|
|
|
@ -1866,9 +1866,14 @@ class eynollah:
|
|
|
|
|
|
|
|
|
|
#all_box_coord.append(crop_coor)
|
|
|
|
|
|
|
|
|
|
mask_textline=np.zeros((textline_mask_tot_ea.shape))
|
|
|
|
|
|
|
|
|
|
mask_textline=cv2.fillPoly(mask_textline,pts=[contours_per_process[mv]],color=(1,1,1))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
denoised=None
|
|
|
|
|
all_text_region_raw=textline_mask_tot_ea[boxes_text[mv][1]:boxes_text[mv][1]+boxes_text[mv][3] , boxes_text[mv][0]:boxes_text[mv][0]+boxes_text[mv][2] ]
|
|
|
|
|
all_text_region_raw=(textline_mask_tot_ea*mask_textline[:,:])[boxes_text[mv][1]:boxes_text[mv][1]+boxes_text[mv][3] , boxes_text[mv][0]:boxes_text[mv][0]+boxes_text[mv][2] ]
|
|
|
|
|
all_text_region_raw=all_text_region_raw.astype(np.uint8)
|
|
|
|
|
|
|
|
|
|
img_int_p=all_text_region_raw[:,:]#self.all_text_region_raw[mv]
|
|
|
|
@ -4232,106 +4237,106 @@ class eynollah:
|
|
|
|
|
def find_num_col_deskew(self,regions_without_seperators,sigma_,multiplier=3.8 ):
|
|
|
|
|
regions_without_seperators_0=regions_without_seperators[:,:].sum(axis=1)
|
|
|
|
|
|
|
|
|
|
meda_n_updown=regions_without_seperators_0[len(regions_without_seperators_0)::-1]
|
|
|
|
|
##meda_n_updown=regions_without_seperators_0[len(regions_without_seperators_0)::-1]
|
|
|
|
|
|
|
|
|
|
first_nonzero=(next((i for i, x in enumerate(regions_without_seperators_0) if x), 0))
|
|
|
|
|
last_nonzero=(next((i for i, x in enumerate(meda_n_updown) if x), 0))
|
|
|
|
|
##first_nonzero=(next((i for i, x in enumerate(regions_without_seperators_0) if x), 0))
|
|
|
|
|
##last_nonzero=(next((i for i, x in enumerate(meda_n_updown) if x), 0))
|
|
|
|
|
|
|
|
|
|
last_nonzero=len(regions_without_seperators_0)-last_nonzero
|
|
|
|
|
##last_nonzero=len(regions_without_seperators_0)-last_nonzero
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
y=regions_without_seperators_0#[first_nonzero:last_nonzero]
|
|
|
|
|
|
|
|
|
|
y_help=np.zeros(len(y)+20)
|
|
|
|
|
##y_help=np.zeros(len(y)+20)
|
|
|
|
|
|
|
|
|
|
y_help[10:len(y)+10]=y
|
|
|
|
|
##y_help[10:len(y)+10]=y
|
|
|
|
|
|
|
|
|
|
x=np.array( range(len(y)) )
|
|
|
|
|
##x=np.array( range(len(y)) )
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
zneg_rev=-y_help+np.max(y_help)
|
|
|
|
|
##zneg_rev=-y_help+np.max(y_help)
|
|
|
|
|
|
|
|
|
|
zneg=np.zeros(len(zneg_rev)+20)
|
|
|
|
|
##zneg=np.zeros(len(zneg_rev)+20)
|
|
|
|
|
|
|
|
|
|
zneg[10:len(zneg_rev)+10]=zneg_rev
|
|
|
|
|
##zneg[10:len(zneg_rev)+10]=zneg_rev
|
|
|
|
|
|
|
|
|
|
z=gaussian_filter1d(y, sigma_)
|
|
|
|
|
zneg= gaussian_filter1d(zneg, sigma_)
|
|
|
|
|
###zneg= gaussian_filter1d(zneg, sigma_)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
peaks_neg, _ = find_peaks(zneg, height=0)
|
|
|
|
|
peaks, _ = find_peaks(z, height=0)
|
|
|
|
|
###peaks_neg, _ = find_peaks(zneg, height=0)
|
|
|
|
|
###peaks, _ = find_peaks(z, height=0)
|
|
|
|
|
|
|
|
|
|
peaks_neg=peaks_neg-10-10
|
|
|
|
|
###peaks_neg=peaks_neg-10-10
|
|
|
|
|
|
|
|
|
|
#print(np.std(z),'np.std(z)np.std(z)np.std(z)')
|
|
|
|
|
####print(np.std(z),'np.std(z)np.std(z)np.std(z)')
|
|
|
|
|
|
|
|
|
|
##plt.plot(z)
|
|
|
|
|
##plt.show()
|
|
|
|
|
#####plt.plot(z)
|
|
|
|
|
#####plt.show()
|
|
|
|
|
|
|
|
|
|
##plt.imshow(regions_without_seperators)
|
|
|
|
|
##plt.show()
|
|
|
|
|
"""
|
|
|
|
|
last_nonzero=last_nonzero-0#100
|
|
|
|
|
first_nonzero=first_nonzero+0#+100
|
|
|
|
|
#####plt.imshow(regions_without_seperators)
|
|
|
|
|
#####plt.show()
|
|
|
|
|
###"""
|
|
|
|
|
###last_nonzero=last_nonzero-0#100
|
|
|
|
|
###first_nonzero=first_nonzero+0#+100
|
|
|
|
|
|
|
