|
|
@ -252,7 +252,7 @@ class Eynollah:
|
|
|
|
self.model_region_dir_p_ens = dir_models + "/eynollah-main-regions-ensembled_20210425"
|
|
|
|
self.model_region_dir_p_ens = dir_models + "/eynollah-main-regions-ensembled_20210425"
|
|
|
|
self.model_region_dir_p_ens_light = dir_models + "/eynollah-main-regions_20220314"
|
|
|
|
self.model_region_dir_p_ens_light = dir_models + "/eynollah-main-regions_20220314"
|
|
|
|
self.model_reading_order_machine_dir = dir_models + "/model_ens_reading_order_machine_based"
|
|
|
|
self.model_reading_order_machine_dir = dir_models + "/model_ens_reading_order_machine_based"
|
|
|
|
self.model_region_dir_p_1_2_sp_np = dir_models + "/modelens_12sp_elay_0_3_4__3_6_n"#"/modelens_earlylayout_12spaltige_2_3_5_6_7_8"#"/modelens_early12_sp_2_3_5_6_7_8_9_10_12_14_15_16_18"#"/modelens_1_2_4_5_early_lay_1_2_spaltige"#"/model_3_eraly_layout_no_patches_1_2_spaltige"
|
|
|
|
self.model_region_dir_p_1_2_sp_np = dir_models + "/modelens_e_l_all_sp_0_1_2_3_4_171024"#"/modelens_12sp_elay_0_3_4__3_6_n"#"/modelens_earlylayout_12spaltige_2_3_5_6_7_8"#"/modelens_early12_sp_2_3_5_6_7_8_9_10_12_14_15_16_18"#"/modelens_1_2_4_5_early_lay_1_2_spaltige"#"/model_3_eraly_layout_no_patches_1_2_spaltige"
|
|
|
|
##self.model_region_dir_fully_new = dir_models + "/model_2_full_layout_new_trans"
|
|
|
|
##self.model_region_dir_fully_new = dir_models + "/model_2_full_layout_new_trans"
|
|
|
|
self.model_region_dir_fully = dir_models + "/modelens_full_layout_24_till_28"#"/model_2_full_layout_new_trans"
|
|
|
|
self.model_region_dir_fully = dir_models + "/modelens_full_layout_24_till_28"#"/model_2_full_layout_new_trans"
|
|
|
|
if self.textline_light:
|
|
|
|
if self.textline_light:
|
|
|
@ -1710,6 +1710,36 @@ class Eynollah:
|
|
|
|
self.logger.debug("exit extract_text_regions")
|
|
|
|
self.logger.debug("exit extract_text_regions")
|
|
|
|
return prediction_regions, prediction_regions2
|
|
|
|
return prediction_regions, prediction_regions2
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def get_slopes_and_deskew_new_light2(self, contours, contours_par, textline_mask_tot, image_page_rotated, boxes, slope_deskew):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
polygons_of_textlines = return_contours_of_interested_region(textline_mask_tot,1,0.00001)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
M_main_tot = [cv2.moments(polygons_of_textlines[j]) for j in range(len(polygons_of_textlines))]
|
|
|
|
|
|
|
|
cx_main_tot = [(M_main_tot[j]["m10"] / (M_main_tot[j]["m00"] + 1e-32)) for j in range(len(M_main_tot))]
|
|
|
|
|
|
|
|
cy_main_tot = [(M_main_tot[j]["m01"] / (M_main_tot[j]["m00"] + 1e-32)) for j in range(len(M_main_tot))]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
args_textlines = np.array(range(len(polygons_of_textlines)))
|
|
|
|
|
|
|
|
all_found_textline_polygons = []
|
|
|
|
|
|
|
|
slopes = []
|
|
|
|
|
|
|
|
all_box_coord =[]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
for index, con_region_ind in enumerate(contours_par):
|
|
|
|
|
|
|
|
results = [cv2.pointPolygonTest(con_region_ind, (cx_main_tot[ind], cy_main_tot[ind]), False) for ind in args_textlines ]
|
|
|
|
|
|
|
|
results = np.array(results)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
indexes_in = args_textlines[results==1]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
textlines_ins = [polygons_of_textlines[ind] for ind in indexes_in]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
all_found_textline_polygons.append(textlines_ins)
|
|
|
|
|
|
|
|
slopes.append(0)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
_, crop_coor = crop_image_inside_box(boxes[index],image_page_rotated)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
all_box_coord.append(crop_coor)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
return slopes, all_found_textline_polygons, boxes, contours, contours_par, all_box_coord, np.array(range(len(contours_par)))
|
|
|
|
|
|
|
|
|
|
|
|
def get_slopes_and_deskew_new_light(self, contours, contours_par, textline_mask_tot, image_page_rotated, boxes, slope_deskew):
|
|
|
|
def get_slopes_and_deskew_new_light(self, contours, contours_par, textline_mask_tot, image_page_rotated, boxes, slope_deskew):
|
|
|
|
self.logger.debug("enter get_slopes_and_deskew_new")
|
|
|
|
self.logger.debug("enter get_slopes_and_deskew_new")
|
|
|
|
if len(contours)>15:
|
|
|
|
if len(contours)>15:
|
|
|
@ -2099,14 +2129,14 @@ class Eynollah:
|
|
|
|
img = resize_image(img_org, int(img_org.shape[0] * scaler_h), int(img_org.shape[1] * scaler_w))
