|
|
|
@ -60,6 +60,7 @@ from .utils import (
|
|
|
|
|
seperate_lines,
|
|
|
|
|
seperate_lines_new_inside_teils2,
|
|
|
|
|
filter_small_drop_capitals_from_no_patch_layout,
|
|
|
|
|
find_num_col_deskew,
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@ -1542,12 +1543,6 @@ class eynollah:
|
|
|
|
|
|
|
|
|
|
return main_contours
|
|
|
|
|
|
|
|
|
|
def get_all_image_patches_coordination(self, image_page):
|
|
|
|
|
self.all_box_coord = []
|
|
|
|
|
for jk in range(len(self.boxes)):
|
|
|
|
|
_, crop_coor = crop_image_inside_box(self.boxes[jk], image_page)
|
|
|
|
|
self.all_box_coord.append(crop_coor)
|
|
|
|
|
|
|
|
|
|
def textline_contours(self, img, patches, scaler_h, scaler_w):
|
|
|
|
|
|
|
|
|
|
if patches:
|
|
|
|
@ -2341,103 +2336,6 @@ class eynollah:
|
|
|
|
|
|
|
|
|
|
return interest_neg_fin
|
|
|
|
|
|
|
|
|
|
def find_num_col_deskew(self, regions_without_seperators, sigma_, multiplier=3.8):
|
|
|
|
|
regions_without_seperators_0 = regions_without_seperators[:, :].sum(axis=1)
|
|
|
|
|
|
|
|
|
|
meda_n_updown = regions_without_seperators_0[len(regions_without_seperators_0) :: -1]
|
|
|
|
|
|
|
|
|
|
first_nonzero = next((i for i, x in enumerate(regions_without_seperators_0) if x), 0)
|
|
|
|
|
last_nonzero = next((i for i, x in enumerate(meda_n_updown) if x), 0)
|
|
|
|
|
|
|
|
|
|
last_nonzero = len(regions_without_seperators_0) - last_nonzero
|
|
|
|
|
|
|
|
|
|
y = regions_without_seperators_0 # [first_nonzero:last_nonzero]
|
|
|
|
|
|
|
|
|
|
y_help = np.zeros(len(y) + 20)
|
|
|
|
|
|
|
|
|
|
y_help[10 : len(y) + 10] = y
|
|
|
|
|
|
|
|
|
|
x = np.array(range(len(y)))
|
|
|
|
|
|
|
|
|
|
zneg_rev = -y_help + np.max(y_help)
|
|
|
|
|
|
|
|
|
|
zneg = np.zeros(len(zneg_rev) + 20)
|
|
|
|
|
|
|
|
|
|
zneg[10 : len(zneg_rev) + 10] = zneg_rev
|
|
|
|
|
|
|
|
|
|
z = gaussian_filter1d(y, sigma_)
|
|
|
|
|
zneg = gaussian_filter1d(zneg, sigma_)
|
|
|
|
|
|
|
|
|
|
peaks_neg, _ = find_peaks(zneg, height=0)
|
|
|
|
|
peaks, _ = find_peaks(z, height=0)
|
|
|
|
|
|
|
|
|
|
peaks_neg = peaks_neg - 10 - 10
|
|
|
|
|
|
|
|
|
|
# print(np.std(z),'np.std(z)np.std(z)np.std(z)')
|
|
|
|
|
|
|
|
|
|
##plt.plot(z)
|
|
|
|
|
##plt.show()
|
|
|
|
|
|
|
|
|
|
##plt.imshow(regions_without_seperators)
|
|
|
|
|
##plt.show()
|
|
|
|
|
"""
|
|
|
|
|
last_nonzero=last_nonzero-0#100
|
|
|
|
|
first_nonzero=first_nonzero+0#+100
|
|
|
|
|
|
|
|
|
|
peaks_neg=peaks_neg[(peaks_neg>first_nonzero) & (peaks_neg<last_nonzero)]
|
|
|
|
|
|
|
|
|
|
