Resolve merge conflict of main and machine based reading order branch

pull/142/merge
vahidrezanezhad 3 months ago
commit 6aee70d0cd

@ -1,51 +0,0 @@
version: 2
jobs:
build-python37:
machine:
- image: ubuntu-2004:2023.02.1
steps:
- checkout
- restore_cache:
keys:
- model-cache
- run: make models
- save_cache:
key: model-cache
paths:
models_eynollah.tar.gz
models_eynollah
- run:
name: "Set Python Version"
command: pyenv install -s 3.7.16 && pyenv global 3.7.16
- run: make install
- run: make smoke-test
build-python38:
machine:
- image: ubuntu-2004:2023.02.1
steps:
- checkout
- restore_cache:
keys:
- model-cache
- run: make models
- save_cache:
key: model-cache
paths:
models_eynollah.tar.gz
models_eynollah
- run:
name: "Set Python Version"
command: pyenv install -s 3.8.16 && pyenv global 3.8.16
- run: make install
- run: make smoke-test
workflows:
version: 2
build:
jobs:
# - build-python37
- build-python38

@ -1,7 +1,7 @@
# This workflow will install Python dependencies, run tests and lint with a variety of Python versions
# For more information see: https://help.github.com/actions/language-and-framework-guides/using-python-with-github-actions
name: Python package
name: Test
on: [push]
@ -14,8 +14,8 @@ jobs:
python-version: ['3.8', '3.9', '3.10', '3.11']
steps:
- uses: actions/checkout@v2
- uses: actions/cache@v2
- uses: actions/checkout@v4
- uses: actions/cache@v4
id: model_cache
with:
path: models_eynollah
@ -24,7 +24,7 @@ jobs:
if: steps.model_cache.outputs.cache-hit != 'true'
run: make models
- name: Set up Python ${{ matrix.python-version }}
uses: actions/setup-python@v2
uses: actions/setup-python@v5
with:
python-version: ${{ matrix.python-version }}
- name: Install dependencies
@ -34,3 +34,5 @@ jobs:
pip install -r requirements-test.txt
- name: Test with pytest
run: make test
- name: Test docker build
run: make docker

@ -5,6 +5,14 @@ Versioned according to [Semantic Versioning](http://semver.org/).
## Unreleased
## [0.3.1] - 2024-08-27
Fixed:
* regression in OCR-D processor, #106
* Expected Ptrcv::UMat for argument 'contour', #110
* Memory usage explosion with very narrow images (e.g. book spine), #67
## [0.3.0] - 2023-05-13
Changed:
@ -117,6 +125,8 @@ Fixed:
Initial release
<!-- link-labels -->
[0.3.1]: ../../compare/v0.3.1...v0.3.0
[0.3.0]: ../../compare/v0.3.0...v0.2.0
[0.2.0]: ../../compare/v0.2.0...v0.1.0
[0.1.0]: ../../compare/v0.1.0...v0.0.11
[0.0.11]: ../../compare/v0.0.11...v0.0.10

@ -0,0 +1,26 @@
ARG DOCKER_BASE_IMAGE
FROM $DOCKER_BASE_IMAGE
ARG VCS_REF
ARG BUILD_DATE
LABEL \
maintainer="https://ocr-d.de/kontakt" \
org.label-schema.vcs-ref=$VCS_REF \
org.label-schema.vcs-url="https://github.com/qurator-spk/eynollah" \
org.label-schema.build-date=$BUILD_DATE
ENV DEBIAN_FRONTEND=noninteractive
ENV PYTHONIOENCODING=utf8
ENV XDG_DATA_HOME=/usr/local/share
WORKDIR /build-eynollah
COPY src/ ./src
COPY pyproject.toml .
COPY requirements.txt .
COPY README.md .
COPY Makefile .
RUN apt-get install -y --no-install-recommends g++
RUN make install
WORKDIR /data
VOLUME /data

@ -1,6 +1,11 @@
EYNOLLAH_MODELS ?= $(PWD)/models_eynollah
export EYNOLLAH_MODELS
# DOCKER_BASE_IMAGE = artefakt.dev.sbb.berlin:5000/sbb/ocrd_core:v2.68.0
DOCKER_BASE_IMAGE = docker.io/ocrd/core:v2.68.0
DOCKER_TAG = ocrd/eynollah
# BEGIN-EVAL makefile-parser --make-help Makefile
help:
@ -22,16 +27,14 @@ help:
models: models_eynollah
models_eynollah: models_eynollah.tar.gz
# tar xf models_eynollah_renamed.tar.gz --transform 's/models_eynollah_renamed/models_eynollah/'
# tar xf models_eynollah_renamed.tar.gz
# tar xf 2022-04-05.SavedModel.tar.gz --transform 's/models_eynollah_renamed/models_eynollah/'
tar xf models_eynollah.tar.gz
models_eynollah.tar.gz:
# wget 'https://qurator-data.de/eynollah/2021-04-25/models_eynollah.tar.gz'
# wget 'https://qurator-data.de/eynollah/2022-04-05/models_eynollah_renamed.tar.gz'
# wget 'https://ocr-d.kba.cloud/2022-04-05.SavedModel.tar.gz'
wget https://github.com/qurator-spk/eynollah/releases/download/v0.3.0/models_eynollah.tar.gz
# wget 'https://qurator-data.de/eynollah/2022-04-05/models_eynollah_renamed_savedmodel.tar.gz'
# wget 'https://github.com/qurator-spk/eynollah/releases/download/v0.3.0/models_eynollah.tar.gz'
wget 'https://github.com/qurator-spk/eynollah/releases/download/v0.3.1/models_eynollah.tar.gz'
# Install with pip
install:
@ -47,3 +50,12 @@ smoke-test:
# Run unit tests
test:
pytest tests
# Build docker image
docker:
docker build \
--build-arg DOCKER_BASE_IMAGE=$(DOCKER_BASE_IMAGE) \
--build-arg VCS_REF=$$(git rev-parse --short HEAD) \
--build-arg BUILD_DATE=$$(date -u +"%Y-%m-%dT%H:%M:%SZ") \
-t $(DOCKER_TAG) .

