mirror of
https://github.com/qurator-spk/eynollah.git
synced 2025-10-26 23:34:13 +01:00
Refactor CLI for consistent logging and late imports
This commit is contained in:
parent
38c028c6b5
commit
6c89888166
9 changed files with 88 additions and 112 deletions
|
|
@ -1,15 +1,34 @@
|
|||
import sys
|
||||
import click
|
||||
from dataclasses import dataclass
|
||||
import logging
|
||||
from ocrd_utils import initLogging, getLevelName, getLogger
|
||||
from eynollah.eynollah import Eynollah, Eynollah_ocr
|
||||
from eynollah.sbb_binarize import SbbBinarizer
|
||||
from eynollah.image_enhancer import Enhancer
|
||||
from eynollah.mb_ro_on_layout import machine_based_reading_order_on_layout
|
||||
import sys
|
||||
from typing import Union
|
||||
|
||||
import click
|
||||
|
||||
|
||||
@dataclass
|
||||
class EynollahCliContext():
|
||||
log_level : Union[str, None] = 'INFO'
|
||||
|
||||
@click.group()
|
||||
def main():
|
||||
pass
|
||||
@click.option(
|
||||
"--log_level",
|
||||
"-l",
|
||||
type=click.Choice(['OFF', 'DEBUG', 'INFO', 'WARN', 'ERROR']),
|
||||
help="Override log level globally to this",
|
||||
)
|
||||
@click.pass_context
|
||||
def main(ctx, log_level):
|
||||
"""
|
||||
eynollah - Document Layout Analysis, Image Enhancement, OCR
|
||||
"""
|
||||
ctx.obj = EynollahCliContext(log_level=log_level)
|
||||
console_handler = logging.StreamHandler(sys.stdout)
|
||||
console_handler.setLevel(logging.NOTSET)
|
||||
formatter = logging.Formatter('%(asctime)s.%(msecs)03d %(levelname)s %(name)s - %(message)s', datefmt='%H:%M:%S')
|
||||
console_handler.setFormatter(formatter)
|
||||
logging.getLogger('eynollah').addHandler(console_handler)
|
||||
logging.getLogger('eynollah').setLevel(ctx.obj.log_level or logging.INFO)
|
||||
|
||||
@main.command()
|
||||
@click.option(
|
||||
|
|
@ -38,18 +57,13 @@ def main():
|
|||
type=click.Path(exists=True, file_okay=False),
|
||||
required=True,
|
||||
)
|
||||
@click.option(
|
||||
"--log_level",
|
||||
"-l",
|
||||
type=click.Choice(['OFF', 'DEBUG', 'INFO', 'WARN', 'ERROR']),
|
||||
help="Override log level globally to this",
|
||||
)
|
||||
|
||||
def machine_based_reading_order(input, dir_in, out, model, log_level):
|
||||
def machine_based_reading_order(input, dir_in, out, model):
|
||||
"""
|
||||
Generate ReadingOrder with a ML model
|
||||
"""
|
||||
from .mb_ro_on_layout import machine_based_reading_order_on_layout
|
||||
assert bool(input) != bool(dir_in), "Either -i (single input) or -di (directory) must be provided, but not both."
|
||||
orderer = machine_based_reading_order_on_layout(model)
|
||||
if log_level:
|
||||
orderer.logger.setLevel(getLevelName(log_level))
|
||||
|
||||
orderer.run(xml_filename=input,
|
||||
dir_in=dir_in,
|
||||
|
|
@ -79,17 +93,13 @@ def machine_based_reading_order(input, dir_in, out, model, log_level):
|
|||
type=click.Path(file_okay=True, dir_okay=True),
|
||||
required=True,
|
||||
)
|
||||
@click.option(
|
||||
"--log_level",
|
||||
"-l",
|
||||
type=click.Choice(['OFF', 'DEBUG', 'INFO', 'WARN', 'ERROR']),
|
||||
help="Override log level globally to this",
|
||||
)
|
||||
def binarization(patches, model_dir, input_image, dir_in, output, log_level):
|
||||
def binarization(patches, model_dir, input_image, dir_in, output):
|
||||
"""
|
||||
Binarize images with a ML model
|
||||
"""
|
||||
assert bool(input_image) != bool(dir_in), "Either -i (single input) or -di (directory) must be provided, but not both."
