice = False # Use soft dice as loss function. When set to true, "weighted_loss" must be false.
weighted_loss = False # Use weighted categorical cross entropy as loss fucntion. When set to true, "is_loss_soft_dice" must be false.
data_is_provided = False # Only set this to true when you have already provided the input data and the train and eval data are in "dir_output".
task = "segmentation" # This parameter defines task of model which can be segmentation, enhancement or classification.
f1_threshold_classification = None # This threshold is used to consider models with an evaluation f1 scores bigger than it. The selected model weights undergo a weights ensembling. And avreage ensembled model will be written to output.
classification_classes_name = None # Dictionary of classification classes names.
backbone_type = None # As backbone we have 2 types of backbones. A vision transformer alongside a CNN and we call it "transformer" and only CNN called "nontransformer"
save_interval = None
dir_img_bin = None
number_of_backgrounds_per_image = 1
dir_rgb_backgrounds = None
dir_rgb_foregrounds = None
@ex.automain
def run(_config, n_classes, n_epochs, input_height,
input_width, weight_decay, weighted_loss,
index_start, dir_of_start_model, is_loss_soft_dice,
n_batch, patches, augmentation, flip_aug,
blur_aug, padding_white, padding_black, scaling, shifting, degrading,channels_shuffling,
brightening, binarization, adding_rgb_background, adding_rgb_foreground, add_red_textlines, blur_k, scales, degrade_scales,shuffle_indexes,
brightness, dir_train, data_is_provided, scaling_bluring,
scaling_brightness, scaling_binarization, rotation, rotation_not_90,
thetha, scaling_flip, continue_training, transformer_projection_dim,
transformer_mlp_head_units, transformer_layers, transformer_num_heads, transformer_cnn_first,
transformer_patchsize_x, transformer_patchsize_y,
transformer_num_patches_xy, backbone_type, save_interval, flip_index, dir_eval, dir_output,
pretraining, learning_rate, task, f1_threshold_classification, classification_classes_name, dir_img_bin, number_of_backgrounds_per_image,dir_rgb_backgrounds, dir_rgb_foregrounds):
if dir_rgb_backgrounds:
list_all_possible_background_images = os.listdir(dir_rgb_backgrounds)
else:
list_all_possible_background_images = None
if dir_rgb_foregrounds:
list_all_possible_foreground_rgbs = os.listdir(dir_rgb_foregrounds)
else:
list_all_possible_foreground_rgbs = None
if task == "segmentation" or task == "enhancement" or task == "binarization":
if data_is_provided:
dir_train_flowing = os.path.join(dir_output, 'train')
dir_eval_flowing = os.path.join(dir_output, 'eval')
dir_flow_train_imgs = os.path.join(dir_train_flowing, 'images')
dir_flow_train_labels = os.path.join(dir_train_flowing, 'labels')
dir_flow_eval_imgs = os.path.join(dir_eval_flowing, 'images')
dir_flow_eval_labels = os.path.join(dir_eval_flowing, 'labels')
configuration()
else:
dir_img, dir_seg = get_dirs_or_files(dir_train)
dir_img_val, dir_seg_val = get_dirs_or_files(dir_eval)
# make first a directory in output for both training and evaluations in order to flow data from these directories.
dir_train_flowing = os.path.join(dir_output, 'train')
dir_eval_flowing = os.path.join(dir_output, 'eval')
dir_flow_train_imgs = os.path.join(dir_train_flowing, 'images/')
dir_flow_train_labels = os.path.join(dir_train_flowing, 'labels/')
dir_flow_eval_imgs = os.path.join(dir_eval_flowing, 'images/')
dir_flow_eval_labels = os.path.join(dir_eval_flowing, 'labels/')
if os.path.isdir(dir_train_flowing):
os.system('rm -rf ' + dir_train_flowing)
os.makedirs(dir_train_flowing)
else:
os.makedirs(dir_train_flowing)
if os.path.isdir(dir_eval_flowing):
os.system('rm -rf ' + dir_eval_flowing)
os.makedirs(dir_eval_flowing)
else:
os.makedirs(dir_eval_flowing)
os.mkdir(dir_flow_train_imgs)
os.mkdir(dir_flow_train_labels)
os.mkdir(dir_flow_eval_imgs)
os.mkdir(dir_flow_eval_labels)
# set the gpu configuration
configuration()
imgs_list=np.array(os.listdir(dir_img))
segs_list=np.array(os.listdir(dir_seg))
imgs_list_test=np.array(os.listdir(dir_img_val))
segs_list_test=np.array(os.listdir(dir_seg_val))