@ -1,10 +1,10 @@
# Eynollah
> Document Layout Analysis (segmentation) using pre-trained models and heuristics
> Document Layout Analysis with Deep Learning and Heuristics
[![PyPI Version](https://img.shields.io/pypi/v/eynollah)](https://pypi.org/project/eynollah/)
[![CircleCI Build Status](https://circleci.com/gh/qurator-spk/eynollah.svg?style=shield)](https://circleci.com/gh/qurator-spk/eynollah)
[![GH Actions Test](https://github.com/qurator-spk/eynollah/actions/workflows/test-eynollah.yml/badge.svg)](https://github.com/qurator-spk/eynollah/actions/workflows/test-eynollah.yml)
[![License: ASL](https://img.shields.io/github/license/qurator-spk/eynollah)](https://opensource.org/license/apache-2-0/)
[![DOI](https://img.shields.io/badge/DOI-10.1145%2F3604951.3605513-red)](https://doi.org/10.1145/3604951.3605513)
![](https://user-images.githubusercontent.com/952378/102350683-8a74db80-3fa5-11eb-8c7e-f743f7d6eae2.jpg)
@ -14,16 +14,18 @@
* Support for various image optimization operations:
* cropping (border detection), binarization, deskewing, dewarping, scaling, enhancing, resizing
* Text line segmentation to bounding boxes or polygons (contours) including for curved lines and vertical text
* Detection of reading order
* Detection of reading order (left-to-right or right-to-left)
* Output in [PAGE-XML](https://github.com/PRImA-Research-Lab/PAGE-XML)
* [OCR-D](https://github.com/qurator-spk/eynollah#use-as-ocr-d-processor) interface
:warning: Development is currently focused on achieving the best possible quality of results for a wide variety of historical documents and therefore processing can be very slow. We aim to improve this, but contributions are welcome.
## Installation
Python versions `3.8-3.11` with Tensorflow versions >=`2.12` are currently supported.
Python `3.8-3.11` with Tensorflow `2.12-2.15` on Linux are currently supported.
For (limited) GPU support the CUDA toolkit needs to be installed.
You can either install via
You can either install from PyPI
```
pip install eynollah
@ -39,45 +41,49 @@ cd eynollah; pip install -e .
Alternatively, you can run `make install` or `make install-dev` for editable installation.
## Models
Pre-trained models can be downloaded from [qurator-data.de](https://qurator-data.de/eynollah/).
Pre-trained models can be downloaded from [qurator-data.de](https://qurator-data.de/eynollah/) or [huggingface](https://huggingface.co/SBB?search_models=eynollah).
In case you want to train your own model to use with Eynollah, have a look at [sbb_pixelwise_segmentation](https://github.com/qurator-spk/sbb_pixelwise_segmentation).
## Train
🚧 **Work in progress**
In case you want to train your own model, have a look at [`sbb_pixelwise_segmentation`](https://github.com/qurator-spk/sbb_pixelwise_segmentation).
## Usage
The command-line interface can be called like this:
```sh
eynollah \
-i <image file> \
-i <single image file> | -di <directory containing image files> \
-o <output directory> \
-m <path to directory containing model files> \
-m <directory containing model files> \
[OPTIONS]
```
The following options can be used to further configure the processing:
| option | description |
|----------|:-------------|
| `-fl` | full layout analysis including all steps and segmentation classes |
| `-light` | lighter and faster but simpler method for main region detection and deskewing |
| `-tab` | apply table detection |
| `-ae` | apply enhancement (the resulting image is saved to the output directory) |
| `-as` | apply scaling |
| `-cl` | apply contour detection for curved text lines instead of bounding boxes |
| `-ib` | apply binarization (the resulting image is saved to the output directory) |
| `-ep` | enable plotting (MUST always be used with `-sl`, `-sd`, `-sa`, `-si` or `-ae`) |
| `-ho` | ignore headers for reading order dectection |
| `-di <directory>` | process all images in a directory in batch mode |
| `-si <directory>` | save image regions detected to this directory |
| `-sd <directory>` | save deskewed image to this directory |
| `-sl <directory>` | save layout prediction as plot to this directory |
| `-sp <directory>` | save cropped page image to this directory |
| `-sa <directory>` | save all (plot, enhanced/binary image, layout) to this directory |
If no option is set, the tool will perform layout detection of main regions (background, text, images, separators and marginals).
The tool produces better quality output when RGB images are used as input than greyscale or binarized images.
| option | description |
|-------------------|:-------------------------------------------------------------------------------|
| `-fl` | full layout analysis including all steps and segmentation classes |
| `-light` | lighter and faster but simpler method for main region detection and deskewing |
| `-tab` | apply table detection |
| `-ae` | apply enhancement (the resulting image is saved to the output directory) |
| `-as` | apply scaling |
| `-cl` | apply contour detection for curved text lines instead of bounding boxes |
| `-ib` | apply binarization (the resulting image is saved to the output directory) |
| `-ep` | enable plotting (MUST always be used with `-sl`, `-sd`, `-sa`, `-si` or `-ae`) |
| `-eoi` | extract only images to output directory (other processing will not be done) |
| `-ho` | ignore headers for reading order dectection |
| `-si <directory>` | save image regions detected to this directory |
| `-sd <directory>` | save deskewed image to this directory |
| `-sl <directory>` | save layout prediction as plot to this directory |
| `-sp <directory>` | save cropped page image to this directory |
| `-sa <directory>` | save all (plot, enhanced/binary image, layout) to this directory |
If no option is set, the tool performs layout detection of main regions (background, text, images, separators and marginals).
The best output quality is produced when RGB images are used as input rather than greyscale or binarized images.
#### Use as OCR-D processor
🚧 **Work in progress**
Eynollah ships with a CLI interface to be used as [OCR-D](https://ocr-d.de) processor.
@ -95,11 +101,14 @@ ocrd-eynollah-segment -I OCR-D-IMG-BIN -O SEG-LINE -P models
uses the original (RGB) image despite any binarization that may have occured in previous OCR-D processing steps
#### Additional documentation
Please check the [wiki](https://github.com/qurator-spk/eynollah/wiki).
## How to cite
If you find this tool useful in your work, please consider citing our paper:
```bibtex
@inproceedings{rezanezhad2023eynollah,
@inproceedings{hip23rezanezhad,
title = {Document Layout Analysis with Deep Learning and Heuristics},
author = {Rezanezhad, Vahid and Baierer, Konstantin and Gerber, Mike and Labusch, Kai and Neudecker, Clemens},
booktitle = {Proceedings of the 7th International Workshop on Historical Document Imaging and Processing {HIP} 2023,

