|
|
|
@ -5091,6 +5091,7 @@ class Eynollah_ocr:
|
|
|
|
|
width_new = w_ratio
|
|
|
|
|
else:
|
|
|
|
|
width_new = image_width
|
|
|
|
|
|
|
|
|
|
img = resize_image(img, image_height, width_new)
|
|
|
|
|
img_fin = np.ones((image_height, image_width, 3))*255
|
|
|
|
|
img_fin[:,:width_new,:] = img[:,:,:]
|
|
|
|
@ -5285,7 +5286,7 @@ class Eynollah_ocr:
|
|
|
|
|
img_crop[mask_poly==0] = 255
|
|
|
|
|
|
|
|
|
|
if not self.export_textline_images_and_text:
|
|
|
|
|
if h2w_ratio > 0.05:
|
|
|
|
|
if h2w_ratio > 0.1:
|
|
|
|
|
img_fin = self.preprocess_and_resize_image_for_ocrcnn_model(img_crop, image_height, image_width)
|
|
|
|
|
cropped_lines.append(img_fin)
|
|
|
|
|
cropped_lines_meging_indexing.append(0)
|
|
|
|
@ -5345,7 +5346,7 @@ class Eynollah_ocr:
|
|
|
|
|
pred_texts_ib = pred_texts[ib].strip("[UNK]")
|
|
|
|
|
extracted_texts.append(pred_texts_ib)
|
|
|
|
|
|
|
|
|
|
extracted_texts_merged = [extracted_texts[ind] if cropped_lines_meging_indexing[ind]==0 else extracted_texts[ind]+extracted_texts[ind+1] if cropped_lines_meging_indexing[ind]==1 else None for ind in range(len(cropped_lines_meging_indexing))]
|
|
|
|
|
extracted_texts_merged = [extracted_texts[ind] if cropped_lines_meging_indexing[ind]==0 else extracted_texts[ind]+" "+extracted_texts[ind+1] if cropped_lines_meging_indexing[ind]==1 else None for ind in range(len(cropped_lines_meging_indexing))]
|
|
|
|
|
|
|
|
|
|
extracted_texts_merged = [ind for ind in extracted_texts_merged if ind is not None]
|
|
|
|
|
unique_cropped_lines_region_indexer = np.unique(cropped_lines_region_indexer)
|
|
|
|
|