|
||||
from .sbb_binarize import SbbBinarizer
|
||||
binarizer = SbbBinarizer(model_dir)
|
||||
if log_level:
|
||||
binarizer.log.setLevel(getLevelName(log_level))
|
||||
binarizer.run(image_path=input_image, use_patches=patches, output=output, dir_in=dir_in)
|
||||
|
||||
|
||||
|
|
@ -144,24 +154,18 @@ def binarization(patches, model_dir, input_image, dir_in, output, log_level):
|
|||
is_flag=True,
|
||||
help="if this parameter set to true, this tool will save the enhanced image in org scale.",
|
||||
)
|
||||
@click.option(
|
||||
"--log_level",
|
||||
"-l",
|
||||
type=click.Choice(['OFF', 'DEBUG', 'INFO', 'WARN', 'ERROR']),
|
||||
help="Override log level globally to this",
|
||||
)
|
||||
|
||||
def enhancement(image, out, overwrite, dir_in, model, num_col_upper, num_col_lower, save_org_scale, log_level):
|
||||
def enhancement(image, out, overwrite, dir_in, model, num_col_upper, num_col_lower, save_org_scale):
|
||||
"""
|
||||
Enhance image
|
||||
"""
|
||||
assert bool(image) != bool(dir_in), "Either -i (single input) or -di (directory) must be provided, but not both."
|
||||
initLogging()
|
||||
from .image_enhancer import Enhancer
|
||||
enhancer = Enhancer(
|
||||
model,
|
||||
num_col_upper=num_col_upper,
|
||||
num_col_lower=num_col_lower,
|
||||
save_org_scale=save_org_scale,
|
||||
)
|
||||
if log_level:
|
||||
enhancer.logger.setLevel(getLevelName(log_level))
|
||||
enhancer.run(overwrite=overwrite,
|
||||
dir_in=dir_in,
|
||||
image_filename=image,
|
||||
|
|
@ -366,30 +370,10 @@ def enhancement(image, out, overwrite, dir_in, model, num_col_upper, num_col_low
|
|||
is_flag=True,
|
||||
help="if this parameter set to true, this tool will ignore layout detection and reading order. It means that textline detection will be done within printspace and contours of textline will be written in xml output file.",
|
||||
)
|
||||
# TODO move to top-level CLI context
|
||||
@click.option(
|
||||
"--log_level",
|
||||
"-l",
|
||||
type=click.Choice(['OFF', 'DEBUG', 'INFO', 'WARN', 'ERROR']),
|
||||
help="Override 'eynollah' log level globally to this",
|
||||
)
|
||||
#
|
||||
@click.option(
|
||||
"--setup-logging",
|
||||
is_flag=True,
|
||||
help="Setup a basic console logger",
|
||||
)
|
||||
|
||||
def layout(image, out, overwrite, dir_in, model, model_version, save_images, save_layout, save_deskewed, save_all, extract_only_images, save_page, enable_plotting, allow_enhancement, curved_line, textline_light, full_layout, tables, right2left, input_binary, allow_scaling, headers_off, light_version, reading_order_machine_based, do_ocr, transformer_ocr, batch_size_ocr, num_col_upper, num_col_lower, threshold_art_class_textline, threshold_art_class_layout, skip_layout_and_reading_order, ignore_page_extraction, log_level, setup_logging):
|
||||
if setup_logging:
|
||||
console_handler = logging.StreamHandler(sys.stdout)
|
||||
console_handler.setLevel(logging.INFO)
|
||||
formatter = logging.Formatter('%(message)s')
|
||||
console_handler.setFormatter(formatter)
|
||||
getLogger('eynollah').addHandler(console_handler)
|
||||
getLogger('eynollah').setLevel(logging.INFO)
|
||||
else:
|
||||
initLogging()
|
||||
def layout(image, out, overwrite, dir_in, model, model_version, save_images, save_layout, save_deskewed, save_all, extract_only_images, save_page, enable_plotting, allow_enhancement, curved_line, textline_light, full_layout, tables, right2left, input_binary, allow_scaling, headers_off, light_version, reading_order_machine_based, do_ocr, transformer_ocr, batch_size_ocr, num_col_upper, num_col_lower, threshold_art_class_textline, threshold_art_class_layout, skip_layout_and_reading_order, ignore_page_extraction):
|
||||
"""
|
||||
Detect Layout (with optional image enhancement and reading order detection)
|
||||
"""
|
||||
assert enable_plotting or not save_layout, "Plotting with -sl also requires -ep"
|
||||
assert enable_plotting or not save_deskewed, "Plotting with -sd also requires -ep"
|
||||
assert enable_plotting or not save_all, "Plotting with -sa also requires -ep"
|
||||
|
|
@ -409,6 +393,7 @@ def layout(image, out, overwrite, dir_in, model, model_version, save_images, sav
|
|||
assert not extract_only_images or not right2left, "Image extraction -eoi can not be set alongside right2left -r2l"
|
||||
assert not extract_only_images or not headers_off, "Image extraction -eoi can not be set alongside headers_off -ho"
|
||||
assert bool(image) != bool(dir_in), "Either -i (single input) or -di (directory) must be provided, but not both."