|
|
|
|
img = resize_image(img_org, int(img_org.shape[0] * scaler_h), int(img_org.shape[1] * scaler_w))
|
|
|
|
|
|
|
|
|
|
|
|
if not self.dir_in:
|
|
|
|
if not self.dir_in:
|
|
|
|
prediction_textline = self.do_prediction(patches, img, model_textline, marginal_of_patch_percent=0.2, n_batch_inference=3, thresholding_for_artificial_class_in_light_version=thresholding_for_artificial_class_in_light_version)
|
|
|
|
prediction_textline = self.do_prediction(patches, img, model_textline, marginal_of_patch_percent=0.15, n_batch_inference=3, thresholding_for_artificial_class_in_light_version=thresholding_for_artificial_class_in_light_version)
|
|
|
|
|
|
|
|
|
|
|
|
#if not thresholding_for_artificial_class_in_light_version:
|
|
|
|
#if not thresholding_for_artificial_class_in_light_version:
|
|
|
|
#if num_col_classifier==1:
|
|
|
|
#if num_col_classifier==1:
|
|
|
|
#prediction_textline_nopatch = self.do_prediction(False, img, model_textline)
|
|
|
|
#prediction_textline_nopatch = self.do_prediction(False, img, model_textline)
|
|
|
|
#prediction_textline[:,:][prediction_textline_nopatch[:,:]==0] = 0
|
|
|
|
#prediction_textline[:,:][prediction_textline_nopatch[:,:]==0] = 0
|
|
|
|
else:
|
|
|
|
else:
|
|
|
|
prediction_textline = self.do_prediction(patches, img, self.model_textline, marginal_of_patch_percent=0.2, n_batch_inference=3,thresholding_for_artificial_class_in_light_version=thresholding_for_artificial_class_in_light_version)
|
|
|
|
prediction_textline = self.do_prediction(patches, img, self.model_textline, marginal_of_patch_percent=0.15, n_batch_inference=3,thresholding_for_artificial_class_in_light_version=thresholding_for_artificial_class_in_light_version)
|
|
|
|
#if not thresholding_for_artificial_class_in_light_version:
|
|
|
|
#if not thresholding_for_artificial_class_in_light_version:
|
|
|
|
#if num_col_classifier==1:
|
|
|
|
#if num_col_classifier==1:
|
|
|
|
#prediction_textline_nopatch = self.do_prediction(False, img, model_textline)
|
|
|
|
#prediction_textline_nopatch = self.do_prediction(False, img, model_textline)
|
|
|
@ -2216,14 +2246,14 @@ class Eynollah:
|
|
|
|
#if (not self.input_binary) or self.full_layout:
|
|
|
|
#if (not self.input_binary) or self.full_layout:
|
|
|
|
#if self.input_binary:
|
|
|
|
#if self.input_binary:
|
|
|
|
#img_bin = np.copy(img_resized)
|
|
|
|
#img_bin = np.copy(img_resized)
|
|
|
|
if (not self.input_binary and self.full_layout) or (not self.input_binary and num_col_classifier >= 3):
|
|
|
|
if (not self.input_binary and self.full_layout) or (not self.input_binary and num_col_classifier >= 30):
|
|
|
|
if not self.dir_in:
|
|
|
|
if not self.dir_in:
|
|
|
|
model_bin, session_bin = self.start_new_session_and_model(self.model_dir_of_binarization)
|
|
|
|
model_bin, session_bin = self.start_new_session_and_model(self.model_dir_of_binarization)
|
|
|
|
prediction_bin = self.do_prediction(True, img_resized, model_bin, n_batch_inference=5)
|
|
|
|
prediction_bin = self.do_prediction(True, img_resized, model_bin, n_batch_inference=5)
|
|
|
|
else:
|
|
|
|
else:
|
|
|
|
prediction_bin = self.do_prediction(True, img_resized, self.model_bin, n_batch_inference=5)
|
|
|
|
prediction_bin = self.do_prediction(True, img_resized, self.model_bin, n_batch_inference=5)
|
|
|
|
|
|
|
|
|
|
|
|
#print("inside bin ", time.time()-t_bin)
|
|
|
|
print("inside bin ", time.time()-t_bin)
|
|
|
|
prediction_bin=prediction_bin[:,:,0]
|
|
|
|
prediction_bin=prediction_bin[:,:,0]
|
|
|
|
prediction_bin = (prediction_bin[:,:]==0)*1
|
|
|
|
prediction_bin = (prediction_bin[:,:]==0)*1
|
|
|
|
prediction_bin = prediction_bin*255
|
|
|
|
prediction_bin = prediction_bin*255
|
|
|
@ -2236,7 +2266,7 @@ class Eynollah:
|
|
|
|
else:
|
|
|
|
else:
|
|
|
|
img_bin = np.copy(img_resized)
|
|
|
|
img_bin = np.copy(img_resized)
|
|
|
|
|
|
|
|
|
|
|
|
#print("inside 1 ", time.time()-t_in)
|
|
|
|
print("inside 1 ", time.time()-t_in)
|
|
|
|
|
|
|
|
|
|
|
|
###textline_mask_tot_ea = self.run_textline(img_bin)
|
|
|
|
###textline_mask_tot_ea = self.run_textline(img_bin)
|
|
|
|
textline_mask_tot_ea = self.run_textline(img_resized, num_col_classifier)
|
|
|
|
textline_mask_tot_ea = self.run_textline(img_resized, num_col_classifier)
|
|
|
@ -2246,14 +2276,15 @@ class Eynollah:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#print(self.image_org.shape)
|
|
|
|
#print(self.image_org.shape)
|
|
|
|
|
|
|
|
#cv2.imwrite('out_13.png', self.image_page_org_size)
|
|
|
|
|
|
|
|
|
|
|
|
#plt.imshwo(self.image_page_org_size)
|
|
|
|
#plt.imshwo(self.image_page_org_size)
