return_boxes_of_images_by_order_of_reading_new: simplify

- array instead of list operations
- add better plotting (but commented out)
- add more debug printing (but commented out)
- add more inline comments for documentation
- rename identifiers to make more readable:
  - `cy_hor_diff` → `y_max_hor_some` (because the ymax gets passed)
  - `lines` → `seps`
  - `y_type_2` → `y_mid`
  - `y_diff_type_2` → `y_max`
  - `y_lines_by_order` → `y_mid_by_order`
  - `y_lines_without_mother` → `y_mid_without_mother`
  - `y_lines_with_child_without_mother` → `y_mid_with_child_without_mother`
  - `y_column` → `y_mid_column`
  - `y_column_nc` → `y_mid_column_nc`
  - `y_all_between_nm_wc` → `y_mid_between_nm_wc`
  - `lines_so_close_to_top_separator` → `seps_too_close_to_top_separator`
  - `y_in_cols` and `y_down` → `y_mid_next`
- use `pairwise()` `nc_top:nc_bot` instead of `i_c` indexing
This commit is contained in:
Robert Sachunsky 2025-10-24 02:02:39 +02:00
parent 6cc5900943
commit 6fbb5f8a12

View file

@ -1599,19 +1599,31 @@ def return_boxes_of_images_by_order_of_reading_new(
if logger is None:
logger = getLogger(__package__)
logger.debug('enter return_boxes_of_images_by_order_of_reading_new')
# def dbg_plt(box=None, title=None):
# if box is None:
# box = [None, None, None, None]
# img = regions_without_separators[box[2]:box[3], box[0]:box[1]]
# def dbg_plt(box=None, title=None, rectangles=None, rectangles_showidx=False):
# minx, maxx, miny, maxy = box or (0, None, 0, None)
# img = regions_without_separators[miny:maxy, minx:maxx]
# plt.imshow(img)
# xrange = np.arange(0, img.shape[1], 100)
# yrange = np.arange(0, img.shape[0], 100)
# plt.gca().set_xticks(xrange, xrange + (box[0] or 0))
# plt.gca().set_yticks(yrange, yrange + (box[2] or 0))
# ax = plt.gca()
# ax.set_xticks(xrange)
# ax.set_yticks(yrange)
# ax.set_xticklabels(xrange + minx)
# ax.set_yticklabels(yrange + miny)
# def format_coord(x, y):
# return 'x={:g}, y={:g}'.format(x + minx, y + miny)
# ax.format_coord = format_coord
# if title:
# plt.title(title)
# if rectangles:
# for i, (xmin, xmax, ymin, ymax) in enumerate(rectangles):
# ax.add_patch(patches.Rectangle((xmin, ymin), xmax - xmin, ymax - ymin,
# fill=False, linewidth=1, edgecolor='r'))
# if rectangles_showidx:
# ax.text((xmin+xmax)/2, (ymin+ymax)/2, str(i + 1), c='r')
# plt.show()
# dbg_plt()
# dbg_plt(title="return_boxes_of_images_by_order_of_reading_new")
boxes=[]
peaks_neg_tot_tables = []
@ -1619,9 +1631,7 @@ def return_boxes_of_images_by_order_of_reading_new(
width_tot = regions_without_separators.shape[1]
for top, bot in pairwise(splitter_y_new):
# print("%d:%d" % (top, bot), 'i')
# dbg_plt([None, None, top, bot],
# "image cut for y split %d:%d" % (
# top, bot))
# dbg_plt([0, None, top, bot], "image cut for y split %d:%d" % (top, bot))
matrix_new = matrix_of_lines_ch[(matrix_of_lines_ch[:,6] > top) &
(matrix_of_lines_ch[:,7] < bot)]
#print(len( matrix_new[:,9][matrix_new[:,9]==1] ))
@ -1677,20 +1687,21 @@ def return_boxes_of_images_by_order_of_reading_new(
peaks_neg_fin = peaks_neg_fin1
else:
peaks_neg_fin = peaks_neg_fin2
# add offset to local result
peaks_neg_fin = list(np.array(peaks_neg_fin) + left)
#print(peaks_neg_fin,'peaks_neg_fin')
if right < peaks_neg_fin_early[-1]:
peaks_neg_fin_rev.append(right)
peaks_neg_fin_rev.extend(peaks_neg_fin)
if right < peaks_neg_fin_early[-1]:
# all but the last column: interject the preexisting boundary
peaks_neg_fin_rev.append(right)
#print(peaks_neg_fin_rev,'peaks_neg_fin_rev')
if len(peaks_neg_fin_rev) >= len(peaks_neg_fin_org):
peaks_neg_fin=list(np.sort(peaks_neg_fin_rev))
num_col=len(peaks_neg_fin)
peaks_neg_fin = peaks_neg_fin_rev
else:
peaks_neg_fin=list(np.copy(peaks_neg_fin_org))
peaks_neg_fin = peaks_neg_fin_org
num_col = len(peaks_neg_fin)