|
||||
from .eynollah import Eynollah
|
||||
eynollah = Eynollah(
|
||||
model,
|
||||
model_versions=model_version,
|
||||
|
|
@ -435,8 +420,6 @@ def layout(image, out, overwrite, dir_in, model, model_version, save_images, sav
|
|||
threshold_art_class_textline=threshold_art_class_textline,
|
||||
threshold_art_class_layout=threshold_art_class_layout,
|
||||
)
|
||||
if log_level:
|
||||
eynollah.logger.setLevel(getLevelName(log_level))
|
||||
eynollah.run(overwrite=overwrite,
|
||||
image_filename=image,
|
||||
dir_in=dir_in,
|
||||
|
|
@ -537,16 +520,11 @@ def layout(image, out, overwrite, dir_in, model, model_version, save_images, sav
|
|||
"-min_conf",
|
||||
help="minimum OCR confidence value. Text lines with a confidence value lower than this threshold will not be included in the output XML file.",
|
||||
)
|
||||
@click.option(
|
||||
"--log_level",
|
||||
"-l",
|
||||
type=click.Choice(['OFF', 'DEBUG', 'INFO', 'WARN', 'ERROR']),
|
||||
help="Override log level globally to this",
|
||||
)
|
||||
|
||||
def ocr(image, dir_in, dir_in_bin, dir_xmls, out, dir_out_image_text, overwrite, model, model_name, tr_ocr, export_textline_images_and_text, do_not_mask_with_textline_contour, batch_size, dataset_abbrevation, min_conf_value_of_textline_text, log_level):
|
||||
initLogging()
|
||||
|
||||
def ocr(image, dir_in, dir_in_bin, dir_xmls, out, dir_out_image_text, overwrite, model, model_name, tr_ocr, export_textline_images_and_text, do_not_mask_with_textline_contour, batch_size, dataset_abbrevation, min_conf_value_of_textline_text):
|
||||
"""
|
||||
Recognize text with a CNN/RNN or transformer ML model.
|
||||
"""
|
||||
assert bool(model) != bool(model_name), "Either -m (model directory) or --model_name (specific model name) must be provided."
|
||||
assert not export_textline_images_and_text or not tr_ocr, "Exporting textline and text -etit can not be set alongside transformer ocr -tr_ocr"
|
||||
assert not export_textline_images_and_text or not model, "Exporting textline and text -etit can not be set alongside model -m"
|
||||
|
|
@ -554,6 +532,7 @@ def ocr(image, dir_in, dir_in_bin, dir_xmls, out, dir_out_image_text, overwrite,
|
|||
assert not export_textline_images_and_text or not dir_in_bin, "Exporting textline and text -etit can not be set alongside directory of bin images -dib"
|
||||
assert not export_textline_images_and_text or not dir_out_image_text, "Exporting textline and text -etit can not be set alongside directory of images with predicted text -doit"
|
||||
assert bool(image) != bool(dir_in), "Either -i (single image) or -di (directory) must be provided, but not both."