|
|
|
|
#plt.show()
|
|
|
|
#plt.show()
|
|
|
|
if not skip_layout_and_reading_order:
|
|
|
|
if not skip_layout_and_reading_order:
|
|
|
|
#print("inside 2 ", time.time()-t_in)
|
|
|
|
print("inside 2 ", time.time()-t_in)
|
|
|
|
|
|
|
|
|
|
|
|
if not self.dir_in:
|
|
|
|
if not self.dir_in:
|
|
|
|
if num_col_classifier == 1 or num_col_classifier == 2:
|
|
|
|
if num_col_classifier == 1 or num_col_classifier >= 2:
|
|
|
|
model_region, session_region = self.start_new_session_and_model(self.model_region_dir_p_1_2_sp_np)
|
|
|
|
model_region, session_region = self.start_new_session_and_model(self.model_region_dir_p_1_2_sp_np)
|
|
|
|
if self.image_org.shape[0]/self.image_org.shape[1] > 2.5:
|
|
|
|
if self.image_org.shape[0]/self.image_org.shape[1] > 2.5:
|
|
|
|
prediction_regions_org = self.do_prediction_new_concept(True, img_resized, model_region, n_batch_inference=1, thresholding_for_artificial_class_in_light_version = True)
|
|
|
|
prediction_regions_org = self.do_prediction_new_concept(True, img_resized, model_region, n_batch_inference=1, thresholding_for_artificial_class_in_light_version = True)
|
|
|
@ -2267,7 +2298,7 @@ class Eynollah:
|
|
|
|
##model_region, session_region = self.start_new_session_and_model(self.model_region_dir_p_ens_light)
|
|
|
|
##model_region, session_region = self.start_new_session_and_model(self.model_region_dir_p_ens_light)
|
|
|
|
##prediction_regions_org = self.do_prediction(True, img_bin, model_region, n_batch_inference=3, thresholding_for_some_classes_in_light_version=True)
|
|
|
|
##prediction_regions_org = self.do_prediction(True, img_bin, model_region, n_batch_inference=3, thresholding_for_some_classes_in_light_version=True)
|
|
|
|
else:
|
|
|
|
else:
|
|
|
|
if num_col_classifier == 1 or num_col_classifier == 2:
|
|
|
|
if num_col_classifier == 1 or num_col_classifier >= 2:
|
|
|
|
if self.image_org.shape[0]/self.image_org.shape[1] > 2.5:
|
|
|
|
if self.image_org.shape[0]/self.image_org.shape[1] > 2.5:
|
|
|
|
prediction_regions_org = self.do_prediction_new_concept(True, img_resized, self.model_region_1_2, n_batch_inference=1, thresholding_for_artificial_class_in_light_version=True)
|
|
|
|
prediction_regions_org = self.do_prediction_new_concept(True, img_resized, self.model_region_1_2, n_batch_inference=1, thresholding_for_artificial_class_in_light_version=True)
|
|
|
|
else:
|
|
|
|
else:
|
|
|
@ -2278,7 +2309,7 @@ class Eynollah:
|
|
|
|
prediction_regions_org = self.do_prediction_new_concept(True, img_bin, self.model_region, n_batch_inference=3)
|
|
|
|
prediction_regions_org = self.do_prediction_new_concept(True, img_bin, self.model_region, n_batch_inference=3)
|
|
|
|
###prediction_regions_org = self.do_prediction(True, img_bin, self.model_region, n_batch_inference=3, thresholding_for_some_classes_in_light_version=True)
|
|
|
|
###prediction_regions_org = self.do_prediction(True, img_bin, self.model_region, n_batch_inference=3, thresholding_for_some_classes_in_light_version=True)
|
|
|
|
|
|
|
|
|
|
|
|
#print("inside 3 ", time.time()-t_in)
|
|
|
|
print("inside 3 ", time.time()-t_in)
|
|
|
|
|
|
|
|
|
|
|
|
#plt.imshow(prediction_regions_org[:,:,0])
|
|
|
|
#plt.imshow(prediction_regions_org[:,:,0])
|
|
|
|
#plt.show()
|
|
|
|
#plt.show()
|
|
|
@ -2356,7 +2387,15 @@ class Eynollah:
|
|
|
|
text_regions_p_true[:,:][mask_images_only[:,:] == 1] = 2
|
|
|
|
text_regions_p_true[:,:][mask_images_only[:,:] == 1] = 2
|
|
|
|
|
|
|
|
|
|
|
|
text_regions_p_true = cv2.fillPoly(text_regions_p_true, pts = polygons_of_only_texts, color=(1,1,1))
|
|
|
|
text_regions_p_true = cv2.fillPoly(text_regions_p_true, pts = polygons_of_only_texts, color=(1,1,1))
|
|
|
|
#print("inside 4 ", time.time()-t_in)
|
|
|
|
|
|
|
|
|
|
|
|
#plt.imshow(textline_mask_tot_ea)
|
|
|
|
|
|
|
|
#plt.show()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
textline_mask_tot_ea[(text_regions_p_true==0) | (text_regions_p_true==4) ] = 0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#plt.imshow(textline_mask_tot_ea)
|
|
|
|
|
|
|
|
#plt.show()
|
|
|
|
|
|
|
|
print("inside 4 ", time.time()-t_in)
|
|
|
|
return text_regions_p_true, erosion_hurts, polygons_lines_xml, textline_mask_tot_ea, img_bin
|
|
|
|
return text_regions_p_true, erosion_hurts, polygons_lines_xml, textline_mask_tot_ea, img_bin
|
|
|
|
else:
|
|
|
|
else:
|
|
|
|
img_bin = resize_image(img_bin,img_height_h, img_width_h )
|
|
|
|
img_bin = resize_image(img_bin,img_height_h, img_width_h )
|
|
|
@ -3308,7 +3347,7 @@ class Eynollah:
|
|
|
|
if self.tables:
|
|
|
|