|
|
|
peaks_neg=peaks_neg[(peaks_neg>first_nonzero) & (peaks_neg<last_nonzero)]
|
|
|
|
|
###peaks_neg=peaks_neg[(peaks_neg>first_nonzero) & (peaks_neg<last_nonzero)]
|
|
|
|
|
|
|
|
|
|
peaks=peaks[(peaks>.06*regions_without_seperators.shape[1]) & (peaks<0.94*regions_without_seperators.shape[1])]
|
|
|
|
|
"""
|
|
|
|
|
interest_pos=z[peaks]
|
|
|
|
|
###peaks=peaks[(peaks>.06*regions_without_seperators.shape[1]) & (peaks<0.94*regions_without_seperators.shape[1])]
|
|
|
|
|
###"""
|
|
|
|
|
###interest_pos=z[peaks]
|
|
|
|
|
|
|
|
|
|
interest_pos=interest_pos[interest_pos>10]
|
|
|
|
|
###interest_pos=interest_pos[interest_pos>10]
|
|
|
|
|
|
|
|
|
|
interest_neg=z[peaks_neg]
|
|
|
|
|
###interest_neg=z[peaks_neg]
|
|
|
|
|
|
|
|
|
|
min_peaks_pos=np.mean(interest_pos)
|
|
|
|
|
min_peaks_neg=0#np.min(interest_neg)
|
|
|
|
|
###min_peaks_pos=np.mean(interest_pos)
|
|
|
|
|
###min_peaks_neg=0#np.min(interest_neg)
|
|
|
|
|
|
|
|
|
|
dis_talaei=(min_peaks_pos-min_peaks_neg)/multiplier
|
|
|
|
|
#print(interest_pos)
|
|
|
|
|
grenze=min_peaks_pos-dis_talaei#np.mean(y[peaks_neg[0]:peaks_neg[len(peaks_neg)-1]])-np.std(y[peaks_neg[0]:peaks_neg[len(peaks_neg)-1]])/2.0
|
|
|
|
|
###dis_talaei=(min_peaks_pos-min_peaks_neg)/multiplier
|
|
|
|
|
####print(interest_pos)
|
|
|
|
|
###grenze=min_peaks_pos-dis_talaei#np.mean(y[peaks_neg[0]:peaks_neg[len(peaks_neg)-1]])-np.std(y[peaks_neg[0]:peaks_neg[len(peaks_neg)-1]])/2.0
|
|
|
|
|
|
|
|
|
|
interest_neg_fin=interest_neg[(interest_neg<grenze)]
|
|
|
|
|
peaks_neg_fin=peaks_neg[(interest_neg<grenze)]
|
|
|
|
|
interest_neg_fin=interest_neg[(interest_neg<grenze)]
|
|
|
|
|
###interest_neg_fin=interest_neg[(interest_neg<grenze)]
|
|
|
|
|
###peaks_neg_fin=peaks_neg[(interest_neg<grenze)]
|
|
|
|
|
###interest_neg_fin=interest_neg[(interest_neg<grenze)]
|
|
|
|
|
|
|
|
|
|
"""
|
|
|
|
|
if interest_neg[0]<0.1:
|
|
|
|
|
interest_neg=interest_neg[1:]
|
|
|
|
|
if interest_neg[len(interest_neg)-1]<0.1:
|
|
|
|
|
interest_neg=interest_neg[:len(interest_neg)-1]
|
|
|
|
|
###"""
|
|
|
|
|
###if interest_neg[0]<0.1:
|
|
|
|
|
###interest_neg=interest_neg[1:]
|
|
|
|
|
###if interest_neg[len(interest_neg)-1]<0.1:
|
|
|
|
|
###interest_neg=interest_neg[:len(interest_neg)-1]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
min_peaks_pos=np.min(interest_pos)
|
|
|
|
|
min_peaks_neg=0#np.min(interest_neg)
|
|
|
|
|
###min_peaks_pos=np.min(interest_pos)
|
|
|
|
|
###min_peaks_neg=0#np.min(interest_neg)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
dis_talaei=(min_peaks_pos-min_peaks_neg)/multiplier
|
|
|
|
|
grenze=min_peaks_pos-dis_talaei#np.mean(y[peaks_neg[0]:peaks_neg[len(peaks_neg)-1]])-np.std(y[peaks_neg[0]:peaks_neg[len(peaks_neg)-1]])/2.0
|
|
|
|
|
"""
|
|
|
|
|
#interest_neg_fin=interest_neg#[(interest_neg<grenze)]
|
|
|
|
|
#peaks_neg_fin=peaks_neg#[(interest_neg<grenze)]
|
|
|
|
|
#interest_neg_fin=interest_neg#[(interest_neg<grenze)]
|
|
|
|
|
###dis_talaei=(min_peaks_pos-min_peaks_neg)/multiplier
|
|
|
|
|
###grenze=min_peaks_pos-dis_talaei#np.mean(y[peaks_neg[0]:peaks_neg[len(peaks_neg)-1]])-np.std(y[peaks_neg[0]:peaks_neg[len(peaks_neg)-1]])/2.0
|
|
|
|
|
###"""
|
|
|
|
|
####interest_neg_fin=interest_neg#[(interest_neg<grenze)]
|
|
|
|
|
####peaks_neg_fin=peaks_neg#[(interest_neg<grenze)]
|
|
|
|
|
####interest_neg_fin=interest_neg#[(interest_neg<grenze)]
|
|
|
|
|
|
|
|
|
|
num_col=(len(interest_neg_fin))+1
|
|
|
|
|
###num_col=(len(interest_neg_fin))+1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
p_l=0
|
|
|
|
|
p_u=len(y)-1
|
|
|
|
|
p_m=int(len(y)/2.)