#print(peaks_neg_fin,'peaks_neg_fin')
except:
logger.exception("cannot find peaks consistent with columns")
@ -1700,7 +1711,7 @@ def return_boxes_of_images_by_order_of_reading_new(
x_min_hor_some=matrix_new[:,2][ (matrix_new[:,9]==0) ]
x_max_hor_some=matrix_new[:,3][ (matrix_new[:,9]==0) ]
cy_hor_some=matrix_new[:,5][ (matrix_new[:,9]==0) ]
cy_hor_diff=matrix_new[:,7][ (matrix_new[:,9]==0) ]
y_max_hor_some=matrix_new[:,7][ (matrix_new[:,9]==0) ]
if right2left_readingorder:
x_max_hor_some_new = width_tot - x_min_hor_some
@ -1708,79 +1719,89 @@ def return_boxes_of_images_by_order_of_reading_new(
x_min_hor_some =list(np.copy(x_min_hor_some_new))
x_max_hor_some =list(np.copy(x_max_hor_some_new))
peaks_neg_tot = [0] + peaks_neg_fin + [width_tot]
peaks_neg_tot = np.array([0] + peaks_neg_fin + [width_tot])
#print(peaks_neg_tot,'peaks_neg_tot')
peaks_neg_tot_tables.append(peaks_neg_tot)
reading_order_type, x_starting, x_ending, y_type_2, y_diff_type_2, \
y_lines_without_mother, x_start_without_mother, x_end_without_mother, there_is_sep_with_child, \
y_lines_with_child_without_mother, x_start_with_child_without_mother, x_end_with_child_without_mother, \
new_main_sep_y = return_x_start_end_mothers_childs_and_type_of_reading_order(
x_min_hor_some, x_max_hor_some, cy_hor_some, peaks_neg_tot, cy_hor_diff)
all_columns = set(range(len(peaks_neg_tot) - 1))
#print("all_columns", all_columns)
reading_order_type, x_starting, x_ending, y_mid, y_max, \
y_mid_without_mother, x_start_without_mother, x_end_without_mother, \
there_is_sep_with_child, \
y_mid_with_child_without_mother, x_start_with_child_without_mother, x_end_with_child_without_mother, \
new_main_sep_y = return_x_start_end_mothers_childs_and_type_of_reading_order(
x_min_hor_some, x_max_hor_some, cy_hor_some, peaks_neg_tot, y_max_hor_some)
# show multi-column separators
# dbg_plt([0, None, top, bot], "multi-column separators in current split",
# list(zip(peaks_neg_tot[x_starting], peaks_neg_tot[x_ending],
# y_mid - top, y_max - top)), True)
if (reading_order_type == 1 or
len(y_lines_without_mother) >= 2 or
len(y_mid_without_mother) >= 2 or
there_is_sep_with_child == 1):
# there are top-level multi-colspan horizontal separators which overlap each other
# or multiple top-level multi-colspan horizontal separators
# or multi-colspan horizontal separators shorter than their respective top-level:
# todo: explain how this is dealt with
try:
y_grenze = top + 300
#check if there is a big separator in this y_mains_sep_ohne_grenzen
up = (y_mid > top) & (y_mid <= y_grenze)
args_early_ys=np.arange(len(y_type_2))
args_early_ys=np.arange(len(y_mid))
#print(args_early_ys,'args_early_ys')
#print(top, bot)
#print(y_mid,'y_mid')
x_starting_up = x_starting[(y_type_2 > top) &
(y_type_2 <= y_grenze)]
x_ending_up = x_ending[(y_type_2 > top) &
(y_type_2 <= y_grenze)]
y_type_2_up = y_type_2[(y_type_2 > top) &
(y_type_2 <= y_grenze)]
y_diff_type_2_up = y_diff_type_2[(y_type_2 > top) &
(y_type_2 <= y_grenze)]
args_up = args_early_ys[(y_type_2 > top) &
(y_type_2 <= y_grenze)]
if len(y_type_2_up) > 0:
y_main_separator_up = y_type_2_up [(x_starting_up==0) &
(x_ending_up==(len(peaks_neg_tot)-1) )]
y_diff_main_separator_up = y_diff_type_2_up[(x_starting_up==0) &
(x_ending_up==(len(peaks_neg_tot)-1) )]
args_main_to_deleted = args_up[(x_starting_up==0) &
(x_ending_up==(len(peaks_neg_tot)-1) )]
#print(y_main_separator_up,y_diff_main_separator_up,args_main_to_deleted,'fffffjammmm')
if len(y_diff_main_separator_up) > 0:
x_starting_up = x_starting[up]
x_ending_up = x_ending[up]
y_mid_up = y_mid[up]
y_max_up = y_max[up]
args_up = args_early_ys[up]
#print(args_up,'args_up')
#print(y_mid_up,'y_mid_up')
#check if there is a big separator in this y_mains0
if len(y_mid_up) > 0:
# is there a separator with full-width span?
main_separator = (x_starting_up == 0) & (x_ending_up == len(peaks_neg_tot) - 1)
y_mid_main_separator_up = y_mid_up[main_separator]
y_max_main_separator_up = y_max_up[main_separator]
args_main_to_deleted = args_up[main_separator]
#print(y_mid_main_separator_up,y_max_main_separator_up,args_main_to_deleted,'fffffjammmm')
if len(y_max_main_separator_up):
args_to_be_kept = np.array(list( set(args_early_ys) - set(args_main_to_deleted) ))
#print(args_to_be_kept,'args_to_be_kept')
boxes.append([0, peaks_neg_tot[len(peaks_neg_tot)-1],
top, y_diff_main_separator_up.max()])
# dbg_plt(boxes[-1], "first box")
top = y_diff_main_separator_up.max()
boxes.append([0, peaks_neg_tot[-1],
top, y_max_main_separator_up.max()])
# dbg_plt(boxes[-1], "near top main separator box")
top = y_max_main_separator_up.max()
#print(top,'top')
y_type_2 = y_type_2[args_to_be_kept]
y_mid = y_mid[args_to_be_kept]
x_starting = x_starting[args_to_be_kept]
x_ending = x_ending[args_to_be_kept]
y_diff_type_2 = y_diff_type_2[args_to_be_kept]
y_max = y_max[args_to_be_kept]
#print('galdiha')
y_grenze = top + 200
args_early_ys2=np.arange(len(y_type_2))
y_type_2_up=y_type_2[(y_type_2 > top) &
(y_type_2 <= y_grenze)]
x_starting_up=x_starting[(y_type_2 > top) &
(y_type_2 <= y_grenze)]
x_ending_up=x_ending[(y_type_2 > top) &
(y_type_2 <= y_grenze)]
y_diff_type_2_up=y_diff_type_2[(y_type_2 > top) &
(y_type_2 <= y_grenze)]
args_up2=args_early_ys2[(y_type_2 > top) &
(y_type_2 <= y_grenze)]
#print(y_type_2_up,x_starting_up,x_ending_up,'didid')
up = (y_mid > top) & (y_mid <= y_grenze)
args_early_ys2 = np.arange(len(y_mid))
x_starting_up = x_starting[up]
x_ending_up = x_ending[up]
y_mid_up = y_mid[up]
y_max_up = y_max[up]
args_up2 = args_early_ys2[up]
#print(y_mid_up,x_starting_up,x_ending_up,'didid')
else:
args_early_ys2 = args_early_ys
args_up2 = args_up
nodes_in = set()
for ij in range(len(x_starting_up)):
nodes_in.update(range(x_starting_up[ij],
x_ending_up[ij]))
#print(nodes_in,'nodes_in')
#print(np.array(range(len(peaks_neg_tot)-1)),'np.array(range(len(peaks_neg_tot)-1))')
if nodes_in == set(range(len(peaks_neg_tot)-1)):
pass
@ -1790,54 +1811,29 @@ def return_boxes_of_images_by_order_of_reading_new(
#print('burdaydikh')
args_to_be_kept2 = np.array(list( set(args_early_ys2) - set(args_up2) ))
if len(args_to_be_kept2)>0:
y_type_2 = y_type_2[args_to_be_kept2]
if len(args_to_be_kept2):
#print(args_to_be_kept2, "args_to_be_kept2")
y_mid = y_mid[args_to_be_kept2]
x_starting = x_starting[args_to_be_kept2]
x_ending = x_ending[args_to_be_kept2]
y_diff_type_2 = y_diff_type_2[args_to_be_kept2]
else:
pass
#print('burdaydikh2')
elif len(y_diff_main_separator_up)==0:
nodes_in = set()
for ij in range(len(x_starting_up)):
nodes_in.update(range(x_starting_up[ij],
x_ending_up[ij]))
#print(nodes_in,'nodes_in2')
#print(np.array(range(len(peaks_neg_tot)-1)),'np.array(range(len(peaks_neg_tot)-1))')
if nodes_in == set(range(len(peaks_neg_tot)-1)):
pass
elif nodes_in == set(range(1,len(peaks_neg_tot)-1)):
pass
else:
#print('burdaydikh')
#print(args_early_ys,'args_early_ys')
#print(args_up,'args_up')
args_to_be_kept2=np.array(list( set(args_early_ys) - set(args_up) ))
#print(args_to_be_kept2,'args_to_be_kept2')
#print(len(y_type_2),len(x_starting),len(x_ending),len(y_diff_type_2))
if len(args_to_be_kept2)>0:
y_type_2 = y_type_2[args_to_be_kept2]
x_starting = x_starting[args_to_be_kept2]
x_ending = x_ending[args_to_be_kept2]
y_diff_type_2 = y_diff_type_2[args_to_be_kept2]
else:
pass
#print('burdaydikh2')
y_max = y_max[args_to_be_kept2]
#int(top)
y_lines_by_order=[]