if self.tables:
|
|
|
|
regions_without_separators[table_prediction==1] = 1
|
|
|
|
regions_without_separators[table_prediction==1] = 1
|
|
|
|
regions_without_separators = regions_without_separators.astype(np.uint8)
|
|
|
|
regions_without_separators = regions_without_separators.astype(np.uint8)
|
|
|
|
text_regions_p = get_marginals(rotate_image(regions_without_separators, slope_deskew), text_regions_p, num_col_classifier, slope_deskew, kernel=KERNEL)
|
|
|
|
text_regions_p = get_marginals(rotate_image(regions_without_separators, slope_deskew), text_regions_p, num_col_classifier, slope_deskew, light_version=self.light_version, kernel=KERNEL)
|
|
|
|
except Exception as e:
|
|
|
|
except Exception as e:
|
|
|
|
self.logger.error("exception %s", e)
|
|
|
|
self.logger.error("exception %s", e)
|
|
|
|
|
|
|
|
|
|
|
@ -3319,6 +3358,7 @@ class Eynollah:
|
|
|
|
|
|
|
|
|
|
|
|
def run_boxes_no_full_layout(self, image_page, textline_mask_tot, text_regions_p, slope_deskew, num_col_classifier, table_prediction, erosion_hurts):
|
|
|
|
def run_boxes_no_full_layout(self, image_page, textline_mask_tot, text_regions_p, slope_deskew, num_col_classifier, table_prediction, erosion_hurts):
|
|
|
|
self.logger.debug('enter run_boxes_no_full_layout')
|
|
|
|
self.logger.debug('enter run_boxes_no_full_layout')
|
|
|
|
|
|
|
|
t_0_box = time.time()
|
|
|
|
if np.abs(slope_deskew) >= SLOPE_THRESHOLD:
|
|
|
|
if np.abs(slope_deskew) >= SLOPE_THRESHOLD:
|
|
|
|
_, textline_mask_tot_d, text_regions_p_1_n, table_prediction_n = rotation_not_90_func(image_page, textline_mask_tot, text_regions_p, table_prediction, slope_deskew)
|
|
|
|
_, textline_mask_tot_d, text_regions_p_1_n, table_prediction_n = rotation_not_90_func(image_page, textline_mask_tot, text_regions_p, table_prediction, slope_deskew)
|
|
|
|
text_regions_p_1_n = resize_image(text_regions_p_1_n, text_regions_p.shape[0], text_regions_p.shape[1])
|
|
|
|
text_regions_p_1_n = resize_image(text_regions_p_1_n, text_regions_p.shape[0], text_regions_p.shape[1])
|
|
|
@ -3328,6 +3368,7 @@ class Eynollah:
|
|
|
|
if self.tables:
|
|
|
|
if self.tables:
|
|
|
|
regions_without_separators_d[table_prediction_n[:,:] == 1] = 1
|
|
|
|
regions_without_separators_d[table_prediction_n[:,:] == 1] = 1
|
|
|
|
regions_without_separators = (text_regions_p[:, :] == 1) * 1 # ( (text_regions_p[:,:]==1) | (text_regions_p[:,:]==2) )*1 #self.return_regions_without_separators_new(text_regions_p[:,:,0],img_only_regions)
|
|
|
|
regions_without_separators = (text_regions_p[:, :] == 1) * 1 # ( (text_regions_p[:,:]==1) | (text_regions_p[:,:]==2) )*1 #self.return_regions_without_separators_new(text_regions_p[:,:,0],img_only_regions)
|
|
|
|
|
|
|
|
print(time.time()-t_0_box,'time box in 1')
|
|
|
|
if self.tables:
|
|
|
|
if self.tables:
|
|
|
|
regions_without_separators[table_prediction ==1 ] = 1
|
|
|
|
regions_without_separators[table_prediction ==1 ] = 1
|
|
|
|
if np.abs(slope_deskew) < SLOPE_THRESHOLD:
|
|
|
|
if np.abs(slope_deskew) < SLOPE_THRESHOLD:
|
|
|
@ -3340,7 +3381,7 @@ class Eynollah:
|
|
|
|
|
|
|
|
|
|
|
|
if np.abs(slope_deskew) >= SLOPE_THRESHOLD:
|
|
|
|
if np.abs(slope_deskew) >= SLOPE_THRESHOLD:
|
|
|
|
_, _, matrix_of_lines_ch_d, splitter_y_new_d, _ = find_number_of_columns_in_document(np.repeat(text_regions_p_1_n[:, :, np.newaxis], 3, axis=2), num_col_classifier, self.tables, pixel_lines)
|
|
|
|
_, _, matrix_of_lines_ch_d, splitter_y_new_d, _ = find_number_of_columns_in_document(np.repeat(text_regions_p_1_n[:, :, np.newaxis], 3, axis=2), num_col_classifier, self.tables, pixel_lines)
|
|
|
|
|
|
|
|
print(time.time()-t_0_box,'time box in 2')
|
|
|
|
self.logger.info("num_col_classifier: %s", num_col_classifier)
|
|
|
|
self.logger.info("num_col_classifier: %s", num_col_classifier)
|
|
|
|
|
|
|
|
|
|
|
|
if num_col_classifier >= 3:
|
|
|
|
if num_col_classifier >= 3:
|
|
|
@ -3350,6 +3391,7 @@ class Eynollah:
|
|
|
|
else:
|
|
|
|
else:
|
|
|
|
regions_without_separators_d = regions_without_separators_d.astype(np.uint8)
|
|
|
|
regions_without_separators_d = regions_without_separators_d.astype(np.uint8)
|
|
|
|
regions_without_separators_d = cv2.erode(regions_without_separators_d[:, :], KERNEL, iterations=6)
|
|
|
|
regions_without_separators_d = cv2.erode(regions_without_separators_d[:, :], KERNEL, iterations=6)
|
|
|
|
|
|
|
|
print(time.time()-t_0_box,'time box in 3')
|
|
|
|
t1 = time.time()
|
|
|
|
t1 = time.time()
|
|
|
|
if np.abs(slope_deskew) < SLOPE_THRESHOLD:
|
|
|
|
if np.abs(slope_deskew) < SLOPE_THRESHOLD:
|
|
|
|