# writing patches into a sub-folder in order to be flowed from directory.
provide_patches(imgs_list, segs_list, dir_img, dir_seg, dir_flow_train_imgs,
dir_flow_train_labels, input_height, input_width, blur_k,
blur_aug, padding_white, padding_black, flip_aug, binarization, adding_rgb_background,adding_rgb_foreground, add_red_textlines, channels_shuffling,
scaling, shifting, degrading, brightening, scales, degrade_scales, brightness,
flip_index,shuffle_indexes, scaling_bluring, scaling_brightness, scaling_binarization,
rotation, rotation_not_90, thetha, scaling_flip, task, augmentation=augmentation,
patches=patches, dir_img_bin=dir_img_bin,number_of_backgrounds_per_image=number_of_backgrounds_per_image,list_all_possible_background_images=list_all_possible_background_images, dir_rgb_backgrounds=dir_rgb_backgrounds, dir_rgb_foregrounds=dir_rgb_foregrounds,list_all_possible_foreground_rgbs=list_all_possible_foreground_rgbs)
provide_patches(imgs_list_test, segs_list_test, dir_img_val, dir_seg_val,
dir_flow_eval_imgs, dir_flow_eval_labels, input_height, input_width,
blur_k, blur_aug, padding_white, padding_black, flip_aug, binarization, adding_rgb_background, adding_rgb_foreground, add_red_textlines, channels_shuffling,
scaling, shifting, degrading, brightening, scales, degrade_scales, brightness,
flip_index, shuffle_indexes, scaling_bluring, scaling_brightness, scaling_binarization,
rotation, rotation_not_90, thetha, scaling_flip, task, augmentation=False, patches=patches,dir_img_bin=dir_img_bin,number_of_backgrounds_per_image=number_of_backgrounds_per_image,list_all_possible_background_images=list_all_possible_background_images, dir_rgb_backgrounds=dir_rgb_backgrounds,dir_rgb_foregrounds=dir_rgb_foregrounds,list_all_possible_foreground_rgbs=list_all_possible_foreground_rgbs )
if weighted_loss:
weights = np.zeros(n_classes)
if data_is_provided:
for obj in os.listdir(dir_flow_train_labels):
try:
label_obj = cv2.imread(dir_flow_train_labels + '/' + obj)
label_obj_one_hot = get_one_hot(label_obj, label_obj.shape[0], label_obj.shape[1], n_classes)
weights += (label_obj_one_hot.sum(axis=0)).sum(axis=0)
except:
pass
else:
for obj in os.listdir(dir_seg):
try:
label_obj = cv2.imread(dir_seg + '/' + obj)
label_obj_one_hot = get_one_hot(label_obj, label_obj.shape[0], label_obj.shape[1], n_classes)
weights += (label_obj_one_hot.sum(axis=0)).sum(axis=0)
except:
pass
weights = 1.00 / weights
weights = weights / float(np.sum(weights))
weights = weights / float(np.min(weights))
weights = weights / float(np.sum(weights))
if continue_training:
if backbone_type=='nontransformer':
if is_loss_soft_dice and (task == "segmentation" or task == "binarization"):
model = load_model(dir_of_start_model, compile=True, custom_objects={'soft_dice_loss': soft_dice_loss})
if weighted_loss and (task == "segmentation" or task == "binarization"):
model = load_model(dir_of_start_model, compile=True, custom_objects={'loss': weighted_categorical_crossentropy(weights)})
if not is_loss_soft_dice and not weighted_loss:
model = load_model(dir_of_start_model , compile=True)
elif backbone_type=='transformer':
if is_loss_soft_dice and (task == "segmentation" or task == "binarization"):
model = load_model(dir_of_start_model, compile=True, custom_objects={"PatchEncoder": PatchEncoder, "Patches": Patches,'soft_dice_loss': soft_dice_loss})
if weighted_loss and (task == "segmentation" or task == "binarization"):
model = load_model(dir_of_start_model, compile=True, custom_objects={'loss': weighted_categorical_crossentropy(weights)})
if not is_loss_soft_dice and not weighted_loss:
model = load_model(dir_of_start_model , compile=True,custom_objects = {"PatchEncoder": PatchEncoder, "Patches": Patches})
else:
index_start = 0
if backbone_type=='nontransformer':
model = resnet50_unet(n_classes, input_height, input_width, task, weight_decay, pretraining)
elif backbone_type=='transformer':
num_patches_x = transformer_num_patches_xy[0]
num_patches_y = transformer_num_patches_xy[1]
