diff --git a/src/eynollah/utils/__init__.py b/src/eynollah/utils/__init__.py index aa89bd1..9cf30b0 100644 --- a/src/eynollah/utils/__init__.py +++ b/src/eynollah/utils/__init__.py @@ -1351,7 +1351,7 @@ def return_points_with_boundies(peaks_neg_fin, first_point, last_point): def find_number_of_columns_in_document(region_pre_p, num_col_classifier, tables, label_lines, contours_h=None): t_ins_c0 = time.time() - separators_closeup= (region_pre_p[:, :] == label_lines) * 1 + separators_closeup=( (region_pre_p[:,:]==label_lines))*1 separators_closeup[0:110,:]=0 separators_closeup[separators_closeup.shape[0]-150:,:]=0 diff --git a/src/eynollah/utils/separate_lines.py b/src/eynollah/utils/separate_lines.py index 84ca6d7..275bfac 100644 --- a/src/eynollah/utils/separate_lines.py +++ b/src/eynollah/utils/separate_lines.py @@ -1473,9 +1473,9 @@ def separate_lines_new2(img_crop, thetha, num_col, slope_region, logger=None, pl img_int = np.zeros((img_xline.shape[0], img_xline.shape[1])) img_int[:, :] = img_xline[:, :] # img_patch_org[:,:,0] - img_resized = np.zeros((int(img_int.shape[0] * 1.2), int(img_int.shape[1] * 3))) - img_resized[int(img_int.shape[0] * 0.1): int(img_int.shape[0] * 0.1) + img_int.shape[0], - int(img_int.shape[1] * 1.0): int(img_int.shape[1] * 1.0) + img_int.shape[1]] = img_int[:, :] + img_resized = np.zeros((int(img_int.shape[0] * (1.2)), int(img_int.shape[1] * (3)))) + img_resized[int(img_int.shape[0] * (0.1)) : int(img_int.shape[0] * (0.1)) + img_int.shape[0], + int(img_int.shape[1] * (1.0)) : int(img_int.shape[1] * (1.0)) + img_int.shape[1]] = img_int[:, :] # plt.imshow(img_xline) # plt.show() img_line_rotated = rotate_image(img_resized, slopes_tile_wise[i]) @@ -1487,8 +1487,8 @@ def separate_lines_new2(img_crop, thetha, num_col, slope_region, logger=None, pl img_patch_separated_returned[:, :][img_patch_separated_returned[:, :] != 0] = 1 img_patch_separated_returned_true_size = img_patch_separated_returned[ - int(img_int.shape[0] * 0.1): int(img_int.shape[0] * 0.1) + img_int.shape[0], - int(img_int.shape[1] * 1.0): int(img_int.shape[1] * 1.0) + img_int.shape[1]] + int(img_int.shape[0] * (0.1)) : int(img_int.shape[0] * (0.1)) + img_int.shape[0], + int(img_int.shape[1] * (1.0)) : int(img_int.shape[1] * (1.0)) + img_int.shape[1]] img_patch_separated_returned_true_size = img_patch_separated_returned_true_size[:, margin : length_x - margin] img_patch_interest_revised[:, index_x_d + margin : index_x_u - margin] = img_patch_separated_returned_true_size @@ -1517,7 +1517,7 @@ def return_deskew_slop(img_patch_org, sigma_des,n_tot_angles=100, img_int[:,:]=img_patch_org[:,:]#img_patch_org[:,:,0] max_shape=np.max(img_int.shape) - img_resized=np.zeros((int(max_shape * 1.1) , int(max_shape * 1.1))) + img_resized=np.zeros((int( max_shape*(1.1) ) , int( max_shape*(1.1) ) )) onset_x=int((img_resized.shape[1]-img_int.shape[1])/2.) onset_y=int((img_resized.shape[0]-img_int.shape[0])/2.)