From 420a9ca252b3b19178820fa7d2ab78d9c6547cc2 Mon Sep 17 00:00:00 2001 From: Konstantin Baierer Date: Fri, 5 Feb 2021 18:45:14 +0100 Subject: [PATCH] more outfactoring run code to methods --- sbb_newspapers_org_image/eynollah.py | 272 +++++++++++++-------------- 1 file changed, 134 insertions(+), 138 deletions(-) diff --git a/sbb_newspapers_org_image/eynollah.py b/sbb_newspapers_org_image/eynollah.py index 1723730..be22618 100644 --- a/sbb_newspapers_org_image/eynollah.py +++ b/sbb_newspapers_org_image/eynollah.py @@ -2212,16 +2212,7 @@ class eynollah: self.logger.info("slope_deskew: %s", slope_deskew) return slope_deskew, slope_first - def run_marginals( - self, - image_page, - textline_mask_tot_ea, - mask_images, - mask_lines, - num_col_classifier, - slope_deskew, - text_regions_p_1 - ): + def run_marginals(self, image_page, textline_mask_tot_ea, mask_images, mask_lines, num_col_classifier, slope_deskew, text_regions_p_1): image_page_rotated, textline_mask_tot = image_page[:, :], textline_mask_tot_ea[:, :] textline_mask_tot[mask_images[:, :] == 1] = 0 @@ -2249,12 +2240,142 @@ class eynollah: self.plotter.save_plot_of_layout_main(text_regions_p, image_page) return textline_mask_tot, text_regions_p, image_page_rotated + def run_boxes_no_full_layout(self, image_page, textline_mask_tot, text_regions_p, slope_deskew, num_col_classifier): + self.logger.debug('enter run_boxes_no_full_layout') + if np.abs(slope_deskew) >= SLOPE_THRESHOLD: + image_page_rotated_n, textline_mask_tot_d, text_regions_p_1_n = rotation_not_90_func(image_page, textline_mask_tot, text_regions_p, slope_deskew) + text_regions_p_1_n = resize_image(text_regions_p_1_n, text_regions_p.shape[0], text_regions_p.shape[1]) + textline_mask_tot_d = resize_image(textline_mask_tot_d, text_regions_p.shape[0], text_regions_p.shape[1]) + regions_without_seperators_d = (text_regions_p_1_n[:, :] == 1) * 1 + regions_without_seperators = (text_regions_p[:, :] == 1) * 1 # ( (text_regions_p[:,:]==1) | (text_regions_p[:,:]==2) )*1 #self.return_regions_without_seperators_new(text_regions_p[:,:,0],img_only_regions) + + pixel_lines = 3 + if np.abs(slope_deskew) < SLOPE_THRESHOLD: + num_col, peaks_neg_fin, matrix_of_lines_ch, spliter_y_new, seperators_closeup_n = find_number_of_columns_in_document(np.repeat(text_regions_p[:, :, np.newaxis], 3, axis=2), num_col_classifier, pixel_lines) + + if np.abs(slope_deskew) >= SLOPE_THRESHOLD: + num_col_d, peaks_neg_fin_d, matrix_of_lines_ch_d, spliter_y_new_d, seperators_closeup_n_d = find_number_of_columns_in_document(np.repeat(text_regions_p_1_n[:, :, np.newaxis], 3, axis=2), num_col_classifier, pixel_lines) + K.clear_session() + gc.collect() + + self.logger.info("num_col_classifier: %s", num_col_classifier) + + if num_col_classifier >= 3: + if np.abs(slope_deskew) < SLOPE_THRESHOLD: + regions_without_seperators = regions_without_seperators.astype(np.uint8) + regions_without_seperators = cv2.erode(regions_without_seperators[:, :], self.kernel, iterations=6) + #random_pixels_for_image = np.random.randn(regions_without_seperators.shape[0], regions_without_seperators.shape[1]) + #random_pixels_for_image[random_pixels_for_image < -0.5] = 0 + #random_pixels_for_image[random_pixels_for_image != 0] = 1 + #regions_without_seperators[(random_pixels_for_image[:, :] == 1) & (text_regions_p[:, :] == 2)] = 1 + else: + regions_without_seperators_d = regions_without_seperators_d.astype(np.uint8) + regions_without_seperators_d = cv2.erode(regions_without_seperators_d[:, :], self.kernel, iterations=6) + #random_pixels_for_image = np.random.randn(regions_without_seperators_d.shape[0], regions_without_seperators_d.shape[1]) + #random_pixels_for_image[random_pixels_for_image < -0.5] = 0 + #random_pixels_for_image[random_pixels_for_image != 0] = 1 + + #regions_without_seperators_d[(random_pixels_for_image[:, :] == 1) & (text_regions_p_1_n[:, :] == 2)] = 1 + + t1 = time.time() + if np.abs(slope_deskew) < SLOPE_THRESHOLD: + boxes = return_boxes_of_images_by_order_of_reading_new(spliter_y_new, regions_without_seperators, matrix_of_lines_ch, num_col_classifier) + else: + boxes_d = return_boxes_of_images_by_order_of_reading_new(spliter_y_new_d, regions_without_seperators_d, matrix_of_lines_ch_d, num_col_classifier) + self.logger.debug("len(boxes): %s", len(boxes)) + self.logger.info("detecting boxes took %ss", str(time.time() - t1)) + img_revised_tab = text_regions_p[:, :] + polygons_of_images = return_contours_of_interested_region(img_revised_tab, 2) + + # plt.imshow(img_revised_tab) + # plt.show() + K.clear_session() + self.logger.debug('exit run_boxes_no_full_layout') + return polygons_of_images, img_revised_tab, text_regions_p_1_n, textline_mask_tot_d, regions_without_seperators_d + + def run_boxes_full_layout(self, image_page, textline_mask_tot, text_regions_p, slope_deskew, num_col_classifier, img_only_regions): + self.logger.debug('enter run_boxes_full_layout') + # set first model with second model + text_regions_p[:, :][text_regions_p[:, :] == 2] = 5 + text_regions_p[:, :][text_regions_p[:, :] == 3] = 6 + text_regions_p[:, :][text_regions_p[:, :] == 4] = 8 + + K.clear_session() + # gc.collect() + image_page = image_page.astype(np.uint8) + + # print(type(image_page)) + regions_fully, regions_fully_only_drop = self.extract_text_regions(image_page, True, cols=num_col_classifier) + text_regions_p[:,:][regions_fully[:,:,0]==6]=6 + + regions_fully_only_drop = put_drop_out_from_only_drop_model(regions_fully_only_drop, text_regions_p) + regions_fully[:, :, 0][regions_fully_only_drop[:, :, 0] == 4] = 4 + K.clear_session() + gc.collect() + + # plt.imshow(regions_fully[:,:,0]) + # plt.show() + + regions_fully = putt_bb_of_drop_capitals_of_model_in_patches_in_layout(regions_fully) + + # plt.imshow(regions_fully[:,:,0]) + # plt.show() + + K.clear_session() + gc.collect() + regions_fully_np, _ = self.extract_text_regions(image_page, False, cols=num_col_classifier) + + # plt.imshow(regions_fully_np[:,:,0]) + # plt.show() + + if num_col_classifier > 2: + regions_fully_np[:, :, 0][regions_fully_np[:, :, 0] == 4] = 0 + else: + regions_fully_np = filter_small_drop_capitals_from_no_patch_layout(regions_fully_np, text_regions_p) + + # plt.imshow(regions_fully_np[:,:,0]) + # plt.show() + + K.clear_session() + gc.collect() + + # plt.imshow(regions_fully[:,:,0]) + # plt.show() + + regions_fully = boosting_headers_by_longshot_region_segmentation(regions_fully, regions_fully_np, img_only_regions) + + # plt.imshow(regions_fully[:,:,0]) + # plt.show() + + text_regions_p[:, :][regions_fully[:, :, 0] == 4] = 4 + text_regions_p[:, :][regions_fully_np[:, :, 0] == 4] = 4 + + #plt.imshow(text_regions_p) + #plt.show() + + if np.abs(slope_deskew) >= SLOPE_THRESHOLD: + image_page_rotated_n, textline_mask_tot_d, text_regions_p_1_n, regions_fully_n = rotation_not_90_func_full_layout(image_page, textline_mask_tot, text_regions_p, regions_fully, slope_deskew) + + text_regions_p_1_n = resize_image(text_regions_p_1_n, text_regions_p.shape[0], text_regions_p.shape[1]) + textline_mask_tot_d = resize_image(textline_mask_tot_d, text_regions_p.shape[0], text_regions_p.shape[1]) + regions_fully_n = resize_image(regions_fully_n, text_regions_p.shape[0], text_regions_p.shape[1]) + regions_without_seperators_d = (text_regions_p_1_n[:, :] == 1) * 1 + + regions_without_seperators = (text_regions_p[:, :] == 1) * 1 # ( (text_regions_p[:,:]==1) | (text_regions_p[:,:]==2) )*1 #self.return_regions_without_seperators_new(text_regions_p[:,:,0],img_only_regions) + + K.clear_session() + gc.collect() + img_revised_tab = np.copy(text_regions_p[:, :]) + pixel_img = 5 + polygons_of_images = return_contours_of_interested_region(img_revised_tab, pixel_img) + self.logger.debug('exit run_boxes_full_layout') + return polygons_of_images, img_revised_tab, text_regions_p_1_n, textline_mask_tot_d, regions_without_seperators_d, regions_fully + def run(self): """ Get image and scales, then extract the page of scanned image """ self.logger.debug("enter run") - is_image_enhanced = False t1 = time.time() img_res, is_image_enhanced, num_column_is_classified = self.run_enhancement() @@ -2289,139 +2410,14 @@ class eynollah: t1 = time.time() if not self.full_layout: - - if np.abs(slope_deskew) >= SLOPE_THRESHOLD: - image_page_rotated_n, textline_mask_tot_d, text_regions_p_1_n = rotation_not_90_func(image_page, textline_mask_tot, text_regions_p, slope_deskew) - text_regions_p_1_n = resize_image(text_regions_p_1_n, text_regions_p.shape[0], text_regions_p.shape[1]) - textline_mask_tot_d = resize_image(textline_mask_tot_d, text_regions_p.shape[0], text_regions_p.shape[1]) - regions_without_seperators_d = (text_regions_p_1_n[:, :] == 1) * 1 - regions_without_seperators = (text_regions_p[:, :] == 1) * 1 # ( (text_regions_p[:,:]==1) | (text_regions_p[:,:]==2) )*1 #self.return_regions_without_seperators_new(text_regions_p[:,:,0],img_only_regions) - - pixel_lines = 3 - if np.abs(slope_deskew) < SLOPE_THRESHOLD: - num_col, peaks_neg_fin, matrix_of_lines_ch, spliter_y_new, seperators_closeup_n = find_number_of_columns_in_document(np.repeat(text_regions_p[:, :, np.newaxis], 3, axis=2), num_col_classifier, pixel_lines) - - if np.abs(slope_deskew) >= SLOPE_THRESHOLD: - num_col_d, peaks_neg_fin_d, matrix_of_lines_ch_d, spliter_y_new_d, seperators_closeup_n_d = find_number_of_columns_in_document(np.repeat(text_regions_p_1_n[:, :, np.newaxis], 3, axis=2), num_col_classifier, pixel_lines) - K.clear_session() - gc.collect() - - self.logger.info("num_col_classifier: %s", num_col_classifier) - - if num_col_classifier >= 3: - if np.abs(slope_deskew) < SLOPE_THRESHOLD: - regions_without_seperators = regions_without_seperators.astype(np.uint8) - regions_without_seperators = cv2.erode(regions_without_seperators[:, :], self.kernel, iterations=6) - #random_pixels_for_image = np.random.randn(regions_without_seperators.shape[0], regions_without_seperators.shape[1]) - #random_pixels_for_image[random_pixels_for_image < -0.5] = 0 - #random_pixels_for_image[random_pixels_for_image != 0] = 1 - #regions_without_seperators[(random_pixels_for_image[:, :] == 1) & (text_regions_p[:, :] == 2)] = 1 - else: - regions_without_seperators_d = regions_without_seperators_d.astype(np.uint8) - regions_without_seperators_d = cv2.erode(regions_without_seperators_d[:, :], self.kernel, iterations=6) - #random_pixels_for_image = np.random.randn(regions_without_seperators_d.shape[0], regions_without_seperators_d.shape[1]) - #random_pixels_for_image[random_pixels_for_image < -0.5] = 0 - #random_pixels_for_image[random_pixels_for_image != 0] = 1 - - #regions_without_seperators_d[(random_pixels_for_image[:, :] == 1) & (text_regions_p_1_n[:, :] == 2)] = 1 - - if np.abs(slope_deskew) < SLOPE_THRESHOLD: - boxes = return_boxes_of_images_by_order_of_reading_new(spliter_y_new, regions_without_seperators, matrix_of_lines_ch, num_col_classifier) - else: - boxes_d = return_boxes_of_images_by_order_of_reading_new(spliter_y_new_d, regions_without_seperators_d, matrix_of_lines_ch_d, num_col_classifier) - - self.logger.debug("len(boxes): %s", len(boxes)) - self.logger.info("detecting boxes took %ss", str(time.time() - t1)) - t1 = time.time() - img_revised_tab = text_regions_p[:, :] - pixel_img = 2 - polygons_of_images = return_contours_of_interested_region(img_revised_tab, pixel_img) - - # plt.imshow(img_revised_tab) - # plt.show() - K.clear_session() + polygons_of_images, img_revised_tab, text_regions_p_1_n, textline_mask_tot_d, regions_without_seperators_d = self.run_boxes_no_full_layout(image_page, textline_mask_tot, text_regions_p, slope_deskew, num_col_classifier) pixel_img = 4 min_area_mar = 0.00001 polygons_of_marginals = return_contours_of_interested_region(text_regions_p, pixel_img, min_area_mar) if self.full_layout: - # set first model with second model - text_regions_p[:, :][text_regions_p[:, :] == 2] = 5 - text_regions_p[:, :][text_regions_p[:, :] == 3] = 6 - text_regions_p[:, :][text_regions_p[:, :] == 4] = 8 - - K.clear_session() - # gc.collect() - image_page = image_page.astype(np.uint8) - - # print(type(image_page)) - regions_fully, regions_fully_only_drop = self.extract_text_regions(image_page, True, cols=num_col_classifier) - text_regions_p[:,:][regions_fully[:,:,0]==6]=6 - - regions_fully_only_drop = put_drop_out_from_only_drop_model(regions_fully_only_drop, text_regions_p) - regions_fully[:, :, 0][regions_fully_only_drop[:, :, 0] == 4] = 4 - K.clear_session() - gc.collect() - - # plt.imshow(regions_fully[:,:,0]) - # plt.show() - - regions_fully = putt_bb_of_drop_capitals_of_model_in_patches_in_layout(regions_fully) - - # plt.imshow(regions_fully[:,:,0]) - # plt.show() - - K.clear_session() - gc.collect() - regions_fully_np, _ = self.extract_text_regions(image_page, False, cols=num_col_classifier) - - # plt.imshow(regions_fully_np[:,:,0]) - # plt.show() - - if num_col_classifier > 2: - regions_fully_np[:, :, 0][regions_fully_np[:, :, 0] == 4] = 0 - else: - regions_fully_np = filter_small_drop_capitals_from_no_patch_layout(regions_fully_np, text_regions_p) - - # plt.imshow(regions_fully_np[:,:,0]) - # plt.show() - - K.clear_session() - gc.collect() - - # plt.imshow(regions_fully[:,:,0]) - # plt.show() - - regions_fully = boosting_headers_by_longshot_region_segmentation(regions_fully, regions_fully_np, img_only_regions) - - # plt.imshow(regions_fully[:,:,0]) - # plt.show() - - text_regions_p[:, :][regions_fully[:, :, 0] == 4] = 4 - text_regions_p[:, :][regions_fully_np[:, :, 0] == 4] = 4 - - #plt.imshow(text_regions_p) - #plt.show() - - if np.abs(slope_deskew) >= SLOPE_THRESHOLD: - image_page_rotated_n, textline_mask_tot_d, text_regions_p_1_n, regions_fully_n = rotation_not_90_func_full_layout(image_page, textline_mask_tot, text_regions_p, regions_fully, slope_deskew) - - text_regions_p_1_n = resize_image(text_regions_p_1_n, text_regions_p.shape[0], text_regions_p.shape[1]) - textline_mask_tot_d = resize_image(textline_mask_tot_d, text_regions_p.shape[0], text_regions_p.shape[1]) - regions_fully_n = resize_image(regions_fully_n, text_regions_p.shape[0], text_regions_p.shape[1]) - regions_without_seperators_d = (text_regions_p_1_n[:, :] == 1) * 1 - - regions_without_seperators = (text_regions_p[:, :] == 1) * 1 # ( (text_regions_p[:,:]==1) | (text_regions_p[:,:]==2) )*1 #self.return_regions_without_seperators_new(text_regions_p[:,:,0],img_only_regions) - - K.clear_session() - gc.collect() - img_revised_tab = np.copy(text_regions_p[:, :]) - self.logger.info("detection of full layout took %ss", str(time.time() - t1)) - t1 = time.time() - pixel_img = 5 - polygons_of_images = return_contours_of_interested_region(img_revised_tab, pixel_img) - + polygons_of_images, img_revised_tab, text_regions_p_1_n, textline_mask_tot_d, regions_without_seperators_d, regions_fully = self.run_boxes_full_layout(image_page, textline_mask_tot, text_regions_p, slope_deskew, num_col_classifier, img_only_regions) # plt.imshow(img_revised_tab) # plt.show()