boxes, peaks_neg_tot_tables = return_boxes_of_images_by_order_of_reading_new(splitter_y_new, regions_without_separators, matrix_of_lines_ch, num_col_classifier, erosion_hurts, self.tables, self.right2left)
|
|
|
|
boxes, peaks_neg_tot_tables = return_boxes_of_images_by_order_of_reading_new(splitter_y_new, regions_without_separators, matrix_of_lines_ch, num_col_classifier, erosion_hurts, self.tables, self.right2left)
|
|
|
@ -3378,7 +3420,7 @@ class Eynollah:
|
|
|
|
img_revised_tab2_d_rotated = np.round(img_revised_tab2_d_rotated)
|
|
|
|
img_revised_tab2_d_rotated = np.round(img_revised_tab2_d_rotated)
|
|
|
|
img_revised_tab2_d_rotated = img_revised_tab2_d_rotated.astype(np.int8)
|
|
|
|
img_revised_tab2_d_rotated = img_revised_tab2_d_rotated.astype(np.int8)
|
|
|
|
img_revised_tab2_d_rotated = resize_image(img_revised_tab2_d_rotated, text_regions_p.shape[0], text_regions_p.shape[1])
|
|
|
|
img_revised_tab2_d_rotated = resize_image(img_revised_tab2_d_rotated, text_regions_p.shape[0], text_regions_p.shape[1])
|
|
|
|
|
|
|
|
print(time.time()-t_0_box,'time box in 4')
|
|
|
|
self.logger.info("detecting boxes took %.1fs", time.time() - t1)
|
|
|
|
self.logger.info("detecting boxes took %.1fs", time.time() - t1)
|
|
|
|
|
|
|
|
|
|
|
|
if self.tables:
|
|
|
|
if self.tables:
|
|
|
@ -3410,7 +3452,7 @@ class Eynollah:
|
|
|
|
|
|
|
|
|
|
|
|
pixel_img = 10
|
|
|
|
pixel_img = 10
|
|
|
|
contours_tables = return_contours_of_interested_region(text_regions_p, pixel_img, min_area_mar)
|
|
|
|
contours_tables = return_contours_of_interested_region(text_regions_p, pixel_img, min_area_mar)
|
|
|
|
|
|
|
|
print(time.time()-t_0_box,'time box in 5')
|
|
|
|
self.logger.debug('exit run_boxes_no_full_layout')
|
|
|
|
self.logger.debug('exit run_boxes_no_full_layout')
|
|
|
|
return polygons_of_images, img_revised_tab, text_regions_p_1_n, textline_mask_tot_d, regions_without_separators_d, boxes, boxes_d, polygons_of_marginals, contours_tables
|
|
|
|
return polygons_of_images, img_revised_tab, text_regions_p_1_n, textline_mask_tot_d, regions_without_separators_d, boxes, boxes_d, polygons_of_marginals, contours_tables
|
|
|
|
|
|
|
|
|
|
|
@ -3751,8 +3793,10 @@ class Eynollah:
|
|
|
|
img_poly[text_regions_p[:,:]==3] = 4
|
|
|
|
img_poly[text_regions_p[:,:]==3] = 4
|
|
|
|
img_poly[text_regions_p[:,:]==6] = 5
|
|
|
|
img_poly[text_regions_p[:,:]==6] = 5
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if self.dir_in:
|
|
|
|
model_ro_machine, _ = self.start_new_session_and_model(self.model_reading_order_machine_dir)
|
|
|
|
pass
|
|
|
|
|
|
|
|
else:
|
|
|
|
|
|
|
|
self.model_reading_order_machine, _ = self.start_new_session_and_model(self.model_reading_order_machine_dir)
|
|
|
|
|
|
|
|
|
|
|
|
height1 =672#448
|
|
|
|
height1 =672#448
|
|
|
|
width1 = 448#224
|
|
|
|
width1 = 448#224
|
|
|
@ -3793,7 +3837,7 @@ class Eynollah:
|
|
|
|
|
|
|
|
|
|
|
|
img3 = img3.astype(np.uint16)
|
|
|
|
img3 = img3.astype(np.uint16)
|
|
|
|
|
|
|
|
|
|
|
|
inference_bs = 4
|
|
|
|
inference_bs = 3
|
|
|
|
input_1= np.zeros( (inference_bs, height1, width1,3))
|
|
|
|
input_1= np.zeros( (inference_bs, height1, width1,3))
|
|
|
|
starting_list_of_regions = []
|
|
|
|
starting_list_of_regions = []
|
|
|
|
starting_list_of_regions.append( list(range(labels_con.shape[2])) )
|
|
|
|
starting_list_of_regions.append( list(range(labels_con.shape[2])) )
|
|
|
@ -3835,7 +3879,7 @@ class Eynollah:
|
|
|
|
batch_counter = batch_counter+1
|
|
|
|
batch_counter = batch_counter+1
|
|
|
|
|
|
|
|
|
|
|
|
if batch_counter==inference_bs or ( (tot_counter//inference_bs)==full_bs_ite and tot_counter%inference_bs==last_bs):
|
|
|
|
if batch_counter==inference_bs or ( (tot_counter//inference_bs)==full_bs_ite and tot_counter%inference_bs==last_bs):
|
|
|
|
y_pr=model_ro_machine.predict(input_1 , verbose=0)
|
|
|
|
y_pr=self.model_reading_order_machine.predict(input_1 , verbose=0)
|
|
|
|
|
|
|
|
|
|
|
|
if batch_counter==inference_bs:
|
|
|
|
if batch_counter==inference_bs:
|
|
|
|
iteration_batches = inference_bs
|
|
|
|
iteration_batches = inference_bs
|
|
|
@ -4698,16 +4742,16 @@ class Eynollah:
|
|
|
|
t0 = time.time()
|
|
|
|
t0 = time.time()
|
|
|
|
if self.dir_in:
|
|
|
|
if self.dir_in:
|
|
|
|
self.reset_file_name_dir(os.path.join(self.dir_in,img_name))
|
|
|
|
self.reset_file_name_dir(os.path.join(self.dir_in,img_name))
|
|
|
|
#print("text region early -11 in %.1fs", time.time() - t0)
|
|
|
|
print("text region early -11 in %.1fs", time.time() - t0)
|
|
|
|
|
|
|
|
|
|
|
|