# order multi-column separators
y_mid_by_order=[]
x_start_by_order=[]
x_end_by_order=[]
if (reading_order_type == 1 or
len(x_end_with_child_without_mother) == 0):
if reading_order_type == 1:
y_lines_by_order.append(top)
# there are top-level multi-colspan horizontal separators which overlap each other
#print("adding all columns at top because of multiple overlapping mothers")
y_mid_by_order.append(top)
x_start_by_order.append(0)
x_end_by_order.append(len(peaks_neg_tot)-2)
else:
# there are no top-level multi-colspan horizontal separators which themselves
# contain shorter multi-colspan separators
#print(x_start_without_mother,x_end_without_mother,peaks_neg_tot,'dodo')
columns_covered_by_mothers = set()
for dj in range(len(x_start_without_mother)):
@ -1845,31 +1841,32 @@ def return_boxes_of_images_by_order_of_reading_new(
range(x_start_without_mother[dj],
x_end_without_mother[dj]))
columns_not_covered = list(all_columns - columns_covered_by_mothers)
y_type_2 = np.append(y_type_2, np.ones(len(columns_not_covered) +
#print(columns_covered_by_mothers, "columns_covered_by_mothers")
#print(columns_not_covered, "columns_not_covered")
y_mid = np.append(y_mid, np.ones(len(columns_not_covered) +
len(x_start_without_mother),
dtype=int) * top)
##y_lines_by_order = np.append(y_lines_by_order, [top] * len(columns_not_covered))
##y_mid_by_order = np.append(y_mid_by_order, [top] * len(columns_not_covered))
##x_start_by_order = np.append(x_start_by_order, [0] * len(columns_not_covered))
x_starting = np.append(x_starting, np.array(columns_not_covered, int))
x_starting = np.append(x_starting, x_start_without_mother)
x_ending = np.append(x_ending, np.array(columns_not_covered, int) + 1)
x_ending = np.append(x_ending, x_end_without_mother)
ind_args=np.arange(len(y_type_2))
#ind_args=np.array(ind_args)
ind_args=np.arange(len(y_mid))
#print(ind_args,'ind_args')
for column in range(len(peaks_neg_tot)-1):
#print(column,'column')
ind_args_in_col=ind_args[x_starting==column]
#print('babali2')
#print(ind_args_in_col,'ind_args_in_col')
#print(len(y_type_2))
y_column=y_type_2[ind_args_in_col]
#print(len(y_mid))
y_mid_column=y_mid[ind_args_in_col]
x_start_column=x_starting[ind_args_in_col]
x_end_column=x_ending[ind_args_in_col]
#print('babali3')
ind_args_col_sorted=np.argsort(y_column)
y_lines_by_order.extend(y_column[ind_args_col_sorted])
ind_args_col_sorted=np.argsort(y_mid_column)
y_mid_by_order.extend(y_mid_column[ind_args_col_sorted])
x_start_by_order.extend(x_start_column[ind_args_col_sorted])
x_end_by_order.extend(x_end_column[ind_args_col_sorted] - 1)
else:
@ -1880,93 +1877,113 @@ def return_boxes_of_images_by_order_of_reading_new(
range(x_start_without_mother[dj],
x_end_without_mother[dj]))
columns_not_covered = list(all_columns - columns_covered_by_mothers)
y_type_2 = np.append(y_type_2, np.ones(len(columns_not_covered) + len(x_start_without_mother),
#print(columns_covered_by_mothers, "columns_covered_by_mothers")
#print(columns_not_covered, "columns_not_covered")
y_mid = np.append(y_mid, np.ones(len(columns_not_covered) +
len(x_start_without_mother),
dtype=int) * top)
##y_lines_by_order = np.append(y_lines_by_order, [top] * len(columns_not_covered))
##y_mid_by_order = np.append(y_mid_by_order, [top] * len(columns_not_covered))
##x_start_by_order = np.append(x_start_by_order, [0] * len(columns_not_covered))
x_starting = np.append(x_starting, np.array(columns_not_covered, int))
x_starting = np.append(x_starting, x_start_without_mother)
x_ending = np.append(x_ending, np.array(columns_not_covered, int) + 1)
x_ending = np.append(x_ending, x_end_without_mother)
