diff --git a/docs/docker.md b/docs/docker.md index 466adf6..e47f2d5 100644 --- a/docs/docker.md +++ b/docs/docker.md @@ -1,4 +1,8 @@ -# 1. ocrd resource manager +## Inference with Docker + + docker pull ghcr.io/qurator-spk/eynollah:latest + +### 1. ocrd resource manager (just once, to get the models and install them into a named volume for later re-use) vol_models=ocrd-resources:/usr/local/share/ocrd-resources @@ -6,19 +10,34 @@ Now, each time you want to use Eynollah, pass the same resources volume again. Also, bind-mount some data directory, e.g. current working directory $PWD (/data is default working directory in the container). + Either use standalone CLI (2) or OCR-D CLI (3): -# 2. standalone CLI (follow self-help, cf. readme) +### 2. standalone CLI +(follow self-help, cf. readme) docker run --rm -v $vol_models -v $PWD:/data ocrd/eynollah eynollah binarization --help docker run --rm -v $vol_models -v $PWD:/data ocrd/eynollah eynollah layout --help docker run --rm -v $vol_models -v $PWD:/data ocrd/eynollah eynollah ocr --help -# 3. OCR-D CLI (follow self-help, cf. readme and https://ocr-d.de/en/spec/cli) +### 3. OCR-D CLI +(follow self-help, cf. readme and https://ocr-d.de/en/spec/cli) docker run --rm -v $vol_models -v $PWD:/data ocrd/eynollah ocrd-eynollah-segment -h docker run --rm -v $vol_models -v $PWD:/data ocrd/eynollah ocrd-sbb-binarize -h Alternatively, just "log in" to the container once and use the commands there: - docker run --rm -v $vol_models -v $PWD:/data -it ocrd/eynollah bash \ No newline at end of file + docker run --rm -v $vol_models -v $PWD:/data -it ocrd/eynollah bash + +## Training with Docker + +Build the Docker image + + cd train + docker build -t model-training . + +Run the Docker image + + cd train + docker run --gpus all -v $PWD:/entry_point_dir model-training diff --git a/train/README.md b/train/README.md index 5f6d326..d270542 100644 --- a/train/README.md +++ b/train/README.md @@ -41,19 +41,3 @@ each class will be defined with a RGB value and beside images, a text file of cl > Convert COCO GT or results for a single image to a segmentation map and write it to disk. * [`ocrd-segment-extract-pages`](https://github.com/OCR-D/ocrd_segment/blob/master/ocrd_segment/extract_pages.py) > Extract region classes and their colours in mask (pseg) images. Allows the color map as free dict parameter, and comes with a default that mimics PageViewer's coloring for quick debugging; it also warns when regions do overlap. - -### Train using Docker - -Build the Docker image: - -```bash -cd train -docker build -t model-training . -``` - -Run Docker image - -```bash -cd train -docker run --gpus all -v $PWD:/entry_point_dir model-training -```