@ -1 +1 @@
qurator/eynollah/ocrd-tool.json
src/eynollah/ocrd-tool.json

@ -1,34 +1,43 @@
[build-system]
requires = ["setuptools>=61.0"]
build-backend = "setuptools.build_meta"
requires = ["setuptools>=61.0", "wheel", "setuptools-ocrd"]
[project]
name = "eynollah"
version = "0.1.0"
dependencies = [
"ocrd >= 2.23.3",
"tensorflow == 2.12.1",
"scikit-learn >= 0.23.2",
"imutils >= 0.5.3",
"numpy < 1.24.0",
"matplotlib",
"torch == 2.0.1",
"transformers == 4.30.2",
"numba == 0.58.1",
authors = [
{name = "Vahid Rezanezhad"},
{name = "Staatsbibliothek zu Berlin - Preußischer Kulturbesitz"},
]
description = "Document Layout Analysis"
readme = "README.md"
license.file = "LICENSE"
requires-python = ">=3.8"
keywords = ["document layout analysis", "image segmentation"]
dynamic = ["dependencies", "version"]
classifiers = [
"Development Status :: 4 - Beta",
"Environment :: Console",
"Intended Audience :: Science/Research",
"License :: OSI Approved :: Apache Software License",
"Programming Language :: Python :: 3",
"Programming Language :: Python :: 3 :: Only",
"Topic :: Scientific/Engineering :: Image Processing",
]
[project.scripts]
eynollah = "qurator.eynollah.cli:main"
ocrd-eynollah-segment="qurator.eynollah.ocrd_cli:main"
eynollah = "eynollah.cli:main"
ocrd-eynollah-segment = "eynollah.ocrd_cli:main"
[project.urls]
Homepage = "https://github.com/qurator-spk/eynollah"
Repository = "https://github.com/qurator-spk/eynollah.git"
[tool.setuptools.dynamic]
dependencies = {file = ["requirements.txt"]}
[tool.setuptools.packages.find]
where = ["."]
include = ["qurator"]
where = ["src"]
[tool.setuptools.package-data]
"*" = ["*.json", '*.yml', '*.xml', '*.xsd']

@ -1 +0,0 @@
__import__("pkg_resources").declare_namespace(__name__)

@ -0,0 +1,8 @@
# ocrd includes opencv, numpy, shapely, click
ocrd >= 2.23.3
numpy <1.24.0
scikit-learn >= 0.23.2
tensorflow == 2.12.1
imutils >= 0.5.3
matplotlib
setuptools >= 50

@ -1,8 +1,8 @@
import sys
import click
from ocrd_utils import initLogging, setOverrideLogLevel
from qurator.eynollah.eynollah import Eynollah
from qurator.eynollah.sbb_binarize import SbbBinarizer
from eynollah.eynollah import Eynollah
from eynollah.sbb_binarize import SbbBinarizer
@click.group()
def main():
@ -146,6 +146,12 @@ def binarization(patches, model_dir, input_image, output_image, dir_in, dir_out)
is_flag=True,
help="If set, will plot intermediary files and images",
)
@click.option(
"--extract_only_images/--disable-extracting_only_images",
"-eoi/-noeoi",
is_flag=True,
help="If a directory is given, only images in documents will be cropped and saved there and the other processing will not be done",
)
@click.option(
"--allow-enhancement/--no-allow-enhancement",
"-ae/-noae",
@ -262,6 +268,8 @@ def layout(image, out, dir_in, model, save_images, save_layout, save_deskewed, s
sys.exit(1)
if light_version and not textline_light:
print('Error: You used -light without -tll. Light version need light textline to be enabled.')
if extract_only_images and (allow_enhancement or allow_scaling or light_version or curved_line or textline_light or full_layout or tables or right2left or headers_off) :
print('Error: You used -eoi which can not be enabled alongside light_version -light or allow_scaling -as or allow_enhancement -ae or curved_line -cl or textline_light -tll or full_layout -fl or tables -tab or right2left -r2l or headers_off -ho')
sys.exit(1)
eynollah = Eynollah(
image_filename=image,
@ -269,6 +277,7 @@ def layout(image, out, dir_in, model, save_images, save_layout, save_deskewed, s
dir_in=dir_in,
dir_models=model,
dir_of_cropped_images=save_images,
extract_only_images=extract_only_images,
dir_of_layout=save_layout,
dir_of_deskewed=save_deskewed,
dir_of_all=save_all,