|
|
|
|
|
p_g_l=int(len(y)/3.)
|
|
|
|
|
p_g_u=len(y)-int(len(y)/3.)
|
|
|
|
|
###p_l=0
|
|
|
|
|
###p_u=len(y)-1
|
|
|
|
|
###p_m=int(len(y)/2.)
|
|
|
|
|
###p_g_l=int(len(y)/3.)
|
|
|
|
|
###p_g_u=len(y)-int(len(y)/3.)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
diff_peaks=np.abs( np.diff(peaks_neg_fin) )
|
|
|
|
|
diff_peaks_annormal=diff_peaks[diff_peaks<30]
|
|
|
|
|
###diff_peaks=np.abs( np.diff(peaks_neg_fin) )
|
|
|
|
|
###diff_peaks_annormal=diff_peaks[diff_peaks<30]
|
|
|
|
|
|
|
|
|
|
#print(len(interest_neg_fin),np.mean(interest_neg_fin))
|
|
|
|
|
return interest_neg_fin,np.std(z)
|
|
|
|
|
return np.std(z)#interest_neg_fin,np.std(z)
|
|
|
|
|
def return_deskew_slop(self,img_patch_org,sigma_des,main_page=False):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@ -4359,12 +4364,26 @@ class eynollah:
|
|
|
|
|
img_int=np.zeros((img_patch_org.shape[0],img_patch_org.shape[1]))
|
|
|
|
|
img_int[:,:]=img_patch_org[:,:]#img_patch_org[:,:,0]
|
|
|
|
|
|
|
|
|
|
img_resized=np.zeros((int( img_int.shape[0]*(1.8) ) , int( img_int.shape[1]*(2.6) ) ))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
max_shape=np.max(img_int.shape)
|
|
|
|
|
img_resized=np.zeros((int( max_shape*(1.1) ) , int( max_shape*(1.1) ) ))
|
|
|
|
|
|
|
|
|
|
img_resized[ int( img_int.shape[0]*(.4)):int( img_int.shape[0]*(.4))+img_int.shape[0] , int( img_int.shape[1]*(.8)):int( img_int.shape[1]*(.8))+img_int.shape[1] ]=img_int[:,:]
|
|
|
|
|
|
|
|
|
|
onset_x=int((img_resized.shape[1]-img_int.shape[1])/2.)
|
|
|
|
|
onset_y=int((img_resized.shape[0]-img_int.shape[0])/2.)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#img_resized=np.zeros((int( img_int.shape[0]*(1.8) ) , int( img_int.shape[1]*(2.6) ) ))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#img_resized[ int( img_int.shape[0]*(.4)):int( img_int.shape[0]*(.4))+img_int.shape[0] , int( img_int.shape[1]*(.8)):int( img_int.shape[1]*(.8))+img_int.shape[1] ]=img_int[:,:]
|
|
|
|
|
img_resized[ onset_y:onset_y+img_int.shape[0] , onset_x:onset_x+img_int.shape[1] ]=img_int[:,:]
|
|
|
|
|
|
|
|
|
|
#print(img_resized.shape,'img_resizedshape')
|
|
|
|
|
#plt.imshow(img_resized)
|
|
|
|
|
#plt.show()
|
|
|
|
|
|
|
|
|
|
if main_page and img_patch_org.shape[1]>img_patch_org.shape[0]:
|
|
|
|
|
|
|
|
|
@ -4372,12 +4391,12 @@ class eynollah:
|
|
|
|
|
#plt.show()
|
|
|
|
|
angels=np.array([-45, 0 , 45 , 90 , ])#np.linspace(-12,12,100)#np.array([0 , 45 , 90 , -45])
|
|
|
|
|
|
|
|
|
|
res=[]
|
|
|
|
|
num_of_peaks=[]
|
|
|
|
|
index_cor=[]
|
|
|
|
|
#res=[]
|
|
|
|
|
#num_of_peaks=[]
|
|
|
|
|
#index_cor=[]
|
|
|
|
|
var_res=[]
|
|
|
|
|
|
|
|
|
|
indexer=0
|
|
|
|
|
#indexer=0
|
|
|
|
|
for rot in angels:
|
|
|
|
|
img_rot=self.rotate_image(img_resized,rot)
|
|
|
|
|
#plt.imshow(img_rot)
|
|
|
|
@ -4389,27 +4408,31 @@ class eynollah:
|
|
|
|
|
#neg_peaks,var_spectrum=self.find_num_col_deskew(img_rot,sigma_des,20.3 )
|
|
|
|
|
#print(var_spectrum,'var_spectrum')
|
|
|
|
|
try:
|
|
|
|
|
neg_peaks,var_spectrum=self.find_num_col_deskew(img_rot,sigma_des,20.3 )
|
|
|
|
|
#print(rot,var_spectrum,'var_spectrum')
|
|
|
|
|
res_me=np.mean(neg_peaks)
|
|
|
|
|
if res_me==0:
|
|
|
|
|
res_me=1000000000000000000000
|
|
|
|
|
else:
|
|
|
|
|
pass
|
|
|
|
|
var_spectrum=self.find_num_col_deskew(img_rot,sigma_des,20.3 )
|
|
|
|
|
##print(rot,var_spectrum,'var_spectrum')
|
|
|
|
|
#res_me=np.mean(neg_peaks)
|
|
|
|
|
#if res_me==0:
|
|
|
|
|
#res_me=1000000000000000000000
|
|
|
|
|
#else:
|
|
|
|
|
#pass
|
|
|
|
|
|
|
|
|
|
res_num=len(neg_peaks)
|
|
|
|
|
#res_num=len(neg_peaks)
|
|
|
|
|
except:
|
|
|
|
|
res_me=1000000000000000000000
|
|
|
|
|
res_num=0
|
|
|
|
|
#res_me=1000000000000000000000
|
|
|
|
|
#res_num=0
|
|
|
|
|
var_spectrum=0
|
|
|
|
|
if self.isNaN(res_me):
|
|
|
|
|
pass
|
|
|
|
|
else:
|
|
|
|
|
res.append( res_me )
|
|
|
|
|
#if self.isNaN(res_me):
|
|
|
|
|
#pass
|
|
|
|
|
#else:
|
|
|
|
|
#res.append( res_me )
|
|
|
|
|
#var_res.append(var_spectrum)
|
|
|
|
|
#num_of_peaks.append( res_num )
|
|
|
|
|
#index_cor.append(indexer)
|
|
|
|
|
#indexer=indexer+1
|
|
|
|
|
|
|
|
|
|
var_res.append(var_spectrum)
|
|
|
|
|
num_of_peaks.append( res_num )
|
|
|
|
|
index_cor.append(indexer)
|
|
|
|
|
indexer=indexer+1
|
|
|
|
|
#index_cor.append(indexer)
|
|
|
|
|
#indexer=indexer+1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
try:
|
|
|
|
@ -4422,12 +4445,12 @@ class eynollah:
|
|
|
|
|
|
|
|
|
|
angels=np.linspace(ang_int-22.5,ang_int+22.5,100)
|
|
|
|
|
|
|
|
|
|
res=[]
|
|
|
|
|
num_of_peaks=[]
|
|
|
|
|
index_cor=[]
|
|
|
|
|
#res=[]
|
|
|
|
|
#num_of_peaks=[]
|
|
|
|
|
#index_cor=[]
|
|
|
|
|
var_res=[]
|
|
|
|
|
|
|
|
|
|
indexer=0
|
|
|
|
|
|
|
|
|
|
for rot in angels:
|
|
|
|
|
img_rot=self.rotate_image(img_resized,rot)
|
|
|
|
|
##plt.imshow(img_rot)
|
|
|
|
@ -4435,27 +4458,13 @@ class eynollah:
|
|
|
|
|
img_rot[img_rot!=0]=1
|
|
|
|
|
#res_me=np.mean(self.find_num_col_deskew(img_rot,sigma_des,2.0 ))
|
|
|
|
|
try:
|
|
|
|
|
neg_peaks,var_spectrum=self.find_num_col_deskew(img_rot,sigma_des,20.3 )
|
|
|
|
|
#print(indexer,'indexer')
|
|
|
|
|
res_me=np.mean(neg_peaks)
|
|
|
|
|
if res_me==0:
|
|
|
|
|
res_me=1000000000000000000000
|
|
|
|
|
else:
|
|
|
|
|
pass
|
|
|
|
|
var_spectrum=self.find_num_col_deskew(img_rot,sigma_des,20.3 )
|
|
|
|
|
|
|
|
|
|
res_num=len(neg_peaks)
|
|
|
|
|
except:
|
|
|
|
|
res_me=1000000000000000000000
|
|
|
|
|
res_num=0
|
|
|
|
|
var_spectrum=0
|
|
|
|
|
if self.isNaN(res_me):
|
|
|
|
|
pass
|
|
|
|
|
else:
|
|
|
|
|
res.append( res_me )
|
|
|
|
|
|
|
|
|
|
var_res.append(var_spectrum)
|
|
|
|
|
num_of_peaks.append( res_num )
|
|
|
|
|
index_cor.append(indexer)
|
|
|
|
|
indexer=indexer+1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@ -4472,12 +4481,9 @@ class eynollah:
|
|
|
|
|
#plt.show()
|
|
|
|
|
angels=np.linspace(-12,12,100)#np.array([0 , 45 , 90 , -45])
|
|
|
|
|
|
|
|
|
|
res=[]
|
|
|
|
|
num_of_peaks=[]
|
|
|
|
|
index_cor=[]
|
|
|
|
|
|
|
|
|
|
var_res=[]
|
|
|
|
|
|
|
|
|
|
indexer=0
|
|
|
|
|
for rot in angels:
|
|
|
|
|
img_rot=self.rotate_image(img_resized,rot)
|
|
|
|
|
#plt.imshow(img_rot)
|
|
|
|
@ -4489,30 +4495,16 @@ class eynollah:
|
|
|
|
|
#neg_peaks,var_spectrum=self.find_num_col_deskew(img_rot,sigma_des,20.3 )
|
|
|
|
|
#print(var_spectrum,'var_spectrum')
|
|
|
|
|
try:
|
|
|
|
|
neg_peaks,var_spectrum=self.find_num_col_deskew(img_rot,sigma_des,20.3 )
|
|
|
|
|
#print(rot,var_spectrum,'var_spectrum')
|
|
|
|
|
res_me=np.mean(neg_peaks)
|
|
|
|
|
if res_me==0:
|
|
|
|
|
res_me=1000000000000000000000
|
|
|
|
|
else:
|
|
|
|
|
pass
|
|
|
|
|
var_spectrum=self.find_num_col_deskew(img_rot,sigma_des,20.3 )
|
|
|
|
|
|
|
|
|
|
res_num=len(neg_peaks)
|
|
|
|
|
except:
|
|
|
|
|
res_me=1000000000000000000000
|
|
|
|
|
res_num=0
|
|
|
|
|
var_spectrum=0
|
|
|
|
|
if self.isNaN(res_me):
|
|
|
|
|
pass
|
|
|
|
|
else:
|
|
|
|
|
res.append( res_me )
|
|
|
|
|
|
|
|
|
|
var_res.append(var_spectrum)
|
|
|
|
|
num_of_peaks.append( res_num )
|
|
|
|
|
index_cor.append(indexer)
|
|
|
|
|
indexer=indexer+1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if self.dir_of_all is not None:
|
|
|
|
|
print('galdi?')
|
|
|
|
|
#print('galdi?')
|
|
|
|
|
plt.figure(figsize=(60,30))
|
|
|
|
|
plt.rcParams['font.size']='50'
|
|
|
|
|
plt.plot(angels,np.array(var_res),'-o',markersize=25,linewidth=4)
|
|
|
|
@ -4537,12 +4529,8 @@ class eynollah:
|
|
|
|
|
|
|
|
|
|
angels=np.linspace(-90,-12,100)
|
|
|
|
|
|
|
|
|
|
res=[]
|
|
|
|
|
num_of_peaks=[]
|
|
|
|
|
index_cor=[]
|
|
|
|
|
var_res=[]
|
|
|
|
|
|
|
|
|
|
indexer=0
|
|
|
|
|
for rot in angels:
|
|
|
|
|
img_rot=self.rotate_image(img_resized,rot)
|
|
|
|
|
##plt.imshow(img_rot)
|
|
|
|
@ -4550,27 +4538,11 @@ class eynollah:
|
|
|
|
|
img_rot[img_rot!=0]=1
|
|
|
|
|
#res_me=np.mean(self.find_num_col_deskew(img_rot,sigma_des,2.0 ))
|
|
|
|
|
try:
|
|
|
|
|
neg_peaks,var_spectrum=self.find_num_col_deskew(img_rot,sigma_des,20.3 )
|
|
|
|
|
#print(indexer,'indexer')
|
|
|
|
|
res_me=np.mean(neg_peaks)
|
|
|
|
|
if res_me==0:
|
|
|
|
|
res_me=1000000000000000000000
|
|
|
|
|
else:
|
|
|
|
|
pass
|
|
|
|
|
|
|
|
|
|
res_num=len(neg_peaks)
|
|
|
|
|
var_spectrum=self.find_num_col_deskew(img_rot,sigma_des,20.3 )
|
|
|
|
|
except:
|
|
|
|
|
res_me=1000000000000000000000
|
|
|
|
|
res_num=0
|
|
|
|
|
var_spectrum=0
|
|
|
|
|
if self.isNaN(res_me):
|
|
|
|
|
pass
|
|
|
|
|
else:
|
|
|
|
|
res.append( res_me )
|
|
|
|
|
|
|
|
|
|
var_res.append(var_spectrum)
|
|
|
|
|
num_of_peaks.append( res_num )
|
|
|
|
|
index_cor.append(indexer)
|
|
|
|
|
indexer=indexer+1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
try:
|
|
|
|
@ -4584,12 +4556,9 @@ class eynollah:
|
|
|
|
|
|
|
|
|
|
angels=np.linspace(90,12,100)
|
|
|
|
|
|
|
|
|
|
res=[]
|
|
|
|
|
num_of_peaks=[]
|
|
|
|
|
index_cor=[]
|
|
|
|
|
|
|
|
|
|
var_res=[]
|
|
|
|
|
|
|
|
|
|
indexer=0
|
|
|
|
|
for rot in angels:
|
|
|
|
|
img_rot=self.rotate_image(img_resized,rot)
|
|
|
|
|
##plt.imshow(img_rot)
|
|
|
|
@ -4597,27 +4566,12 @@ class eynollah:
|
|
|
|
|
img_rot[img_rot!=0]=1
|
|
|
|
|
#res_me=np.mean(self.find_num_col_deskew(img_rot,sigma_des,2.0 ))
|
|
|
|
|
try:
|
|
|
|
|
neg_peaks,var_spectrum=self.find_num_col_deskew(img_rot,sigma_des,20.3 )
|
|
|
|
|
var_spectrum=self.find_num_col_deskew(img_rot,sigma_des,20.3 )
|
|
|
|
|
#print(indexer,'indexer')
|
|
|
|
|
res_me=np.mean(neg_peaks)
|
|
|
|
|
if res_me==0:
|
|
|
|
|
res_me=1000000000000000000000
|
|
|
|
|
else:
|
|
|
|
|
pass
|
|
|
|
|
|
|
|
|
|
res_num=len(neg_peaks)
|
|
|
|
|
except:
|
|
|
|
|
res_me=1000000000000000000000
|
|
|
|
|
res_num=0
|
|
|
|
|
var_spectrum=0
|
|
|
|
|
if self.isNaN(res_me):
|
|
|
|
|
pass
|
|
|
|
|
else:
|
|
|
|
|
res.append( res_me )
|
|
|
|
|
|
|
|
|
|
var_res.append(var_spectrum)
|
|
|
|
|
num_of_peaks.append( res_num )
|
|
|
|
|
index_cor.append(indexer)
|
|
|
|
|
indexer=indexer+1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
try:
|
|
|
|
@ -4631,9 +4585,6 @@ class eynollah:
|
|
|
|
|
|
|
|
|
|
angels=np.linspace(-25,25,60)
|
|
|
|
|
|
|
|
|
|
res=[]
|
|
|
|
|
num_of_peaks=[]
|
|
|
|
|
index_cor=[]
|
|
|
|
|
var_res=[]
|
|
|
|
|
|
|
|
|
|
indexer=0
|
|
|
|
@ -4648,27 +4599,11 @@ class eynollah:
|
|
|
|
|
#neg_peaks,var_spectrum=self.find_num_col_deskew(img_rot,sigma_des,20.3 )
|
|
|
|
|
#print(var_spectrum,'var_spectrum')
|
|
|
|
|
try:
|
|
|
|
|
neg_peaks,var_spectrum=self.find_num_col_deskew(img_rot,sigma_des,20.3 )
|
|
|
|
|
#print(rot,var_spectrum,'var_spectrum')
|
|
|
|
|
res_me=np.mean(neg_peaks)
|
|
|
|
|
if res_me==0:
|
|
|
|
|
res_me=1000000000000000000000
|
|
|
|
|
else:
|
|
|
|
|
pass
|
|
|
|
|
|
|
|
|
|
res_num=len(neg_peaks)
|
|
|
|
|
var_spectrum=self.find_num_col_deskew(img_rot,sigma_des,20.3 )
|
|
|
|
|
except:
|
|
|
|
|
res_me=1000000000000000000000
|
|
|
|
|
res_num=0
|
|
|
|
|
var_spectrum=0
|
|
|
|
|
if self.isNaN(res_me):
|
|
|
|
|
pass
|
|
|
|
|
else:
|
|
|
|
|
res.append( res_me )
|
|
|
|
|
|
|
|
|
|
var_res.append(var_spectrum)
|
|
|
|
|
num_of_peaks.append( res_num )
|
|
|
|
|
index_cor.append(indexer)
|
|
|
|
|
indexer=indexer+1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
try:
|
|
|
|
@ -4678,19 +4613,20 @@ class eynollah:
|
|
|
|
|
except:
|
|
|
|
|
ang_int=0
|
|
|
|
|
|
|
|
|
|
#print(ang_int,'ang_int')
|
|
|
|
|
#plt.plot(var_res)
|
|
|
|
|
#plt.show()
|
|
|
|
|
|
|
|
|
|
##plt.plot(mom3_res)
|
|
|
|
|
##plt.show()
|
|
|
|
|
#print(ang_int,'ang_int111')
|
|
|
|
|
|
|
|
|
|
early_slope_edge=22
|
|
|
|
|
if abs(ang_int)>early_slope_edge and ang_int<0:
|
|
|
|
|
|
|
|
|
|
angels=np.linspace(-90,-25,60)
|
|
|
|
|
|
|
|
|
|
res=[]
|
|
|
|
|
num_of_peaks=[]
|
|
|
|
|
index_cor=[]
|
|
|
|
|
var_res=[]
|
|
|
|
|
|
|
|
|
|
indexer=0
|
|
|
|
|
for rot in angels:
|
|
|
|
|
img_rot=self.rotate_image(img_resized,rot)
|
|
|
|
|
##plt.imshow(img_rot)
|
|
|
|
@ -4698,27 +4634,13 @@ class eynollah:
|
|
|
|
|
img_rot[img_rot!=0]=1
|
|
|
|
|
#res_me=np.mean(self.find_num_col_deskew(img_rot,sigma_des,2.0 ))
|
|
|
|
|
try:
|
|
|
|
|
neg_peaks,var_spectrum=self.find_num_col_deskew(img_rot,sigma_des,20.3 )
|
|
|
|
|
#print(indexer,'indexer')
|
|
|
|
|
res_me=np.mean(neg_peaks)
|
|
|
|
|
if res_me==0:
|
|
|
|
|
res_me=1000000000000000000000
|
|
|
|
|
else:
|
|
|
|
|
pass
|
|
|
|
|
var_spectrum=self.find_num_col_deskew(img_rot,sigma_des,20.3 )
|
|
|
|
|
|
|
|
|
|
res_num=len(neg_peaks)
|
|
|
|
|
except:
|
|
|
|
|
res_me=1000000000000000000000
|
|
|
|
|
res_num=0
|
|
|
|
|
var_spectrum=0
|
|
|
|
|
if self.isNaN(res_me):
|
|
|
|
|
pass
|
|
|
|
|
else:
|
|
|
|
|
res.append( res_me )
|
|
|
|
|
|
|
|
|
|
var_res.append(var_spectrum)
|
|
|
|
|
num_of_peaks.append( res_num )
|
|
|
|
|
index_cor.append(indexer)
|
|
|
|
|
indexer=indexer+1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
try:
|
|
|
|
@ -4732,9 +4654,6 @@ class eynollah:
|
|
|
|
|
|
|
|
|
|
angels=np.linspace(90,25,60)
|
|
|
|
|
|
|
|
|
|
res=[]
|
|
|
|
|
num_of_peaks=[]
|
|
|
|
|
index_cor=[]
|
|
|
|
|
var_res=[]
|
|
|
|
|
|
|
|
|
|
indexer=0
|
|
|
|
@ -4745,27 +4664,13 @@ class eynollah:
|
|
|
|
|
img_rot[img_rot!=0]=1
|
|
|
|
|
#res_me=np.mean(self.find_num_col_deskew(img_rot,sigma_des,2.0 ))
|
|
|
|
|
try:
|
|
|
|
|
neg_peaks,var_spectrum=self.find_num_col_deskew(img_rot,sigma_des,20.3 )
|
|
|
|
|
var_spectrum=self.find_num_col_deskew(img_rot,sigma_des,20.3 )
|
|
|
|
|
#print(indexer,'indexer')
|
|
|
|
|
res_me=np.mean(neg_peaks)
|
|
|
|
|
if res_me==0:
|
|
|
|
|
res_me=1000000000000000000000
|
|
|
|
|
else:
|
|
|
|
|
pass
|
|
|
|
|
|
|
|
|
|
res_num=len(neg_peaks)
|
|
|
|
|
except:
|
|
|
|
|
res_me=1000000000000000000000
|
|
|
|
|
res_num=0
|
|
|
|
|
var_spectrum=0
|
|
|
|
|
if self.isNaN(res_me):
|
|
|
|
|
pass
|
|
|
|
|
else:
|
|
|
|
|
res.append( res_me )
|
|
|
|
|
|
|
|
|
|
var_res.append(var_spectrum)
|
|
|
|
|
num_of_peaks.append( res_num )
|
|
|
|
|
index_cor.append(indexer)
|
|
|
|
|
indexer=indexer+1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
try:
|
|
|
|
@ -10443,7 +10348,9 @@ class eynollah:
|
|
|
|
|
if gaussian_filter:
|
|
|
|
|
img= cv2.GaussianBlur(img,(5,5),0)
|
|
|
|
|
img = img.astype(np.uint16)
|
|
|
|
|
prediction_regions_org2=self.do_prediction(patches,img,model_region)
|
|
|
|
|
|
|
|
|
|
marginal_patch=0.2
|
|
|
|
|
prediction_regions_org2=self.do_prediction(patches,img,model_region,marginal_patch)
|
|
|
|
|
|
|
|
|
|
prediction_regions_org2=self.resize_image(prediction_regions_org2, img_height_h, img_width_h )
|
|
|
|
|
|
|
|
|
@ -10825,6 +10732,8 @@ class eynollah:
|
|
|
|
|
|
|
|
|
|
text_regions[(mask_marginals_rotated[:,:]!=1) & (text_regions[:,:]==1)]=4
|
|
|
|
|
|
|
|
|
|
#plt.imshow(text_regions)
|
|
|
|
|
#plt.show()
|
|
|
|
|
|
|
|
|
|
pixel_img=4
|
|
|
|
|
min_area_text=0.00001
|
|
|
|
@ -10843,8 +10752,8 @@ class eynollah:
|
|
|
|
|
|
|
|
|
|
x_width_mar=abs(x_min_text_only[i]-x_max_text_only[i])
|
|
|
|
|
y_height_mar=abs(y_min_text_only[i]-y_max_text_only[i])
|
|
|
|
|
#print(x_width_mar,y_height_mar,'y_height_mar')
|
|
|
|
|
if x_width_mar>16 and y_height_mar/x_width_mar<10:
|
|
|
|
|
#print(x_width_mar,y_height_mar,y_height_mar/x_width_mar,'y_height_mar')
|
|
|
|
|
if x_width_mar>16 and y_height_mar/x_width_mar<18:
|
|
|
|
|
marginlas_should_be_main_text.append(polygons_of_marginals[i])
|
|
|
|
|
if x_min_text_only[i]<(mid_point-one_third_left):
|
|
|
|
|
x_min_marginals_left_new=x_min_text_only[i]
|
|
|
|
@ -11115,8 +11024,8 @@ class eynollah:
|
|
|
|
|
textlines_con_changed.append(textlines_big_org_form)
|
|
|
|
|
return textlines_con_changed
|
|
|
|
|
def check_any_text_region_in_model_one_is_main_or_header(self,regions_model_1,regions_model_full,contours_only_text_parent,all_box_coord,all_found_texline_polygons,slopes,contours_only_text_parent_d_ordered):
|
|
|
|
|
text_only=(regions_model_1[:,:]==1)*1
|
|
|
|
|
contours_only_text,hir_on_text=self.return_contours_of_image(text_only)
|
|
|
|
|
#text_only=(regions_model_1[:,:]==1)*1
|
|
|
|
|
#contours_only_text,hir_on_text=self.return_contours_of_image(text_only)
|
|
|
|
|
|
|
|
|
|
"""
|
|
|
|
|
contours_only_text_parent=self.return_parent_contours( contours_only_text,hir_on_text)
|
|
|
|
@ -12290,7 +12199,7 @@ class eynollah:
|
|
|
|
|
num_col=None
|
|
|
|
|
peaks_neg_fin=[]
|
|
|
|
|
|
|
|
|
|
print(num_col,'num_colnum_col')
|
|
|
|
|
#print(num_col,'num_colnum_col')
|
|
|
|
|
if num_col is None:
|
|
|
|
|
txt_con_org=[]
|
|
|
|
|
order_text_new=[]
|
|
|
|
@ -12316,7 +12225,7 @@ class eynollah:
|
|
|
|
|
K.clear_session()
|
|
|
|
|
gc.collect()
|
|
|
|
|
|
|
|
|
|
print(np.unique(textline_mask_tot_ea[:,:]),'textline')
|
|
|
|
|
#print(np.unique(textline_mask_tot_ea[:,:]),'textline')
|
|
|
|
|
|
|
|
|
|
if self.dir_of_all is not None:
|
|
|
|
|
|
|
|
|
@ -12912,6 +12821,12 @@ class eynollah:
|
|
|
|
|
else:
|
|
|
|
|
boxes_d=self.return_boxes_of_images_by_order_of_reading_new(spliter_y_new_d,regions_without_seperators_d,matrix_of_lines_ch_d)
|
|
|
|
|
|
|
|
|
|
#print(boxes_d,len(boxes_d),'boxes_d')
|
|
|
|
|
#for mv in range(len(boxes_d)):
|
|
|
|
|
|
|
|
|
|
#img_box=image_page[boxes_d[mv][1]:boxes_d[mv][1]+boxes_d[mv][3] , boxes_d[mv][0]:boxes_d[mv][0]+boxes_d[mv][2],: ]
|
|
|
|
|
#plt.imshow(img_box)
|
|
|
|
|
#plt.show()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#print(slopes)
|
|
|
|
|