columns_covered_by_with_child_no_mothers = set()
columns_covered_by_mothers_with_child = set()
for dj in range(len(x_end_with_child_without_mother)):
columns_covered_by_with_child_no_mothers.update(
columns_covered_by_mothers_with_child.update(
range(x_start_with_child_without_mother[dj],
x_end_with_child_without_mother[dj]))
columns_not_covered_child_no_mother = list(
all_columns - columns_covered_by_with_child_no_mothers)
#print(columns_covered_by_mothers_with_child, "columns_covered_by_mothers_with_child")
columns_not_covered_by_mothers_with_child = list(
all_columns - columns_covered_by_mothers_with_child)
#indexes_to_be_spanned=[]
for i_s in range(len(x_end_with_child_without_mother)):
columns_not_covered_child_no_mother.append(x_start_with_child_without_mother[i_s])
columns_not_covered_child_no_mother = np.sort(columns_not_covered_child_no_mother)
ind_args = np.arange(len(y_type_2))
x_end_with_child_without_mother = np.array(x_end_with_child_without_mother, int)
x_start_with_child_without_mother = np.array(x_start_with_child_without_mother, int)
for i_s_nc in columns_not_covered_child_no_mother:
columns_not_covered_by_mothers_with_child.append(x_start_with_child_without_mother[i_s])
columns_not_covered_by_mothers_with_child = np.sort(columns_not_covered_by_mothers_with_child)
#print(columns_not_covered_by_mothers_with_child, "columns_not_covered_by_mothers_with_child")
ind_args = np.arange(len(y_mid))
for i_s_nc in columns_not_covered_by_mothers_with_child:
if i_s_nc in x_start_with_child_without_mother:
# use only seps with mother's span ("biggest")
#print("i_s_nc", i_s_nc)
x_end_biggest_column = \
x_end_with_child_without_mother[x_start_with_child_without_mother==i_s_nc][0]
args_all_biggest_lines = ind_args[(x_starting==i_s_nc) &
x_end_with_child_without_mother[
x_start_with_child_without_mother == i_s_nc][0]
args_all_biggest_seps = \
ind_args[(x_starting == i_s_nc) &
(x_ending == x_end_biggest_column)]
y_column_nc = y_type_2[args_all_biggest_lines]
#x_start_column_nc = x_starting[args_all_biggest_lines]
#x_end_column_nc = x_ending[args_all_biggest_lines]
y_column_nc = np.sort(y_column_nc)
for i_c in range(len(y_column_nc)):
y_mid_column_nc = y_mid[args_all_biggest_seps]
#print("%d:%d" % (i_s_nc, x_end_biggest_column), "columns covered by mother with child")
#x_start_column_nc = x_starting[args_all_biggest_seps]
#x_end_column_nc = x_ending[args_all_biggest_seps]
y_mid_column_nc = np.sort(y_mid_column_nc)
#print(y_mid_column_nc, "y_mid_column_nc (sorted)")
for nc_top, nc_bot in pairwise(np.append(y_mid_column_nc, bot)):
#print("i_c", i_c)
ind_all_lines_between_nm_wc = \
ind_args[(y_type_2 > y_column_nc[i_c]) &
(y_type_2 < (y_column_nc[i_c+1]
if i_c < len(y_column_nc)-1
else bot)) &
#print("%d:%d" % (nc_top, nc_bot), "y_mid_column_nc")
ind_all_seps_between_nm_wc = \
ind_args[(y_mid > nc_top) &
(y_mid < nc_bot) &
(x_starting >= i_s_nc) &
(x_ending <= x_end_biggest_column)]
y_all_between_nm_wc = y_type_2[ind_all_lines_between_nm_wc]
x_starting_all_between_nm_wc = x_starting[ind_all_lines_between_nm_wc]
x_ending_all_between_nm_wc = x_ending[ind_all_lines_between_nm_wc]
y_mid_all_between_nm_wc = y_mid[ind_all_seps_between_nm_wc]
x_starting_all_between_nm_wc = x_starting[ind_all_seps_between_nm_wc]
x_ending_all_between_nm_wc = x_ending[ind_all_seps_between_nm_wc]
columns_covered_by_mothers = set()
for dj in range(len(ind_all_lines_between_nm_wc)):
for dj in range(len(ind_all_seps_between_nm_wc)):
columns_covered_by_mothers.update(
range(x_starting_all_between_nm_wc[dj],
x_ending_all_between_nm_wc[dj]))