@ -158,6 +158,7 @@ class Eynollah:
dir_out=None,
dir_in=None,
dir_of_cropped_images=None,
extract_only_images=False,
dir_of_layout=None,
dir_of_deskewed=None,
dir_of_all=None,
@ -211,6 +212,8 @@ class Eynollah:
self.input_binary = input_binary
self.allow_scaling = allow_scaling
self.headers_off = headers_off
self.light_version = light_version
self.extract_only_images = extract_only_images
self.ignore_page_extraction = ignore_page_extraction
self.skip_layout_and_reading_order = skip_layout_and_reading_order
self.ocr = do_ocr
@ -254,6 +257,7 @@ class Eynollah:
self.model_region_dir_p_1_2_sp_np = dir_models + "/modelens_e_l_all_sp_0_1_2_3_4_171024"#"/modelens_12sp_elay_0_3_4__3_6_n"#"/modelens_earlylayout_12spaltige_2_3_5_6_7_8"#"/modelens_early12_sp_2_3_5_6_7_8_9_10_12_14_15_16_18"#"/modelens_1_2_4_5_early_lay_1_2_spaltige"#"/model_3_eraly_layout_no_patches_1_2_spaltige"
##self.model_region_dir_fully_new = dir_models + "/model_2_full_layout_new_trans"
self.model_region_dir_fully = dir_models + "/modelens_full_lay_1_3_031124"#"/modelens_full_lay_13__3_19_241024"#"/model_full_lay_13_241024"#"/modelens_full_lay_13_17_231024"#"/modelens_full_lay_1_2_221024"#"/modelens_full_layout_24_till_28"#"/model_2_full_layout_new_trans"
self.model_region_dir_p_ens_light_only_images_extraction = dir_models + "/eynollah-main-regions_20231127_672_org_ens_11_13_16_17_18"
if self.textline_light:
self.model_textline_dir = dir_models + "/modelens_textline_0_1__2_4_16092024"#"/modelens_textline_1_4_16092024"#"/model_textline_ens_3_4_5_6_artificial"#"/modelens_textline_1_3_4_20240915"#"/model_textline_ens_3_4_5_6_artificial"#"/modelens_textline_9_12_13_14_15"#"/eynollah-textline_light_20210425"#
else:
@ -288,7 +292,23 @@ class Eynollah:
self.ls_imgs = os.listdir(self.dir_in)
if dir_in and not light_version:
if dir_in and self.extract_only_images:
config = tf.compat.v1.ConfigProto()
config.gpu_options.allow_growth = True
session = tf.compat.v1.Session(config=config)
set_session(session)
self.model_page = self.our_load_model(self.model_page_dir)
self.model_classifier = self.our_load_model(self.model_dir_of_col_classifier)
self.model_bin = self.our_load_model(self.model_dir_of_binarization)
#self.model_textline = self.our_load_model(self.model_textline_dir)
self.model_region = self.our_load_model(self.model_region_dir_p_ens_light_only_images_extraction)
#self.model_region_fl_np = self.our_load_model(self.model_region_dir_fully_np)
#self.model_region_fl = self.our_load_model(self.model_region_dir_fully)
self.ls_imgs = os.listdir(self.dir_in)
if dir_in and not (light_version or self.extract_only_images):
config = tf.compat.v1.ConfigProto()
config.gpu_options.allow_growth = True
session = tf.compat.v1.Session(config=config)
@ -534,6 +554,27 @@ class Eynollah:
return img_new, num_column_is_classified
def calculate_width_height_by_columns_extract_only_images(self, img, num_col, width_early, label_p_pred):
self.logger.debug("enter calculate_width_height_by_columns")
if num_col == 1:
img_w_new = 700
elif num_col == 2:
img_w_new = 900
elif num_col == 3:
img_w_new = 1500
elif num_col == 4:
img_w_new = 1800
elif num_col == 5:
img_w_new = 2200
elif num_col == 6:
img_w_new = 2500
img_h_new = int(img.shape[0] / float(img.shape[1]) * img_w_new)
img_new = resize_image(img, img_h_new, img_w_new)
num_column_is_classified = True
return img_new, num_column_is_classified
def resize_image_with_column_classifier(self, is_image_enhanced, img_bin):
self.logger.debug("enter resize_image_with_column_classifier")
if self.input_binary:
@ -690,25 +731,30 @@ class Eynollah:
self.logger.info("Found %d columns (%s)", num_col, np.around(label_p_pred, decimals=5))
if dpi < DPI_THRESHOLD:
if light_version and num_col in (1,2):
img_new, num_column_is_classified = self.calculate_width_height_by_columns_1_2(img, num_col, width_early, label_p_pred)
else:
img_new, num_column_is_classified = self.calculate_width_height_by_columns(img, num_col, width_early, label_p_pred)
if light_version:
image_res = np.copy(img_new)
else:
image_res = self.predict_enhancement(img_new)
is_image_enhanced = True
else:
if light_version and num_col in (1,2):
img_new, num_column_is_classified = self.calculate_width_height_by_columns_1_2(img, num_col, width_early, label_p_pred)
image_res = np.copy(img_new)
if not self.extract_only_images:
if dpi < DPI_THRESHOLD:
if light_version and num_col in (1,2):
img_new, num_column_is_classified = self.calculate_width_height_by_columns_1_2(img, num_col, width_early, label_p_pred)
else:
img_new, num_column_is_classified = self.calculate_width_height_by_columns(img, num_col, width_early, label_p_pred)
if light_version:
image_res = np.copy(img_new)
else:
image_res = self.predict_enhancement(img_new)
is_image_enhanced = True
else:
num_column_is_classified = True
image_res = np.copy(img)
is_image_enhanced = False
if light_version and num_col in (1,2):
img_new, num_column_is_classified = self.calculate_width_height_by_columns_1_2(img, num_col, width_early, label_p_pred)
image_res = np.copy(img_new)
is_image_enhanced = True
else:
num_column_is_classified = True
image_res = np.copy(img)
is_image_enhanced = False
else:
num_column_is_classified = True
image_res = np.copy(img)
is_image_enhanced = False
self.logger.debug("exit resize_and_enhance_image_with_column_classifier")
return is_image_enhanced, img, image_res, num_col, num_column_is_classified, img_bin
@ -1190,106 +1236,6 @@ class Eynollah:
img_patch[batch_indexer,:,:,:] = img[index_y_d:index_y_u, index_x_d:index_x_u, :]
batch_indexer = batch_indexer + 1
#img_patch = img[index_y_d:index_y_u, index_x_d:index_x_u, :]
#label_p_pred = model.predict(img_patch.reshape(1, img_patch.shape[0], img_patch.shape[1], img_patch.shape[2]),
#verbose=0)
#seg = np.argmax(label_p_pred, axis=3)[0]
######seg_not_base = label_p_pred[0,:,:,4]
########seg2 = -label_p_pred[0,:,:,2]
######seg_not_base[seg_not_base>0.03] =1