|
||||
from .eynollah import Eynollah_ocr
|
||||
eynollah_ocr = Eynollah_ocr(
|
||||
dir_models=model,
|
||||
model_name=model_name,
|
||||
|
|
@ -562,10 +541,7 @@ def ocr(image, dir_in, dir_in_bin, dir_xmls, out, dir_out_image_text, overwrite,
|
|||
do_not_mask_with_textline_contour=do_not_mask_with_textline_contour,
|
||||
batch_size=batch_size,
|
||||
pref_of_dataset=dataset_abbrevation,
|
||||
min_conf_value_of_textline_text=min_conf_value_of_textline_text,
|
||||
)
|
||||
if log_level:
|
||||
eynollah_ocr.logger.setLevel(getLevelName(log_level))
|
||||
min_conf_value_of_textline_text=min_conf_value_of_textline_text)
|
||||
eynollah_ocr.run(overwrite=overwrite,
|
||||
dir_in=dir_in,
|
||||
dir_in_bin=dir_in_bin,
|
||||
|
|
|
|||
|
|
@ -7,6 +7,7 @@ document layout analysis (segmentation) with output in PAGE-XML
|
|||
"""
|
||||
|
||||
# cannot use importlib.resources until we move to 3.9+ forimportlib.resources.files
|
||||
import logging
|
||||
import sys
|
||||
if sys.version_info < (3, 10):
|
||||
import importlib_resources
|
||||
|
|
@ -19,8 +20,7 @@ import math
|
|||
import os
|
||||
import sys
|
||||
import time
|
||||
from typing import Dict, List, Optional, Tuple
|
||||
import atexit
|
||||
from typing import List, Optional, Tuple
|
||||
import warnings
|
||||
from functools import partial
|
||||
from pathlib import Path
|
||||
|
|
@ -39,7 +39,7 @@ from scipy.ndimage import gaussian_filter1d
|
|||
from numba import cuda
|
||||
from skimage.morphology import skeletonize
|
||||
from ocrd import OcrdPage
|
||||
from ocrd_utils import getLogger, tf_disable_interactive_logs
|
||||
from ocrd_utils import tf_disable_interactive_logs
|
||||
import statistics
|
||||
|
||||
try:
|
||||
|
|
@ -60,8 +60,6 @@ tf_disable_interactive_logs()
|
|||
import tensorflow as tf
|
||||
from tensorflow.python.keras import backend as K
|
||||
from tensorflow.keras.models import load_model
|
||||
tf.get_logger().setLevel("ERROR")
|
||||
warnings.filterwarnings("ignore")
|
||||
# use tf1 compatibility for keras backend
|
||||
from tensorflow.compat.v1.keras.backend import set_session
|
||||
from tensorflow.keras import layers
|
||||
|
|
@ -230,8 +228,9 @@ class Eynollah:
|
|||
threshold_art_class_layout: Optional[float] = None,
|
||||
threshold_art_class_textline: Optional[float] = None,
|
||||
skip_layout_and_reading_order : bool = False,
|
||||
logger : Optional[logging.Logger] = None,
|
||||
):
|
||||
self.logger = getLogger('eynollah')
|
||||
self.logger = logger or logging.getLogger('eynollah')
|
||||
self.plotter = None
|
||||
|
||||
if skip_layout_and_reading_order:
|
||||
|
|
@ -4888,14 +4887,13 @@ class Eynollah_ocr:
|
|||
do_not_mask_with_textline_contour=False,
|
||||
pref_of_dataset=None,
|
||||
min_conf_value_of_textline_text : Optional[float]=None,
|
||||
logger=None,
|
||||
):
|
||||
self.model_name = model_name
|
||||
self.tr_ocr = tr_ocr
|
||||
self.export_textline_images_and_text = export_textline_images_and_text
|
||||
self.do_not_mask_with_textline_contour = do_not_mask_with_textline_contour
|
||||
self.pref_of_dataset = pref_of_dataset
|
||||
self.logger = logger if logger else getLogger('eynollah')
|
||||
self.logger = logging.getLogger('eynollah')
|
||||
|
||||
if not export_textline_images_and_text:
|
||||
if min_conf_value_of_textline_text:
|
||||
|
|
|
|||
|
|
@ -2,7 +2,7 @@
|
|||
Image enhancer. The output can be written as same scale of input or in new predicted scale.