#print(columns_covered_by_mothers, "columns_covered_by_mothers")
child_columns = set(range(i_s_nc, x_end_biggest_column))
columns_not_covered = list(child_columns - columns_covered_by_mothers)
#print(child_columns, "child_columns")
#print(columns_not_covered, "columns_not_covered")
if len(ind_all_lines_between_nm_wc):
if len(ind_all_seps_between_nm_wc):
biggest = np.argmax(x_ending_all_between_nm_wc -
x_starting_all_between_nm_wc)
#print(ind_all_seps_between_nm_wc, "ind_all_seps_between_nm_wc")
#print(biggest, "%d:%d" % (x_starting_all_between_nm_wc[biggest],
x_ending_all_between_nm_wc[biggest]), "biggest")
if columns_covered_by_mothers == set(
range(x_starting_all_between_nm_wc[biggest],
x_ending_all_between_nm_wc[biggest])):
# biggest accounts for all columns alone,
# longest line should be extended
lines_so_close_to_top_separator = \
((y_all_between_nm_wc > y_column_nc[i_c]) &
(y_all_between_nm_wc <= y_column_nc[i_c] + 500))
if (np.count_nonzero(lines_so_close_to_top_separator) and
np.count_nonzero(lines_so_close_to_top_separator) <
len(ind_all_lines_between_nm_wc)):
y_all_between_nm_wc = \
y_all_between_nm_wc[~lines_so_close_to_top_separator]
# single biggest accounts for all covered columns alone,
# this separator should be extended to cover all
seps_too_close_to_top_separator = \
((y_mid_all_between_nm_wc > nc_top) &
(y_mid_all_between_nm_wc <= nc_top + 500))
if (np.count_nonzero(seps_too_close_to_top_separator) and
np.count_nonzero(seps_too_close_to_top_separator) <
len(ind_all_seps_between_nm_wc)):
#print(seps_too_close_to_top_separator, "seps_too_close_to_top_separator")
y_mid_all_between_nm_wc = \
y_mid_all_between_nm_wc[~seps_too_close_to_top_separator]
x_starting_all_between_nm_wc = \
x_starting_all_between_nm_wc[~lines_so_close_to_top_separator]
x_starting_all_between_nm_wc[~seps_too_close_to_top_separator]
x_ending_all_between_nm_wc = \
x_ending_all_between_nm_wc[~lines_so_close_to_top_separator]
x_ending_all_between_nm_wc[~seps_too_close_to_top_separator]
y_all_between_nm_wc = np.append(y_all_between_nm_wc, y_column_nc[i_c])
x_starting_all_between_nm_wc = np.append(x_starting_all_between_nm_wc, i_s_nc)
x_ending_all_between_nm_wc = np.append(x_ending_all_between_nm_wc, x_end_biggest_column)
y_mid_all_between_nm_wc = np.append(
y_mid_all_between_nm_wc, nc_top)
x_starting_all_between_nm_wc = np.append(
x_starting_all_between_nm_wc, i_s_nc)
x_ending_all_between_nm_wc = np.append(
x_ending_all_between_nm_wc, x_end_biggest_column)
else:
y_all_between_nm_wc = np.append(y_all_between_nm_wc, y_column_nc[i_c])
x_starting_all_between_nm_wc = np.append(x_starting_all_between_nm_wc, x_starting_all_between_nm_wc[biggest])
x_ending_all_between_nm_wc = np.append(x_ending_all_between_nm_wc, x_ending_all_between_nm_wc[biggest])
y_mid_all_between_nm_wc = np.append(
y_mid_all_between_nm_wc, nc_top)
x_starting_all_between_nm_wc = np.append(
x_starting_all_between_nm_wc, x_starting_all_between_nm_wc[biggest])
x_ending_all_between_nm_wc = np.append(
x_ending_all_between_nm_wc, x_ending_all_between_nm_wc[biggest])
if len(columns_not_covered):
y_all_between_nm_wc = np.append(
y_all_between_nm_wc, [y_column_nc[i_c]] * len(columns_not_covered))
y_mid_all_between_nm_wc = np.append(
y_mid_all_between_nm_wc, [nc_top] * len(columns_not_covered))
x_starting_all_between_nm_wc = np.append(
x_starting_all_between_nm_wc, np.array(columns_not_covered, int))
x_ending_all_between_nm_wc = np.append(
@ -1977,52 +1994,53 @@ def return_boxes_of_images_by_order_of_reading_new(
ind_args_in_col=ind_args_between[x_starting_all_between_nm_wc==column]