######seg_not_base[seg_not_base<1] =0
######seg_test = label_p_pred[0,:,:,1]
########seg2 = -label_p_pred[0,:,:,2]
######seg_test[seg_test>0.75] =1
######seg_test[seg_test<1] =0
######seg_line = label_p_pred[0,:,:,3]
########seg2 = -label_p_pred[0,:,:,2]
######seg_line[seg_line>0.1] =1
######seg_line[seg_line<1] =0
######seg_background = label_p_pred[0,:,:,0]
########seg2 = -label_p_pred[0,:,:,2]
######seg_background[seg_background>0.25] =1
######seg_background[seg_background<1] =0
##seg = seg+seg2
#seg = label_p_pred[0,:,:,2]
#seg[seg>0.4] =1
#seg[seg<1] =0
##plt.imshow(seg_test)
##plt.show()
##plt.imshow(seg_background)
##plt.show()
#seg[seg==1]=0
#seg[seg_test==1]=1
######seg[seg_not_base==1]=4
######seg[seg_background==1]=0
######seg[(seg_line==1) & (seg==0)]=3
#seg_color = np.repeat(seg[:, :, np.newaxis], 3, axis=2)
#if i == 0 and j == 0:
#seg_color = seg_color[0 : seg_color.shape[0] - margin, 0 : seg_color.shape[1] - margin, :]
#seg = seg[0 : seg.shape[0] - margin, 0 : seg.shape[1] - margin]
#mask_true[index_y_d + 0 : index_y_u - margin, index_x_d + 0 : index_x_u - margin] = seg
#prediction_true[index_y_d + 0 : index_y_u - margin, index_x_d + 0 : index_x_u - margin, :] = seg_color
#elif i == nxf - 1 and j == nyf - 1:
#seg_color = seg_color[margin : seg_color.shape[0] - 0, margin : seg_color.shape[1] - 0, :]
#seg = seg[margin : seg.shape[0] - 0, margin : seg.shape[1] - 0]
#mask_true[index_y_d + margin : index_y_u - 0, index_x_d + margin : index_x_u - 0] = seg
#prediction_true[index_y_d + margin : index_y_u - 0, index_x_d + margin : index_x_u - 0, :] = seg_color
#elif i == 0 and j == nyf - 1:
#seg_color = seg_color[margin : seg_color.shape[0] - 0, 0 : seg_color.shape[1] - margin, :]
#seg = seg[margin : seg.shape[0] - 0, 0 : seg.shape[1] - margin]
#mask_true[index_y_d + margin : index_y_u - 0, index_x_d + 0 : index_x_u - margin] = seg
#prediction_true[index_y_d + margin : index_y_u - 0, index_x_d + 0 : index_x_u - margin, :] = seg_color
#elif i == nxf - 1 and j == 0:
#seg_color = seg_color[0 : seg_color.shape[0] - margin, margin : seg_color.shape[1] - 0, :]
#seg = seg[0 : seg.shape[0] - margin, margin : seg.shape[1] - 0]
#mask_true[index_y_d + 0 : index_y_u - margin, index_x_d + margin : index_x_u - 0] = seg
#prediction_true[index_y_d + 0 : index_y_u - margin, index_x_d + margin : index_x_u - 0, :] = seg_color
#elif i == 0 and j != 0 and j != nyf - 1:
#seg_color = seg_color[margin : seg_color.shape[0] - margin, 0 : seg_color.shape[1] - margin, :]
#seg = seg[margin : seg.shape[0] - margin, 0 : seg.shape[1] - margin]
#mask_true[index_y_d + margin : index_y_u - margin, index_x_d + 0 : index_x_u - margin] = seg
#prediction_true[index_y_d + margin : index_y_u - margin, index_x_d + 0 : index_x_u - margin, :] = seg_color
#elif i == nxf - 1 and j != 0 and j != nyf - 1:
#seg_color = seg_color[margin : seg_color.shape[0] - margin, margin : seg_color.shape[1] - 0, :]
#seg = seg[margin : seg.shape[0] - margin, margin : seg.shape[1] - 0]
#mask_true[index_y_d + margin : index_y_u - margin, index_x_d + margin : index_x_u - 0] = seg
#prediction_true[index_y_d + margin : index_y_u - margin, index_x_d + margin : index_x_u - 0, :] = seg_color
#elif i != 0 and i != nxf - 1 and j == 0:
#seg_color = seg_color[0 : seg_color.shape[0] - margin, margin : seg_color.shape[1] - margin, :]
#seg = seg[0 : seg.shape[0] - margin, margin : seg.shape[1] - margin]
#mask_true[index_y_d + 0 : index_y_u - margin, index_x_d + margin : index_x_u - margin] = seg
#prediction_true[index_y_d + 0 : index_y_u - margin, index_x_d + margin : index_x_u - margin, :] = seg_color
#elif i != 0 and i != nxf - 1 and j == nyf - 1:
#seg_color = seg_color[margin : seg_color.shape[0] - 0, margin : seg_color.shape[1] - margin, :]
#seg = seg[margin : seg.shape[0] - 0, margin : seg.shape[1] - margin]
#mask_true[index_y_d + margin : index_y_u - 0, index_x_d + margin : index_x_u - margin] = seg
#prediction_true[index_y_d + margin : index_y_u - 0, index_x_d + margin : index_x_u - margin, :] = seg_color
#else:
#seg_color = seg_color[margin : seg_color.shape[0] - margin, margin : seg_color.shape[1] - margin, :]
#seg = seg[margin : seg.shape[0] - margin, margin : seg.shape[1] - margin]
#mask_true[index_y_d + margin : index_y_u - margin, index_x_d + margin : index_x_u - margin] = seg
#prediction_true[index_y_d + margin : index_y_u - margin, index_x_d + margin : index_x_u - margin, :] = seg_color
if batch_indexer == n_batch_inference:
@ -1302,18 +1248,11 @@ class Eynollah:
seg_art = label_p_pred[:,:,:,4]
seg_art[seg_art<0.2] =0
seg_art[seg_art>0] =1
###seg[seg_art==1]=4
##seg_not_base = label_p_pred[:,:,:,4]
##seg_not_base[seg_not_base>0.03] =1
##seg_not_base[seg_not_base<1] =0
seg_line = label_p_pred[:,:,:,3]
seg_line[seg_line>0.1] =1
seg_line[seg_line<1] =0
##seg_background = label_p_pred[:,:,:,0]
##seg_background[seg_background>0.25] =1
##seg_background[seg_background<1] =0
seg[seg_art==1]=4
##seg[seg_background==1]=0
@ -1384,20 +1323,15 @@ class Eynollah:
seg = np.argmax(label_p_pred, axis=3)
if thresholding_for_some_classes_in_light_version:
seg_not_base = label_p_pred[:,:,:,4]
seg_not_base[seg_not_base>0.03] =1
seg_not_base[seg_not_base<1] =0
seg_art = label_p_pred[:,:,:,4]
seg_art[seg_art<0.2] =0
seg_art[seg_art>0] =1
seg_line = label_p_pred[:,:,:,3]
seg_line[seg_line>0.1] =1
seg_line[seg_line<1] =0
seg_background = label_p_pred[:,:,:,0]
seg_background[seg_background>0.25] =1
seg_background[seg_background<1] =0
seg[seg_not_base==1]=4
seg[seg_background==1]=0
seg[seg_art==1]=4
seg[(seg_line==1) & (seg==0)]=3
if thresholding_for_artificial_class_in_light_version:
@ -2224,6 +2158,119 @@ class Eynollah:
q.put(slopes_sub)
poly.put(poly_sub)
box_sub.put(boxes_sub_new)
def get_regions_light_v_extract_only_images(self,img,is_image_enhanced, num_col_classifier):
self.logger.debug("enter get_regions_extract_images_only")
erosion_hurts = False
img_org = np.copy(img)
img_height_h = img_org.shape[0]
img_width_h = img_org.shape[1]
if num_col_classifier == 1:
img_w_new = 700
elif num_col_classifier == 2:
img_w_new = 900
elif num_col_classifier == 3:
img_w_new = 1500
elif num_col_classifier == 4:
img_w_new = 1800
elif num_col_classifier == 5:
img_w_new = 2200
elif num_col_classifier == 6:
img_w_new = 2500
img_h_new = int(img.shape[0] / float(img.shape[1]) * img_w_new)
img_resized = resize_image(img,img_h_new, img_w_new )
if not self.dir_in:
model_region, session_region = self.start_new_session_and_model(self.model_region_dir_p_ens_light_only_images_extraction)
prediction_regions_org = self.do_prediction_new_concept(True, img_resized, model_region)
else:
prediction_regions_org = self.do_prediction_new_concept(True, img_resized, self.model_region)
prediction_regions_org = resize_image(prediction_regions_org,img_height_h, img_width_h )
image_page, page_coord, cont_page = self.extract_page()
prediction_regions_org = prediction_regions_org[page_coord[0] : page_coord[1], page_coord[2] : page_coord[3]]
prediction_regions_org=prediction_regions_org[:,:,0]
mask_lines_only = (prediction_regions_org[:,:] ==3)*1
mask_texts_only = (prediction_regions_org[:,:] ==1)*1
mask_images_only=(prediction_regions_org[:,:] ==2)*1
polygons_lines_xml, hir_lines_xml = return_contours_of_image(mask_lines_only)
polygons_lines_xml = textline_con_fil = filter_contours_area_of_image(mask_lines_only, polygons_lines_xml, hir_lines_xml, max_area=1, min_area=0.00001)
polygons_of_only_texts = return_contours_of_interested_region(mask_texts_only,1,0.00001)
polygons_of_only_lines = return_contours_of_interested_region(mask_lines_only,1,0.00001)
text_regions_p_true = np.zeros(prediction_regions_org.shape)
text_regions_p_true = cv2.fillPoly(text_regions_p_true, pts = polygons_of_only_lines, color=(3,3,3))
text_regions_p_true[:,:][mask_images_only[:,:] == 1] = 2
text_regions_p_true = cv2.fillPoly(text_regions_p_true, pts = polygons_of_only_texts, color=(1,1,1))
text_regions_p_true[text_regions_p_true.shape[0]-15:text_regions_p_true.shape[0], :] = 0
text_regions_p_true[:, text_regions_p_true.shape[1]-15:text_regions_p_true.shape[1]] = 0
##polygons_of_images = return_contours_of_interested_region(text_regions_p_true, 2, 0.0001)
polygons_of_images = return_contours_of_interested_region(text_regions_p_true, 2, 0.001)
image_boundary_of_doc = np.zeros((text_regions_p_true.shape[0], text_regions_p_true.shape[1]))
###image_boundary_of_doc[:6, :] = 1
###image_boundary_of_doc[text_regions_p_true.shape[0]-6:text_regions_p_true.shape[0], :] = 1
###image_boundary_of_doc[:, :6] = 1
###image_boundary_of_doc[:, text_regions_p_true.shape[1]-6:text_regions_p_true.shape[1]] = 1
polygons_of_images_fin = []
for ploy_img_ind in polygons_of_images:
"""
test_poly_image = np.zeros((text_regions_p_true.shape[0], text_regions_p_true.shape[1]))
test_poly_image = cv2.fillPoly(test_poly_image, pts = [ploy_img_ind], color=(1,1,1))
test_poly_image = test_poly_image[:,:] + image_boundary_of_doc[:,:]
test_poly_image_intersected_area = ( test_poly_image[:,:]==2 )*1
test_poly_image_intersected_area = test_poly_image_intersected_area.sum()
if test_poly_image_intersected_area==0:
##polygons_of_images_fin.append(ploy_img_ind)
x, y, w, h = cv2.boundingRect(ploy_img_ind)
box = [x, y, w, h]
_, page_coord_img = crop_image_inside_box(box, text_regions_p_true)
#cont_page.append(np.array([[page_coord[2], page_coord[0]], [page_coord[3], page_coord[0]], [page_coord[3], page_coord[1]], [page_coord[2], page_coord[1]]]))
polygons_of_images_fin.append(np.array([[page_coord_img[2], page_coord_img[0]], [page_coord_img[3], page_coord_img[0]], [page_coord_img[3], page_coord_img[1]], [page_coord_img[2], page_coord_img[1]]]) )
"""
x, y, w, h = cv2.boundingRect(ploy_img_ind)
if h < 150 or w < 150:
pass
else:
box = [x, y, w, h]
_, page_coord_img = crop_image_inside_box(box, text_regions_p_true)
#cont_page.append(np.array([[page_coord[2], page_coord[0]], [page_coord[3], page_coord[0]], [page_coord[3], page_coord[1]], [page_coord[2], page_coord[1]]]))
polygons_of_images_fin.append(np.array([[page_coord_img[2], page_coord_img[0]], [page_coord_img[3], page_coord_img[0]], [page_coord_img[3], page_coord_img[1]], [page_coord_img[2], page_coord_img[1]]]) )
return text_regions_p_true, erosion_hurts, polygons_lines_xml, polygons_of_images_fin, image_page, page_coord, cont_page
def get_regions_light_v(self,img,is_image_enhanced, num_col_classifier, skip_layout_and_reading_order=False):
self.logger.debug("enter get_regions_light_v")
t_in = time.time()
@ -3179,11 +3226,13 @@ class Eynollah:
prediction_table_erode = cv2.erode(prediction_table[:,:,0], KERNEL, iterations=20)
prediction_table_erode = cv2.dilate(prediction_table_erode, KERNEL, iterations=20)
return prediction_table_erode.astype(np.int16)
def run_graphics_and_columns_light(self, text_regions_p_1, textline_mask_tot_ea, num_col_classifier, num_column_is_classified, erosion_hurts, img_bin_light):
#print(text_regions_p_1.shape, 'text_regions_p_1 shape run graphics')
#print(erosion_hurts, 'erosion_hurts')
t_in_gr = time.time()
img_g = self.imread(grayscale=True, uint8=True)
img_g3 = np.zeros((img_g.shape[0], img_g.shape[1], 3))
@ -3667,12 +3716,12 @@ class Eynollah:
img_poly[text_regions_p[:,:]==2] = 2
img_poly[text_regions_p[:,:]==3] = 4
img_poly[text_regions_p[:,:]==6] = 5
model_ro_machine, _ = self.start_new_session_and_model(self.model_reading_order_machine_dir)
height1 =672#448
width1 = 448#224
t0_tot = time.time()
height2 =672#448
width2= 448#224
@ -3684,7 +3733,6 @@ class Eynollah:
if contours_only_text_parent_h:
_, cy_main, x_min_main, x_max_main, y_min_main, y_max_main, _ = find_new_features_of_contours(contours_only_text_parent_h)
for j in range(len(cy_main)):
img_header_and_sep[int(y_max_main[j]):int(y_max_main[j])+12,int(x_min_main[j]):int(x_max_main[j]) ] = 1

@ -1,5 +1,5 @@
{
"version": "0.3.0",
"version": "0.3.1",
"git_url": "https://github.com/qurator-spk/eynollah",
"tools": {
"ocrd-eynollah-segment": {
@ -52,10 +52,10 @@
},
"resources": [
{
"description": "models for eynollah (TensorFlow format)",
"url": "https://github.com/qurator-spk/eynollah/releases/download/v0.3.0/models_eynollah.tar.gz",
"description": "models for eynollah (TensorFlow SavedModel format)",
"url": "https://github.com/qurator-spk/eynollah/releases/download/v0.3.1/models_eynollah.tar.gz",
"name": "default",
"size": 1761991295,
"size": 1894627041,
"type": "archive",
"path_in_archive": "models_eynollah"
}

@ -42,7 +42,7 @@ class EynollahProcessor(Processor):
page = pcgts.get_Page()
# XXX loses DPI information
# page_image, _, _ = self.workspace.image_from_page(page, page_id, feature_filter='binarized')
image_filename = self.workspace.download_file(next(self.workspace.mets.find_files(url=page.imageFilename))).local_filename
image_filename = self.workspace.download_file(next(self.workspace.mets.find_files(local_filename=page.imageFilename))).local_filename
eynollah_kwargs = {
'dir_models': self.resolve_resource(self.parameter['models']),
'allow_enhancement': False,