|
||||
"""
|
||||
|
||||
from logging import Logger
|
||||
import logging
|
||||
import os
|
||||
import time
|
||||
from typing import Optional
|
||||
|
|
@ -11,7 +11,6 @@ import gc
|
|||
|
||||
import cv2
|
||||
import numpy as np
|
||||
from ocrd_utils import getLogger, tf_disable_interactive_logs
|
||||
import tensorflow as tf
|
||||
from skimage.morphology import skeletonize
|
||||
from tensorflow.keras.models import load_model
|
||||
|
|
@ -35,7 +34,6 @@ class Enhancer:
|
|||
num_col_upper : Optional[int] = None,
|
||||
num_col_lower : Optional[int] = None,
|
||||
save_org_scale : bool = False,
|
||||
logger : Optional[Logger] = None,
|
||||
):
|
||||
self.input_binary = False
|
||||
self.light_version = False
|
||||
|
|
@ -49,7 +47,7 @@ class Enhancer:
|
|||
else:
|
||||
self.num_col_lower = num_col_lower
|
||||
|
||||
self.logger = logger if logger else getLogger('enhancement')
|
||||
self.logger = logging.getLogger('eynollah.enhancement')
|
||||
self.dir_models = dir_models
|
||||
self.model_dir_of_binarization = dir_models + "/eynollah-binarization_20210425"
|
||||
self.model_dir_of_enhancement = dir_models + "/eynollah-enhancement_20210425"
|
||||
|
|
|
|||
|
|
@ -1,8 +1,8 @@
|
|||
"""
|
||||
Image enhancer. The output can be written as same scale of input or in new predicted scale.
|
||||
Machine learning based reading order detection
|
||||
"""
|
||||
|
||||
from logging import Logger
|
||||
import logging
|
||||
import os
|
||||
import time
|
||||
from typing import Optional
|
||||
|
|
@ -11,7 +11,6 @@ import xml.etree.ElementTree as ET
|
|||
|
||||
import cv2
|
||||
import numpy as np
|
||||
from ocrd_utils import getLogger
|
||||
import statistics
|
||||
import tensorflow as tf
|
||||
from tensorflow.keras.models import load_model
|
||||
|
|
@ -33,9 +32,9 @@ class machine_based_reading_order_on_layout:
|
|||
def __init__(
|
||||
self,
|
||||
dir_models : str,
|
||||
logger : Optional[Logger] = None,
|
||||
logger : Optional[logging.Logger] = None,
|
||||
):
|
||||
self.logger = logger if logger else getLogger('mbreorder')
|
||||
self.logger = logger or logging.getLogger('eynollah.mbreorder')
|
||||
self.dir_models = dir_models
|
||||
self.model_reading_order_dir = dir_models + "/model_eynollah_reading_order_20250824"
|
||||
|
||||
|
|
|
|||
|
|
@ -34,6 +34,7 @@ class SbbBinarizeProcessor(Processor):
|
|||
Set up the model prior to processing.
|
||||
"""
|
||||
# resolve relative path via OCR-D ResourceManager
|
||||
assert isinstance(self.parameter, dict)
|
||||
model_path = self.resolve_resource(self.parameter['model'])
|
||||
self.binarizer = SbbBinarizer(model_dir=model_path, logger=self.logger)
|
||||
|
||||
|
|
|
|||
|
|
@ -32,8 +32,8 @@ class EynollahProcessor(Processor):
|
|||
allow_scaling=self.parameter['allow_scaling'],
|
||||
headers_off=self.parameter['headers_off'],
|
||||
tables=self.parameter['tables'],
|
||||
logger=self.logger
|
||||
)
|
||||
self.eynollah.logger = self.logger
|
||||
self.eynollah.plotter = None
|
||||
|
||||
def shutdown(self):
|
||||
|
|
|
|||
|
|
@ -2,19 +2,16 @@
|
|||
Tool to load model and binarize a given image.