#print('babali2')
#print(ind_args_in_col,'ind_args_in_col')
#print(len(y_type_2))
y_column=y_all_between_nm_wc[ind_args_in_col]
#print(len(y_mid))
y_mid_column=y_mid_all_between_nm_wc[ind_args_in_col]
x_start_column=x_starting_all_between_nm_wc[ind_args_in_col]
x_end_column=x_ending_all_between_nm_wc[ind_args_in_col]
#print('babali3')
ind_args_col_sorted=np.argsort(y_column)
y_lines_by_order.extend(y_column[ind_args_col_sorted])
ind_args_col_sorted=np.argsort(y_mid_column)
y_mid_by_order.extend(y_mid_column[ind_args_col_sorted])
x_start_by_order.extend(x_start_column[ind_args_col_sorted])
x_end_by_order.extend(x_end_column[ind_args_col_sorted] - 1)
else:
#print(column,'column')
#print(i_s_nc,'column not covered by mothers with child')
ind_args_in_col=ind_args[x_starting==i_s_nc]
#print('babali2')
#print(ind_args_in_col,'ind_args_in_col')
#print(len(y_type_2))
y_column=y_type_2[ind_args_in_col]
#print(len(y_mid))
y_mid_column=y_mid[ind_args_in_col]
x_start_column=x_starting[ind_args_in_col]
x_end_column=x_ending[ind_args_in_col]
#print('babali3')
ind_args_col_sorted = np.argsort(y_column)
y_lines_by_order.extend(y_column[ind_args_col_sorted])
ind_args_col_sorted = np.argsort(y_mid_column)
y_mid_by_order.extend(y_mid_column[ind_args_col_sorted])
x_start_by_order.extend(x_start_column[ind_args_col_sorted])
x_end_by_order.extend(x_end_column[ind_args_col_sorted] - 1)
y_lines_by_order = np.array(y_lines_by_order)
# create single-column boxes from multi-column separators
y_mid_by_order = np.array(y_mid_by_order)
x_start_by_order = np.array(x_start_by_order)
x_end_by_order = np.array(x_end_by_order)
for il in range(len(y_lines_by_order)):
for il in range(len(y_mid_by_order)):
#print(il, "il")
y_itself = y_lines_by_order[il]
y_mid_itself = y_mid_by_order[il]
x_start_itself = x_start_by_order[il]
x_end_itself = x_end_by_order[il]
for column in range(int(x_start_itself), int(x_end_itself)+1):
#print(column,'cols')
y_in_cols = y_lines_by_order[(y_itself < y_lines_by_order) &
#print('burda')
#print('burda2')
y_mid_next = y_mid_by_order[(y_mid_itself < y_mid_by_order) &
(column >= x_start_by_order) &
(column <= x_end_by_order)]
#print('burda')
y_down = y_in_cols.min(initial=bot)
#print('burda2')
#print(y_in_cols,'y_in_cols')
#print(y_itself,'y_itself')
y_mid_next = y_mid_next.min(initial=bot)
#print(y_mid_next,'y_mid_next')
#print(y_mid_itself,'y_mid_itself')
boxes.append([peaks_neg_tot[column],
peaks_neg_tot[column+1],
y_itself,
y_down])
y_mid_itself,
y_mid_next])
# dbg_plt(boxes[-1], "A column %d box" % (column + 1))
except:
logger.exception("cannot assign boxes")
@ -2030,20 +2048,21 @@ def return_boxes_of_images_by_order_of_reading_new(
top, bot])
# dbg_plt(boxes[-1], "fallback box")
else:
y_lines_by_order=[]
# order multi-column separators
y_mid_by_order=[]
x_start_by_order=[]
x_end_by_order=[]
if len(x_starting)>0:
columns_covered_by_lines_covered_more_than_2col = set()
columns_covered_by_seps_covered_more_than_2col = set()
for dj in range(len(x_starting)):
if set(range(x_starting[dj], x_ending[dj])) != all_columns:
columns_covered_by_lines_covered_more_than_2col.update(
columns_covered_by_seps_covered_more_than_2col.update(
range(x_starting[dj], x_ending[dj]))
columns_not_covered = list(all_columns - columns_covered_by_lines_covered_more_than_2col)
columns_not_covered = list(all_columns - columns_covered_by_seps_covered_more_than_2col)
y_type_2 = np.append(y_type_2, np.ones(len(columns_not_covered) + 1,
y_mid = np.append(y_mid, np.ones(len(columns_not_covered) + 1,
dtype=int) * top)
##y_lines_by_order = np.append(y_lines_by_order, [top] * len(columns_not_covered))