peaks=peaks[(peaks>.06*regions_without_seperators.shape[1]) & (peaks<0.94*regions_without_seperators.shape[1])]
|
|
|
|
|
"""
|
|
|
|
|
interest_pos = z[peaks]
|
|
|
|
|
|
|
|
|
|
interest_pos = interest_pos[interest_pos > 10]
|
|
|
|
|
|
|
|
|
|
interest_neg = z[peaks_neg]
|
|
|
|
|
|
|
|
|
|
min_peaks_pos = np.mean(interest_pos)
|
|
|
|
|
min_peaks_neg = 0 # np.min(interest_neg)
|
|
|
|
|
|
|
|
|
|
dis_talaei = (min_peaks_pos - min_peaks_neg) / multiplier
|
|
|
|
|
# print(interest_pos)
|
|
|
|
|
grenze = min_peaks_pos - dis_talaei # np.mean(y[peaks_neg[0]:peaks_neg[len(peaks_neg)-1]])-np.std(y[peaks_neg[0]:peaks_neg[len(peaks_neg)-1]])/2.0
|
|
|
|
|
|
|
|
|
|
interest_neg_fin = interest_neg[(interest_neg < grenze)]
|
|
|
|
|
peaks_neg_fin = peaks_neg[(interest_neg < grenze)]
|
|
|
|
|
interest_neg_fin = interest_neg[(interest_neg < grenze)]
|
|
|
|
|
|
|
|
|
|
"""
|
|
|
|
|
if interest_neg[0]<0.1:
|
|
|
|
|
interest_neg=interest_neg[1:]
|
|
|
|
|
if interest_neg[len(interest_neg)-1]<0.1:
|
|
|
|
|
interest_neg=interest_neg[:len(interest_neg)-1]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
min_peaks_pos=np.min(interest_pos)
|
|
|
|
|
min_peaks_neg=0#np.min(interest_neg)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
dis_talaei=(min_peaks_pos-min_peaks_neg)/multiplier
|
|
|
|
|
grenze=min_peaks_pos-dis_talaei#np.mean(y[peaks_neg[0]:peaks_neg[len(peaks_neg)-1]])-np.std(y[peaks_neg[0]:peaks_neg[len(peaks_neg)-1]])/2.0
|
|
|
|
|
"""
|
|
|
|
|
# interest_neg_fin=interest_neg#[(interest_neg<grenze)]
|
|
|
|
|
# peaks_neg_fin=peaks_neg#[(interest_neg<grenze)]
|
|
|
|
|
# interest_neg_fin=interest_neg#[(interest_neg<grenze)]
|
|
|
|
|
|
|
|
|
|
num_col = (len(interest_neg_fin)) + 1
|
|
|
|
|
|
|
|
|
|
p_l = 0
|
|
|
|
|
p_u = len(y) - 1
|
|
|
|
|
p_m = int(len(y) / 2.0)
|
|
|
|
|
p_g_l = int(len(y) / 3.0)
|
|
|
|
|
p_g_u = len(y) - int(len(y) / 3.0)
|
|
|
|
|
|
|
|
|
|
diff_peaks = np.abs(np.diff(peaks_neg_fin))
|
|
|
|
|
diff_peaks_annormal = diff_peaks[diff_peaks < 30]
|
|
|
|
|
|
|
|
|
|
# print(len(interest_neg_fin),np.mean(interest_neg_fin))
|
|
|
|
|
return interest_neg_fin, np.std(z)
|
|
|
|
|
|
|
|
|
|
def return_deskew_slop(self, img_patch_org, sigma_des, main_page=False):
|
|
|
|
|
|
|
|
|
|
if main_page and self.dir_of_all is not None:
|
|
|
|
@ -2491,12 +2389,12 @@ class eynollah:
|
|
|
|
|
# plt.imshow(img_rot)
|
|
|
|
|
# plt.show()
|
|
|
|
|
img_rot[img_rot != 0] = 1
|
|
|
|
|
# res_me=np.mean(self.find_num_col_deskew(img_rot,sigma_des,2.0 ))
|
|
|
|
|
# res_me=np.mean(find_num_col_deskew(img_rot,sigma_des,2.0 ))
|
|
|
|
|
|
|
|
|
|
# neg_peaks,var_spectrum=self.find_num_col_deskew(img_rot,sigma_des,20.3 )
|
|
|
|
|
# neg_peaks,var_spectrum=find_num_col_deskew(img_rot,sigma_des,20.3 )
|
|
|
|
|
# print(var_spectrum,'var_spectrum')
|
|
|
|
|
try:
|
|
|
|
|
neg_peaks, var_spectrum = self.find_num_col_deskew(img_rot, sigma_des, 20.3)
|
|
|
|
|
neg_peaks, var_spectrum = find_num_col_deskew(img_rot, sigma_des, 20.3)
|
|
|
|
|
# print(rot,var_spectrum,'var_spectrum')
|
|
|
|
|
res_me = np.mean(neg_peaks)
|
|
|
|
|
if res_me == 0:
|
|
|
|
@ -2538,9 +2436,9 @@ class eynollah:
|
|
|
|
|
##plt.imshow(img_rot)
|
|
|
|
|
##plt.show()
|
|
|
|
|
img_rot[img_rot != 0] = 1
|
|
|
|
|
# res_me=np.mean(self.find_num_col_deskew(img_rot,sigma_des,2.0 ))
|
|
|
|
|
# res_me=np.mean(find_num_col_deskew(img_rot,sigma_des,2.0 ))
|
|
|
|
|
try:
|
|
|
|
|
neg_peaks, var_spectrum = self.find_num_col_deskew(img_rot, sigma_des, 20.3)
|
|
|
|
|
neg_peaks, var_spectrum = find_num_col_deskew(img_rot, sigma_des, 20.3)
|
|
|
|
|
# print(indexer,'indexer')
|
|
|
|
|
res_me = np.mean(neg_peaks)
|
|
|
|
|
if res_me == 0:
|
|
|
|
@ -2586,12 +2484,12 @@ class eynollah:
|
|
|
|
|
# plt.imshow(img_rot)
|
|
|
|
|
# plt.show()
|
|
|
|
|
img_rot[img_rot != 0] = 1
|
|
|
|
|
# res_me=np.mean(self.find_num_col_deskew(img_rot,sigma_des,2.0 ))
|
|
|
|
|
# res_me=np.mean(find_num_col_deskew(img_rot,sigma_des,2.0 ))
|
|
|
|
|
|
|
|
|
|
# neg_peaks,var_spectrum=self.find_num_col_deskew(img_rot,sigma_des,20.3 )
|
|
|
|
|
# neg_peaks,var_spectrum=find_num_col_deskew(img_rot,sigma_des,20.3 )
|
|
|
|
|
# print(var_spectrum,'var_spectrum')
|
|
|
|
|
try:
|
|
|
|
|
neg_peaks, var_spectrum = self.find_num_col_deskew(img_rot, sigma_des, 20.3)
|
|
|
|
|
neg_peaks, var_spectrum = find_num_col_deskew(img_rot, sigma_des, 20.3)
|
|
|
|
|
# print(rot,var_spectrum,'var_spectrum')
|
|
|
|
|
res_me = np.mean(neg_peaks)
|
|
|
|
|
if res_me == 0:
|
|
|
|
@ -2648,9 +2546,9 @@ class eynollah:
|
|
|
|
|
##plt.imshow(img_rot)
|
|
|
|
|
##plt.show()
|
|
|
|
|
img_rot[img_rot != 0] = 1
|
|
|
|
|
# res_me=np.mean(self.find_num_col_deskew(img_rot,sigma_des,2.0 ))
|
|
|
|
|
# res_me=np.mean(find_num_col_deskew(img_rot,sigma_des,2.0 ))
|
|
|
|
|
try:
|
|
|
|
|
neg_peaks, var_spectrum = self.find_num_col_deskew(img_rot, sigma_des, 20.3)
|
|
|
|
|
neg_peaks, var_spectrum = find_num_col_deskew(img_rot, sigma_des, 20.3)
|
|
|
|
|
# print(indexer,'indexer')
|
|
|
|
|
res_me = np.mean(neg_peaks)
|
|
|
|
|
if res_me == 0:
|
|
|
|
@ -2694,9 +2592,9 @@ class eynollah:
|
|
|
|
|
##plt.imshow(img_rot)
|
|
|
|
|
##plt.show()
|
|
|
|
|
img_rot[img_rot != 0] = 1
|
|
|
|
|
# res_me=np.mean(self.find_num_col_deskew(img_rot,sigma_des,2.0 ))
|
|
|
|
|
# res_me=np.mean(find_num_col_deskew(img_rot,sigma_des,2.0 ))
|
|
|
|
|
try:
|
|
|
|
|
neg_peaks, var_spectrum = self.find_num_col_deskew(img_rot, sigma_des, 20.3)
|
|
|
|
|
neg_peaks, var_spectrum = find_num_col_deskew(img_rot, sigma_des, 20.3)
|
|
|
|
|
# print(indexer,'indexer')
|
|
|
|
|
res_me = np.mean(neg_peaks)
|
|
|
|
|
if res_me == 0:
|
|
|
|
@ -2739,12 +2637,12 @@ class eynollah:
|
|
|
|
|
# plt.imshow(img_rot)
|
|
|
|
|
# plt.show()
|
|
|
|
|
img_rot[img_rot != 0] = 1
|
|
|
|
|
# res_me=np.mean(self.find_num_col_deskew(img_rot,sigma_des,2.0 ))
|
|
|
|
|
# res_me=np.mean(find_num_col_deskew(img_rot,sigma_des,2.0 ))
|
|
|
|
|
|
|
|
|
|
# neg_peaks,var_spectrum=self.find_num_col_deskew(img_rot,sigma_des,20.3 )
|
|
|
|
|
# neg_peaks,var_spectrum=find_num_col_deskew(img_rot,sigma_des,20.3 )
|
|
|
|
|
# print(var_spectrum,'var_spectrum')
|
|
|
|
|
try:
|
|
|
|
|
neg_peaks, var_spectrum = self.find_num_col_deskew(img_rot, sigma_des, 20.3)
|
|
|
|
|
neg_peaks, var_spectrum = find_num_col_deskew(img_rot, sigma_des, 20.3)
|
|
|
|
|
# print(rot,var_spectrum,'var_spectrum')
|
|
|
|
|
res_me = np.mean(neg_peaks)
|
|
|
|
|
if res_me == 0:
|
|
|
|
@ -2791,9 +2689,9 @@ class eynollah:
|
|
|
|
|
##plt.imshow(img_rot)
|
|
|
|
|
##plt.show()
|
|
|
|
|
img_rot[img_rot != 0] = 1
|
|
|
|
|
# res_me=np.mean(self.find_num_col_deskew(img_rot,sigma_des,2.0 ))
|
|
|
|
|
# res_me=np.mean(find_num_col_deskew(img_rot,sigma_des,2.0 ))
|
|
|
|
|
try:
|
|
|
|
|
neg_peaks, var_spectrum = self.find_num_col_deskew(img_rot, sigma_des, 20.3)
|
|
|
|
|
neg_peaks, var_spectrum = find_num_col_deskew(img_rot, sigma_des, 20.3)
|
|
|
|
|
# print(indexer,'indexer')
|
|
|
|
|
res_me = np.mean(neg_peaks)
|
|
|
|
|
if res_me == 0:
|
|
|
|
@ -2837,9 +2735,9 @@ class eynollah:
|
|
|
|
|
##plt.imshow(img_rot)
|
|
|
|
|
##plt.show()
|
|
|
|
|
img_rot[img_rot != 0] = 1
|
|
|
|
|
# res_me=np.mean(self.find_num_col_deskew(img_rot,sigma_des,2.0 ))
|
|
|
|
|
# res_me=np.mean(find_num_col_deskew(img_rot,sigma_des,2.0 ))
|
|
|
|
|
try:
|
|
|
|
|
neg_peaks, var_spectrum = self.find_num_col_deskew(img_rot, sigma_des, 20.3)
|
|
|
|
|
neg_peaks, var_spectrum = find_num_col_deskew(img_rot, sigma_des, 20.3)
|
|
|
|
|
# print(indexer,'indexer')
|
|
|
|
|
res_me = np.mean(neg_peaks)
|
|
|
|
|
if res_me == 0:
|
|
|
|
|