@ -202,10 +202,18 @@ class EynollahXmlWriter():
page.add_ImageRegion(img_region)
points_co = ''
for lmm in range(len(found_polygons_text_region_img[mm])):
points_co += str(int((found_polygons_text_region_img[mm][lmm,0,0] + page_coord[2]) / self.scale_x))
points_co += ','
points_co += str(int((found_polygons_text_region_img[mm][lmm,0,1] + page_coord[0]) / self.scale_y))
points_co += ' '
try:
points_co += str(int((found_polygons_text_region_img[mm][lmm,0,0] + page_coord[2]) / self.scale_x))
points_co += ','
points_co += str(int((found_polygons_text_region_img[mm][lmm,0,1] + page_coord[0]) / self.scale_y))
points_co += ' '
except:
points_co += str(int((found_polygons_text_region_img[mm][lmm][0] + page_coord[2])/ self.scale_x ))
points_co += ','
points_co += str(int((found_polygons_text_region_img[mm][lmm][1] + page_coord[0])/ self.scale_y ))
points_co += ' '
img_region.get_Coords().set_points(points_co[:-1])
for mm in range(len(polygons_lines_to_be_written_in_xml)):

@ -1,5 +1,5 @@
from tests.base import main
from qurator.eynollah.utils.counter import EynollahIdCounter
from eynollah.utils.counter import EynollahIdCounter
def test_counter_string():
c = EynollahIdCounter()

@ -1,6 +1,6 @@
import cv2
from pathlib import Path
from qurator.eynollah.utils.pil_cv2 import check_dpi
from eynollah.utils.pil_cv2 import check_dpi
from tests.base import main
def test_dpi():

@ -2,7 +2,7 @@ from os import environ
from pathlib import Path
from ocrd_utils import pushd_popd
from tests.base import CapturingTestCase as TestCase, main
from qurator.eynollah.cli import main as eynollah_cli
from eynollah.cli import main as eynollah_cli
testdir = Path(__file__).parent.resolve()

@ -1,7 +1,7 @@
def test_utils_import():
import qurator.eynollah.utils
import qurator.eynollah.utils.contour
import qurator.eynollah.utils.drop_capitals
import qurator.eynollah.utils.drop_capitals
import qurator.eynollah.utils.is_nan
import qurator.eynollah.utils.rotate
import eynollah.utils
import eynollah.utils.contour
import eynollah.utils.drop_capitals
import eynollah.utils.drop_capitals
import eynollah.utils.is_nan
import eynollah.utils.rotate

@ -1,5 +1,5 @@
from pytest import main
from qurator.eynollah.utils.xml import create_page_xml
from eynollah.utils.xml import create_page_xml
from ocrd_models.ocrd_page import to_xml
PAGE_2019 = 'http://schema.primaresearch.org/PAGE/gts/pagecontent/2019-07-15'

Loading…
Cancel
Save