##y_mid_by_order = np.append(y_mid_by_order, [top] * len(columns_not_covered))
##x_start_by_order = np.append(x_start_by_order, [0] * len(columns_not_covered))
x_starting = np.append(x_starting, np.array(columns_not_covered, x_starting.dtype))
x_ending = np.append(x_ending, np.array(columns_not_covered, x_ending.dtype) + 1)
@ -2055,53 +2074,52 @@ def return_boxes_of_images_by_order_of_reading_new(
x_ending = np.append(x_ending, x_ending[0])
else:
columns_not_covered = list(all_columns)
y_type_2 = np.append(y_type_2, np.ones(len(columns_not_covered),
y_mid = np.append(y_mid, np.ones(len(columns_not_covered),
dtype=int) * top)
##y_lines_by_order = np.append(y_lines_by_order, [top] * len(columns_not_covered))
##y_mid_by_order = np.append(y_mid_by_order, [top] * len(columns_not_covered))
##x_start_by_order = np.append(x_start_by_order, [0] * len(columns_not_covered))
x_starting = np.append(x_starting, np.array(columns_not_covered, x_starting.dtype))
x_ending = np.append(x_ending, np.array(columns_not_covered, x_ending.dtype) + 1)
ind_args = np.arange(len(y_type_2))
ind_args = np.arange(len(y_mid))
for column in range(len(peaks_neg_tot)-1):
#print(column,'column')
ind_args_in_col=ind_args[x_starting==column]
#print(len(y_type_2))
y_column=y_type_2[ind_args_in_col]
#print(len(y_mid))
y_mid_column=y_mid[ind_args_in_col]
x_start_column=x_starting[ind_args_in_col]
x_end_column=x_ending[ind_args_in_col]
ind_args_col_sorted = np.argsort(y_column)
y_lines_by_order.extend(y_column[ind_args_col_sorted])
ind_args_col_sorted = np.argsort(y_mid_column)
y_mid_by_order.extend(y_mid_column[ind_args_col_sorted])
x_start_by_order.extend(x_start_column[ind_args_col_sorted])
x_end_by_order.extend(x_end_column[ind_args_col_sorted] - 1)
y_lines_by_order = np.array(y_lines_by_order)
# create single-column boxes from multi-column separators
y_mid_by_order = np.array(y_mid_by_order)
x_start_by_order = np.array(x_start_by_order)
x_end_by_order = np.array(x_end_by_order)
for il in range(len(y_lines_by_order)):
for il in range(len(y_mid_by_order)):
#print(il, "il")
y_itself = y_lines_by_order[il]
#print(y_itself,'y_itself')
y_mid_itself = y_mid_by_order[il]
#print(y_mid_itself,'y_mid_itself')
x_start_itself = x_start_by_order[il]
x_end_itself = x_end_by_order[il]
for column in range(x_start_itself, x_end_itself+1):
#print(column,'cols')
y_in_cols = y_lines_by_order[(y_itself < y_lines_by_order) &
#print('burda2')
y_mid_next = y_mid_by_order[(y_mid_itself < y_mid_by_order) &
(column >= x_start_by_order) &
(column <= x_end_by_order)]
#print('burda2')
#print(y_in_cols,'y_in_cols')
y_down = y_in_cols.min(initial=bot)
#print(y_down,'y_down')
#print(y_mid_next,'y_mid_next')
y_mid_next = y_mid_next.min(initial=bot)
#print(y_mid_next,'y_mid_next')
boxes.append([peaks_neg_tot[column],
peaks_neg_tot[column+1],
y_itself,
y_down])
y_mid_itself,
y_mid_next])
# dbg_plt(boxes[-1], "B column %d box" % (column + 1))
#else:
#boxes.append([ 0, regions_without_separators[:,:].shape[1] ,top, bot])
if right2left_readingorder:
peaks_neg_tot_tables_new = []
@ -2119,11 +2137,7 @@ def return_boxes_of_images_by_order_of_reading_new(
peaks_neg_tot_tables = peaks_neg_tot_tables_new
# show final xy-cut
# plt.imshow(regions_without_separators)
# for xmin, xmax, ymin, ymax in boxes:
# plt.gca().add_patch(patches.Rectangle((xmin, ymin), xmax - xmin, ymax - ymin,
# fill=False, linewidth=1, edgecolor='r'))
# plt.show()
# dbg_plt(None, "final XY-Cut", boxes, True)
logger.debug('exit return_boxes_of_images_by_order_of_reading_new')
return boxes, peaks_neg_tot_tables