diff --git a/qurator/eynollah/eynollah.py b/qurator/eynollah/eynollah.py index b72ea9c..b8d85b0 100644 --- a/qurator/eynollah/eynollah.py +++ b/qurator/eynollah/eynollah.py @@ -2715,16 +2715,16 @@ class Eynollah(): """ self.logger.debug("enter run") - t0_tot = time.time() if not self.batch_processing_mode: + # FIXME: why? self.ls_imgs = [1] for img_name in self.ls_imgs: t0 = time.time() if self.batch_processing_mode: - self.reset_file_name_dir(join(self.dirs.dir_in,img_name)) + self.reset_file_name_dir(join(self.dirs.dir_in, img_name)) img_res, is_image_enhanced, num_col_classifier, num_column_is_classified = self.run_enhancement(self.light_version) self.logger.info("Enhancing took %.1fs ", time.time() - t0) @@ -2848,10 +2848,6 @@ class Eynollah(): p[1] = p[1] - y_diff[0] dists = [math.sqrt((p[0] - cx_bigest_d[j]) ** 2 + (p[1] - cy_biggest_d[j]) ** 2) for j in range(len(cx_bigest_d))] contours_only_text_parent_d_ordered.append(contours_only_text_parent_d[np.argmin(dists)]) - # img2=np.zeros((text_only.shape[0],text_only.shape[1],3)) - # img2=cv2.fillPoly(img2,pts=[contours_only_text_parent_d[np.argmin(dists)]] ,color=(1,1,1)) - # plt.imshow(img2[:,:,0]) - # plt.show() else: contours_only_text_parent_d_ordered = [] contours_only_text_parent_d = [] @@ -2879,9 +2875,6 @@ class Eynollah(): cx_bigest_big, cy_biggest_big, _, _, _, _, _ = find_new_features_of_contours([contours_biggest]) cx_bigest, cy_biggest, _, _, _, _, _ = find_new_features_of_contours(contours_only_text_parent) - #self.logger.debug('areas_cnt_text_parent %s', areas_cnt_text_parent) - # self.logger.debug('areas_cnt_text_parent_d %s', areas_cnt_text_parent_d) - # self.logger.debug('len(contours_only_text_parent) %s', len(contours_only_text_parent_d)) else: pass if self.light_version: @@ -2962,13 +2955,6 @@ class Eynollah(): else: boxes_d, peaks_neg_tot_tables_d = return_boxes_of_images_by_order_of_reading_new(splitter_y_new_d, regions_without_separators_d, matrix_of_lines_ch_d, num_col_classifier, erosion_hurts, self.tables, self.right2left) - #print(boxes_d,'boxes_d') - #img_once = np.zeros((textline_mask_tot_d.shape[0],textline_mask_tot_d.shape[1])) - #for box_i in boxes_d: - #img_once[int(box_i[2]):int(box_i[3]),int(box_i[0]):int(box_i[1]) ] =1 - #plt.imshow(img_once) - #plt.show() - #print(np.unique(img_once),'img_once') if self.plotter: self.plotter.write_images_into_directory(polygons_of_images, image_page) t_order = time.time()