num_patches = num_patches_x * num_patches_y
if transformer_cnn_first:
if (input_height != (num_patches_y * transformer_patchsize_y * 32) ):
print("Error: transformer_patchsize_y or transformer_num_patches_xy height value error . input_height should be equal to ( transformer_num_patches_xy height value * transformer_patchsize_y * 32)")
sys.exit(1)
if (input_width != (num_patches_x * transformer_patchsize_x * 32) ):
print("Error: transformer_patchsize_x or transformer_num_patches_xy width value error . input_width should be equal to ( transformer_num_patches_xy width value * transformer_patchsize_x * 32)")
sys.exit(1)
if (transformer_projection_dim % (transformer_patchsize_y * transformer_patchsize_x)) != 0:
print("Error: transformer_projection_dim error. The remainder when parameter transformer_projection_dim is divided by (transformer_patchsize_y*transformer_patchsize_x) should be zero")
sys.exit(1)
model = vit_resnet50_unet(n_classes, transformer_patchsize_x, transformer_patchsize_y, num_patches, transformer_mlp_head_units, transformer_layers, transformer_num_heads, transformer_projection_dim, input_height, input_width, task, weight_decay, pretraining)
else:
if (input_height != (num_patches_y * transformer_patchsize_y) ):
print("Error: transformer_patchsize_y or transformer_num_patches_xy height value error . input_height should be equal to ( transformer_num_patches_xy height value * transformer_patchsize_y)")
sys.exit(1)
if (input_width != (num_patches_x * transformer_patchsize_x) ):
print("Error: transformer_patchsize_x or transformer_num_patches_xy width value error . input_width should be equal to ( transformer_num_patches_xy width value * transformer_patchsize_x)")
sys.exit(1)
if (transformer_projection_dim % (transformer_patchsize_y * transformer_patchsize_x)) != 0:
print("Error: transformer_projection_dim error. The remainder when parameter transformer_projection_dim is divided by (transformer_patchsize_y*transformer_patchsize_x) should be zero")
sys.exit(1)
model = vit_resnet50_unet_transformer_before_cnn(n_classes, transformer_patchsize_x, transformer_patchsize_y, num_patches, transformer_mlp_head_units, transformer_layers, transformer_num_heads, transformer_projection_dim, input_height, input_width, task, weight_decay, pretraining)
#if you want to see the model structure just uncomment model summary.
model.summary()
if (task == "segmentation" or task == "binarization"):
if not is_loss_soft_dice and not weighted_loss:
model.compile(loss='categorical_crossentropy',
optimizer=Adam(learning_rate=learning_rate), metrics=['accuracy'])
if is_loss_soft_dice:
model.compile(loss=soft_dice_loss,
optimizer=Adam(learning_rate=learning_rate), metrics=['accuracy'])
if weighted_loss:
model.compile(loss=weighted_categorical_crossentropy(weights),
optimizer=Adam(learning_rate=learning_rate), metrics=['accuracy'])
elif task == "enhancement":
model.compile(loss='mean_squared_error',
optimizer=Adam(learning_rate=learning_rate), metrics=['accuracy'])
# generating train and evaluation data
train_gen = data_gen(dir_flow_train_imgs, dir_flow_train_labels, batch_size=n_batch,
input_height=input_height, input_width=input_width, n_classes=n_classes, task=task)
val_gen = data_gen(dir_flow_eval_imgs, dir_flow_eval_labels, batch_size=n_batch,
input_height=input_height, input_width=input_width, n_classes=n_classes, task=task)
##img_validation_patches = os.listdir(dir_flow_eval_imgs)
##score_best=[]
##score_best.append(0)
if save_interval:
save_weights_callback = SaveWeightsAfterSteps(save_interval, dir_output, _config)
for i in tqdm(range(index_start, n_epochs + index_start)):
if save_interval:
model.fit(
train_gen,
steps_per_epoch=int(len(os.listdir(dir_flow_train_imgs)) / n_batch) - 1,
validation_data=val_gen,
validation_steps=1,
epochs=1, callbacks=[save_weights_callback])
else:
model.fit(
train_gen,
steps_per_epoch=int(len(os.listdir(dir_flow_train_imgs)) / n_batch) - 1,
validation_data=val_gen,
validation_steps=1,
epochs=1)