|
||||
"""
|
||||
|
||||
import sys
|
||||
from glob import glob
|
||||
import os
|
||||
import logging
|
||||
from typing import Optional
|
||||
|
||||
import numpy as np
|
||||
from PIL import Image
|
||||
import cv2
|
||||
from ocrd_utils import tf_disable_interactive_logs
|
||||
tf_disable_interactive_logs()
|
||||
import tensorflow as tf
|
||||
from tensorflow.keras.models import load_model
|
||||
from tensorflow.python.keras import backend as tensorflow_backend
|
||||
from keras.models import load_model
|
||||
from keras import backend as tensorflow_backend
|
||||
|
||||
from .utils import is_image_filename
|
||||
|
||||
|
|
@ -23,9 +20,13 @@ def resize_image(img_in, input_height, input_width):
|
|||
|
||||
class SbbBinarizer:
|
||||
|
||||
def __init__(self, model_dir, logger=None):
|
||||
def __init__(
|
||||
self,
|
||||
model_dir,
|
||||
logger: Optional[logging.Logger] = None,
|
||||
):
|
||||
self.model_dir = model_dir
|
||||
self.log = logger if logger else logging.getLogger('SbbBinarizer')
|
||||
self.logger = logger or logging.getLogger('eynollah.binarize')
|
||||
|
||||
self.start_new_session()
|
||||
|
||||
|
|
@ -325,7 +326,7 @@ class SbbBinarizer:
|
|||
image = cv2.imread(image_path)
|
||||
img_last = 0
|
||||
for n, (model, model_file) in enumerate(zip(self.models, self.model_files)):
|
||||
self.log.info('Predicting with model %s [%s/%s]' % (model_file, n + 1, len(self.model_files)))
|
||||
self.logger.debug('Binarizing with model %s [%s/%s]' % (model_file, n + 1, len(self.model_files)))
|
||||
|
||||
res = self.predict(model, image, use_patches)
|
||||
|
||||
|
|
@ -345,17 +346,19 @@ class SbbBinarizer:
|
|||
img_last[:, :][img_last[:, :] > 0] = 255
|
||||
img_last = (img_last[:, :] == 0) * 255
|
||||
if output:
|
||||
self.logger.info('Writing binarized image to %s', output)
|
||||
cv2.imwrite(output, img_last)
|
||||
return img_last
|
||||
else:
|
||||
ls_imgs = list(filter(is_image_filename, os.listdir(dir_in)))
|
||||
for image_name in ls_imgs:
|
||||
self.logger.info("Found %d image files to binarize in %s", len(ls_imgs), dir_in)
|
||||
for i, image_name in enumerate(ls_imgs):
|
||||
image_stem = image_name.split('.')[0]
|
||||
print(image_name,'image_name')
|
||||
self.logger.info('Binarizing [%3d/%d] %s', i + 1, len(ls_imgs), image_name)
|
||||
image = cv2.imread(os.path.join(dir_in,image_name) )
|
||||
img_last = 0
|
||||
for n, (model, model_file) in enumerate(zip(self.models, self.model_files)):
|
||||
self.log.info('Predicting with model %s [%s/%s]' % (model_file, n + 1, len(self.model_files)))
|
||||
self.logger.debug('Predicting with model %s [%s/%s]' % (model_file, n + 1, len(self.model_files)))
|
||||
|
||||
res = self.predict(model, image, use_patches)
|
||||
|
||||
|
|
@ -375,4 +378,6 @@ class SbbBinarizer:
|
|||
img_last[:, :][img_last[:, :] > 0] = 255
|
||||
img_last = (img_last[:, :] == 0) * 255
|
||||
|
||||
cv2.imwrite(os.path.join(output, image_stem + '.png'), img_last)
|
||||
output_filename = os.path.join(output, image_stem + '.png')
|
||||
self.logger.info('Writing binarized image to %s', output_filename)
|
||||
cv2.imwrite(output_filename, img_last)
|
||||
|
|
|
|||
|
|
@ -19,7 +19,6 @@ from .contour import (contours_in_same_horizon,
|
|||
find_new_features_of_contours,
|
||||
return_contours_of_image,
|
||||
return_parent_contours)
|
||||
|
||||
def pairwise(iterable):
|
||||
# pairwise('ABCDEFG') → AB BC CD DE EF FG
|
||||
|
||||
|
|
|
|||
|
|
@ -2,11 +2,11 @@
|
|||
# pylint: disable=import-error
|
||||
from pathlib import Path
|
||||
import os.path
|
||||
import logging
|
||||
import xml.etree.ElementTree as ET
|
||||
from .utils.xml import create_page_xml, xml_reading_order
|
||||
from .utils.counter import EynollahIdCounter
|
||||
|
||||
from ocrd_utils import getLogger
|
||||
from ocrd_models.ocrd_page import (
|
||||
BorderType,
|
||||
CoordsType,
|
||||
|
|
@ -24,7 +24,7 @@ import numpy as np
|
|||
class EynollahXmlWriter:
|
||||
|
||||
def __init__(self, *, dir_out, image_filename, curved_line,textline_light, pcgts=None):
|
||||
self.logger = getLogger('eynollah.writer')
|
||||
self.logger = logging.getLogger('eynollah.writer')
|
||||
self.counter = EynollahIdCounter()
|
||||
self.dir_out = dir_out
|
||||
self.image_filename = image_filename
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue