diff --git a/src/eynollah/training/train.py b/src/eynollah/training/train.py index fbbf920..f6117f7 100644 --- a/src/eynollah/training/train.py +++ b/src/eynollah/training/train.py @@ -523,7 +523,7 @@ def run(_config, ) train_ds = tf.data.Dataset.from_generator(gen) train_ds = train_ds.padded_batch(n_batch, - padded_shapes=([image_height, image_width, 3], [None]), + padded_shapes=([input_height, input_width, 3], [None]), padding_values=(0, padding_token), drop_remainder=True, #num_parallel_calls=tf.data.AUTOTUNE, diff --git a/src/eynollah/training/utils.py b/src/eynollah/training/utils.py index f2f4bdc..4b6033e 100644 --- a/src/eynollah/training/utils.py +++ b/src/eynollah/training/utils.py @@ -997,12 +997,12 @@ def preprocess_img(img, input_height, input_width) if padding_black: - yield from get_patches(do_padding_black(img), + yield from get_patches(do_padding_with_color(img, 'black'), do_padding_label(lab), input_height, input_width) if padding_white: - yield from get_patches(do_padding_white(img), + yield from get_patches(do_padding_with_color(img, 'white'), do_padding_label(lab), input_height, input_width) @@ -1129,7 +1129,7 @@ def preprocess_img_ocr( return scale_padd_image_for_ocr(img, input_height, input_width).astype(np.float32) / 255. #lab = vectorize_label(lab, char_to_num, padding_token, max_len) # now padded at Dataset.padded_batch - lab = char_to_num(tf.strings.unicode_split(label, input_encoding="UTF-8")) + lab = char_to_num(tf.strings.unicode_split(lab, input_encoding="UTF-8")) yield scale_image(img), lab #to_yield = {"image": ret_x, "label": ret_y}