img_res, is_image_enhanced, num_col_classifier, num_column_is_classified = self.run_enhancement(self.light_version)
|
|
|
|
img_res, is_image_enhanced, num_col_classifier, num_column_is_classified = self.run_enhancement(self.light_version)
|
|
|
|
self.logger.info("Enhancing took %.1fs ", time.time() - t0)
|
|
|
|
self.logger.info("Enhancing took %.1fs ", time.time() - t0)
|
|
|
|
#print("text region early -1 in %.1fs", time.time() - t0)
|
|
|
|
print("text region early -1 in %.1fs", time.time() - t0)
|
|
|
|
t1 = time.time()
|
|
|
|
t1 = time.time()
|
|
|
|
if not self.skip_layout_and_reading_order:
|
|
|
|
if not self.skip_layout_and_reading_order:
|
|
|
|
if self.light_version:
|
|
|
|
if self.light_version:
|
|
|
|
text_regions_p_1 ,erosion_hurts, polygons_lines_xml, textline_mask_tot_ea, img_bin_light = self.get_regions_light_v(img_res, is_image_enhanced, num_col_classifier)
|
|
|
|
text_regions_p_1 ,erosion_hurts, polygons_lines_xml, textline_mask_tot_ea, img_bin_light = self.get_regions_light_v(img_res, is_image_enhanced, num_col_classifier)
|
|
|
|
#print("text region early -2 in %.1fs", time.time() - t0)
|
|
|
|
print("text region early -2 in %.1fs", time.time() - t0)
|
|
|
|
|
|
|
|
|
|
|
|
if num_col_classifier == 1 or num_col_classifier ==2:
|
|
|
|
if num_col_classifier == 1 or num_col_classifier ==2:
|
|
|
|
if num_col_classifier == 1:
|
|
|
|
if num_col_classifier == 1:
|
|
|
@ -4720,17 +4764,17 @@ class Eynollah:
|
|
|
|
|
|
|
|
|
|
|
|
textline_mask_tot_ea_deskew = resize_image(textline_mask_tot_ea,img_h_new, img_w_new )
|
|
|
|
textline_mask_tot_ea_deskew = resize_image(textline_mask_tot_ea,img_h_new, img_w_new )
|
|
|
|
|
|
|
|
|
|
|
|
slope_deskew, slope_first = self.run_deskew(textline_mask_tot_ea_deskew)
|
|
|
|
slope_deskew, slope_first = 0, 0#self.run_deskew(textline_mask_tot_ea_deskew)
|
|
|
|
else:
|
|
|
|
else:
|
|
|
|
slope_deskew, slope_first = self.run_deskew(textline_mask_tot_ea)
|
|
|
|
slope_deskew, slope_first = 0, 0#self.run_deskew(textline_mask_tot_ea)
|
|
|
|
#print("text region early -2,5 in %.1fs", time.time() - t0)
|
|
|
|
print("text region early -2,5 in %.1fs", time.time() - t0)
|
|
|
|
#self.logger.info("Textregion detection took %.1fs ", time.time() - t1t)
|
|
|
|
#self.logger.info("Textregion detection took %.1fs ", time.time() - t1t)
|
|
|
|
num_col, num_col_classifier, img_only_regions, page_coord, image_page, mask_images, mask_lines, text_regions_p_1, cont_page, table_prediction, textline_mask_tot_ea, img_bin_light = \
|
|
|
|
num_col, num_col_classifier, img_only_regions, page_coord, image_page, mask_images, mask_lines, text_regions_p_1, cont_page, table_prediction, textline_mask_tot_ea, img_bin_light = \
|
|
|
|
self.run_graphics_and_columns_light(text_regions_p_1, textline_mask_tot_ea, num_col_classifier, num_column_is_classified, erosion_hurts, img_bin_light)
|
|
|
|
self.run_graphics_and_columns_light(text_regions_p_1, textline_mask_tot_ea, num_col_classifier, num_column_is_classified, erosion_hurts, img_bin_light)
|
|
|
|
#self.logger.info("run graphics %.1fs ", time.time() - t1t)
|
|
|
|
#self.logger.info("run graphics %.1fs ", time.time() - t1t)
|
|
|
|
#print("text region early -3 in %.1fs", time.time() - t0)
|
|
|
|
print("text region early -3 in %.1fs", time.time() - t0)
|
|
|
|
textline_mask_tot_ea_org = np.copy(textline_mask_tot_ea)
|
|
|
|
textline_mask_tot_ea_org = np.copy(textline_mask_tot_ea)
|
|
|
|
#print("text region early -4 in %.1fs", time.time() - t0)
|
|
|
|
print("text region early -4 in %.1fs", time.time() - t0)
|
|
|
|
else:
|
|
|
|
else:
|
|
|
|
text_regions_p_1 ,erosion_hurts, polygons_lines_xml = self.get_regions_from_xy_2models(img_res, is_image_enhanced, num_col_classifier)
|
|
|
|
text_regions_p_1 ,erosion_hurts, polygons_lines_xml = self.get_regions_from_xy_2models(img_res, is_image_enhanced, num_col_classifier)
|
|
|
|
self.logger.info("Textregion detection took %.1fs ", time.time() - t1)
|
|
|
|
self.logger.info("Textregion detection took %.1fs ", time.time() - t1)
|
|
|
@ -4751,7 +4795,7 @@ class Eynollah:
|
|
|
|
continue
|
|
|
|
continue
|
|
|
|
else:
|
|
|
|
else:
|
|
|
|
return pcgts
|
|
|
|
return pcgts
|
|
|
|
#print("text region early in %.1fs", time.time() - t0)
|
|
|
|
print("text region early in %.1fs", time.time() - t0)
|
|
|
|
t1 = time.time()
|
|
|
|
t1 = time.time()
|
|
|
|
if not self.light_version:
|
|
|
|
if not self.light_version:
|
|
|
|
textline_mask_tot_ea = self.run_textline(image_page)
|
|
|
|
textline_mask_tot_ea = self.run_textline(image_page)
|
|
|
@ -4793,7 +4837,8 @@ class Eynollah:
|
|
|
|
image_page_rotated = resize_image(image_page_rotated,org_h_l_m, org_w_l_m )
|
|
|
|
image_page_rotated = resize_image(image_page_rotated,org_h_l_m, org_w_l_m )
|
|
|
|
|
|
|
|
|
|
|
|
self.logger.info("detection of marginals took %.1fs", time.time() - t1)
|
|
|
|
self.logger.info("detection of marginals took %.1fs", time.time() - t1)
|
|
|
|
#print("text region early 2 marginal in %.1fs", time.time() - t0)
|
|
|
|
print("text region early 2 marginal in %.1fs", time.time() - t0)
|
|
|
|
|
|
|
|
## birdan sora chock chakir
|
|
|
|
t1 = time.time()
|
|
|
|
t1 = time.time()
|
|
|
|
if not self.full_layout:
|
|
|
|
if not self.full_layout:
|
|
|
|
polygons_of_images, img_revised_tab, text_regions_p_1_n, textline_mask_tot_d, regions_without_separators_d, boxes, boxes_d, polygons_of_marginals, contours_tables = self.run_boxes_no_full_layout(image_page, textline_mask_tot, text_regions_p, slope_deskew, num_col_classifier, table_prediction, erosion_hurts)
|
|
|
|
polygons_of_images, img_revised_tab, text_regions_p_1_n, textline_mask_tot_d, regions_without_separators_d, boxes, boxes_d, polygons_of_marginals, contours_tables = self.run_boxes_no_full_layout(image_page, textline_mask_tot, text_regions_p, slope_deskew, num_col_classifier, table_prediction, erosion_hurts)
|
|
|
@ -4807,7 +4852,7 @@ class Eynollah:
|
|
|
|
if np.abs(slope_deskew) >= SLOPE_THRESHOLD:
|
|
|
|
if np.abs(slope_deskew) >= SLOPE_THRESHOLD:
|
|
|
|
text_only_d = ((text_regions_p_1_n[:, :] == 1)) * 1
|
|
|
|
text_only_d = ((text_regions_p_1_n[:, :] == 1)) * 1
|
|
|
|
|
|
|
|
|
|
|
|
#print("text region early 2 in %.1fs", time.time() - t0)
|
|
|
|
print("text region early 2 in %.1fs", time.time() - t0)
|
|
|
|
###min_con_area = 0.000005
|
|
|
|
###min_con_area = 0.000005
|
|
|
|
if np.abs(slope_deskew) >= SLOPE_THRESHOLD:
|
|
|
|
if np.abs(slope_deskew) >= SLOPE_THRESHOLD:
|
|
|
|
contours_only_text, hir_on_text = return_contours_of_image(text_only)
|
|
|
|
contours_only_text, hir_on_text = return_contours_of_image(text_only)
|
|
|
@ -4929,7 +4974,7 @@ class Eynollah:
|
|
|
|
else:
|
|
|
|
else:
|
|
|
|
pass
|
|
|
|
pass
|
|
|
|
|
|
|
|
|
|
|
|
#print("text region early 3 in %.1fs", time.time() - t0)
|
|
|
|
print("text region early 3 in %.1fs", time.time() - t0)
|
|
|
|
if self.light_version:
|
|
|
|
if self.light_version:
|
|
|
|
contours_only_text_parent = self.dilate_textregions_contours(contours_only_text_parent)
|
|
|
|
contours_only_text_parent = self.dilate_textregions_contours(contours_only_text_parent)
|
|
|
|
contours_only_text_parent = self.filter_contours_inside_a_bigger_one(contours_only_text_parent, text_only, marginal_cnts=polygons_of_marginals)
|
|
|
|
contours_only_text_parent = self.filter_contours_inside_a_bigger_one(contours_only_text_parent, text_only, marginal_cnts=polygons_of_marginals)
|
|
|
@ -4938,14 +4983,17 @@ class Eynollah:
|
|
|
|
#contours_only_text_parent = self.dilate_textregions_contours(contours_only_text_parent)
|
|
|
|
#contours_only_text_parent = self.dilate_textregions_contours(contours_only_text_parent)
|
|
|
|
else:
|
|
|
|
else:
|
|
|
|
txt_con_org = get_textregion_contours_in_org_image(contours_only_text_parent, self.image, slope_first)
|
|
|
|
txt_con_org = get_textregion_contours_in_org_image(contours_only_text_parent, self.image, slope_first)
|
|
|
|
#print("text region early 4 in %.1fs", time.time() - t0)
|
|
|
|
print("text region early 4 in %.1fs", time.time() - t0)
|
|
|
|
boxes_text, _ = get_text_region_boxes_by_given_contours(contours_only_text_parent)
|
|
|
|
boxes_text, _ = get_text_region_boxes_by_given_contours(contours_only_text_parent)
|
|
|
|
boxes_marginals, _ = get_text_region_boxes_by_given_contours(polygons_of_marginals)
|
|
|
|
boxes_marginals, _ = get_text_region_boxes_by_given_contours(polygons_of_marginals)
|
|
|
|
#print("text region early 5 in %.1fs", time.time() - t0)
|
|
|
|
print("text region early 5 in %.1fs", time.time() - t0)
|
|
|
|
|
|
|
|
## birdan sora chock chakir
|
|
|
|
if not self.curved_line:
|
|
|
|
if not self.curved_line:
|
|
|
|
if self.light_version:
|
|
|
|
if self.light_version:
|
|
|
|
if self.textline_light:
|
|
|
|
if self.textline_light:
|
|
|
|
slopes, all_found_textline_polygons, boxes_text, txt_con_org, contours_only_text_parent, all_box_coord, index_by_text_par_con = self.get_slopes_and_deskew_new_light(txt_con_org, contours_only_text_parent, textline_mask_tot_ea_org, image_page_rotated, boxes_text, slope_deskew)
|
|
|
|
#slopes, all_found_textline_polygons, boxes_text, txt_con_org, contours_only_text_parent, all_box_coord, index_by_text_par_con = self.get_slopes_and_deskew_new_light(txt_con_org, contours_only_text_parent, textline_mask_tot_ea_org, image_page_rotated, boxes_text, slope_deskew)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
slopes, all_found_textline_polygons, boxes_text, txt_con_org, contours_only_text_parent, all_box_coord, index_by_text_par_con = self.get_slopes_and_deskew_new_light2(txt_con_org, contours_only_text_parent, textline_mask_tot_ea_org, image_page_rotated, boxes_text, slope_deskew)
|
|
|
|
slopes_marginals, all_found_textline_polygons_marginals, boxes_marginals, _, polygons_of_marginals, all_box_coord_marginals, _ = self.get_slopes_and_deskew_new_light(polygons_of_marginals, polygons_of_marginals, textline_mask_tot_ea_org, image_page_rotated, boxes_marginals, slope_deskew)
|
|
|
|
slopes_marginals, all_found_textline_polygons_marginals, boxes_marginals, _, polygons_of_marginals, all_box_coord_marginals, _ = self.get_slopes_and_deskew_new_light(polygons_of_marginals, polygons_of_marginals, textline_mask_tot_ea_org, image_page_rotated, boxes_marginals, slope_deskew)
|
|
|
|
|
|
|
|
|
|
|
|
#slopes, all_found_textline_polygons, boxes_text, txt_con_org, contours_only_text_parent, index_by_text_par_con = self.delete_regions_without_textlines(slopes, all_found_textline_polygons, boxes_text, txt_con_org, contours_only_text_parent, index_by_text_par_con)
|
|
|
|
#slopes, all_found_textline_polygons, boxes_text, txt_con_org, contours_only_text_parent, index_by_text_par_con = self.delete_regions_without_textlines(slopes, all_found_textline_polygons, boxes_text, txt_con_org, contours_only_text_parent, index_by_text_par_con)
|
|
|
@ -4974,7 +5022,7 @@ class Eynollah:
|
|
|
|
all_found_textline_polygons = small_textlines_to_parent_adherence2(all_found_textline_polygons, textline_mask_tot_ea, num_col_classifier)
|
|
|
|
all_found_textline_polygons = small_textlines_to_parent_adherence2(all_found_textline_polygons, textline_mask_tot_ea, num_col_classifier)
|
|
|
|
all_found_textline_polygons_marginals, boxes_marginals, _, polygons_of_marginals, all_box_coord_marginals, _, slopes_marginals = self.get_slopes_and_deskew_new_curved(polygons_of_marginals, polygons_of_marginals, cv2.erode(textline_mask_tot_ea, kernel=KERNEL, iterations=2), image_page_rotated, boxes_marginals, text_only, num_col_classifier, scale_param, slope_deskew)
|
|
|
|
all_found_textline_polygons_marginals, boxes_marginals, _, polygons_of_marginals, all_box_coord_marginals, _, slopes_marginals = self.get_slopes_and_deskew_new_curved(polygons_of_marginals, polygons_of_marginals, cv2.erode(textline_mask_tot_ea, kernel=KERNEL, iterations=2), image_page_rotated, boxes_marginals, text_only, num_col_classifier, scale_param, slope_deskew)
|
|
|
|
all_found_textline_polygons_marginals = small_textlines_to_parent_adherence2(all_found_textline_polygons_marginals, textline_mask_tot_ea, num_col_classifier)
|
|
|
|
all_found_textline_polygons_marginals = small_textlines_to_parent_adherence2(all_found_textline_polygons_marginals, textline_mask_tot_ea, num_col_classifier)
|
|
|
|
#print("text region early 6 in %.1fs", time.time() - t0)
|
|
|
|
print("text region early 6 in %.1fs", time.time() - t0)
|
|
|
|
if self.full_layout:
|
|
|
|
if self.full_layout:
|
|
|
|
if np.abs(slope_deskew) >= SLOPE_THRESHOLD:
|
|
|
|
if np.abs(slope_deskew) >= SLOPE_THRESHOLD:
|
|
|
|
contours_only_text_parent_d_ordered = self.return_list_of_contours_with_desired_order(contours_only_text_parent_d_ordered, index_by_text_par_con)
|
|
|
|
contours_only_text_parent_d_ordered = self.return_list_of_contours_with_desired_order(contours_only_text_parent_d_ordered, index_by_text_par_con)
|
|
|
@ -5134,7 +5182,7 @@ class Eynollah:
|
|
|
|
self.logger.info("Job done in %.1fs", time.time() - t0)
|
|
|
|
self.logger.info("Job done in %.1fs", time.time() - t0)
|
|
|
|
if not self.dir_in:
|
|
|
|
if not self.dir_in:
|
|
|
|
return pcgts
|
|
|
|
return pcgts
|
|
|
|
#print("text region early 7 in %.1fs", time.time() - t0)
|
|
|
|
print("text region early 7 in %.1fs", time.time() - t0)
|
|
|
|
else:
|
|
|
|
else:
|
|
|
|
_ ,_, _, textline_mask_tot_ea, img_bin_light = self.get_regions_light_v(img_res, is_image_enhanced, num_col_classifier, skip_layout_and_reading_order=self.skip_layout_and_reading_order)
|
|
|
|
_ ,_, _, textline_mask_tot_ea, img_bin_light = self.get_regions_light_v(img_res, is_image_enhanced, num_col_classifier, skip_layout_and_reading_order=self.skip_layout_and_reading_order)
|
|
|
|
|
|
|
|
|
|
|
|