model.save(os.path.join(dir_output,'model_'+str(i)))
with open(os.path.join(os.path.join(dir_output,'model_'+str(i)),"config.json"), "w") as fp:
json.dump(_config, fp) # encode dict into JSON
#os.system('rm -rf '+dir_train_flowing)
#os.system('rm -rf '+dir_eval_flowing)
#model.save(dir_output+'/'+'model'+'.h5')
elif task=='classification':
configuration()
model = resnet50_classifier(n_classes, input_height, input_width, weight_decay, pretraining)
opt_adam = Adam(learning_rate=0.001)
model.compile(loss='categorical_crossentropy',
optimizer = opt_adam,metrics=['accuracy'])
list_classes = list(classification_classes_name.values())
testX, testY = generate_data_from_folder_evaluation(dir_eval, input_height, input_width, n_classes, list_classes)
y_tot=np.zeros((testX.shape[0],n_classes))
score_best=[]
score_best.append(0)
num_rows = return_number_of_total_training_data(dir_train)
weights=[]
for i in range(n_epochs):
history = model.fit( generate_data_from_folder_training(dir_train, n_batch , input_height, input_width, n_classes, list_classes), steps_per_epoch=num_rows / n_batch, verbose=1)#,class_weight=weights)
y_pr_class = []
for jj in range(testY.shape[0]):
y_pr=model.predict(testX[jj,:,:,:].reshape(1,input_height,input_width,3), verbose=0)
y_pr_ind= np.argmax(y_pr,axis=1)
y_pr_class.append(y_pr_ind)
y_pr_class = np.array(y_pr_class)
f1score=f1_score(np.argmax(testY,axis=1), y_pr_class, average='macro')
print(i,f1score)
if f1score>score_best[0]:
score_best[0]=f1score
model.save(os.path.join(dir_output,'model_best'))
if f1score > f1_threshold_classification:
weights.append(model.get_weights() )
if len(weights) >= 1:
new_weights=list()
for weights_list_tuple in zip(*weights):
new_weights.append( [np.array(weights_).mean(axis=0) for weights_ in zip(*weights_list_tuple)] )
new_weights = [np.array(x) for x in new_weights]
model_weight_averaged=tf.keras.models.clone_model(model)
model_weight_averaged.set_weights(new_weights)
model_weight_averaged.save(os.path.join(dir_output,'model_ens_avg'))
with open(os.path.join( os.path.join(dir_output,'model_ens_avg'), "config.json"), "w") as fp:
json.dump(_config, fp) # encode dict into JSON
with open(os.path.join( os.path.join(dir_output,'model_best'), "config.json"), "w") as fp:
json.dump(_config, fp) # encode dict into JSON
elif task=='reading_order':
configuration()
model = machine_based_reading_order_model(n_classes,input_height,input_width,weight_decay,pretraining)
dir_flow_train_imgs = os.path.join(dir_train, 'images')
dir_flow_train_labels = os.path.join(dir_train, 'labels')
classes = os.listdir(dir_flow_train_labels)
if augmentation:
num_rows = len(classes)*(len(thetha) + 1)
else:
num_rows = len(classes)
#ls_test = os.listdir(dir_flow_train_labels)
#f1score_tot = [0]
indexer_start = 0
opt = SGD(learning_rate=0.01, momentum=0.9)
opt_adam = tf.keras.optimizers.Adam(learning_rate=0.0001)
model.compile(loss="binary_crossentropy",
optimizer = opt_adam,metrics=['accuracy'])
if save_interval:
save_weights_callback = SaveWeightsAfterSteps(save_interval, dir_output, _config)
for i in range(n_epochs):
if save_interval:
history = model.fit(generate_arrays_from_folder_reading_order(dir_flow_train_labels, dir_flow_train_imgs, n_batch, input_height, input_width, n_classes, thetha, augmentation), steps_per_epoch=num_rows / n_batch, verbose=1, callbacks=[save_weights_callback])
else:
history = model.fit(generate_arrays_from_folder_reading_order(dir_flow_train_labels, dir_flow_train_imgs, n_batch, input_height, input_width, n_classes, thetha, augmentation), steps_per_epoch=num_rows / n_batch, verbose=1)
model.save( os.path.join(dir_output,'model_'+str(i+indexer_start) ))
with open(os.path.join(os.path.join(dir_output,'model_'+str(i)),"config.json"), "w") as fp:
json.dump(_config, fp) # encode dict into JSON
'''
if f1score>f1score_tot[0]:
f1score_tot[0] = f1score
model_dir = os.path.join(dir_out,'model_best')
model.save(model_dir)
'''

1056
train/utils.py Normal file

File diff suppressed because it is too large Load diff