remove unused variables

pull/19/head
Konstantin Baierer 4 years ago
parent f96a9c52d1
commit 732a27fe77

@ -6,7 +6,6 @@ tool to extract table form data from alto xml data
import gc import gc
import math import math
import os import os
import random
import sys import sys
import time import time
import warnings import warnings
@ -1659,7 +1658,6 @@ class eynollah:
if (x_min_text_only[ii] + 80) >= boxes[jj][0] and (x_min_text_only[ii] + 80) < boxes[jj][1] and y_cor_x_min_main[ii] >= boxes[jj][2] and y_cor_x_min_main[ii] < boxes[jj][3]: if (x_min_text_only[ii] + 80) >= boxes[jj][0] and (x_min_text_only[ii] + 80) < boxes[jj][1] and y_cor_x_min_main[ii] >= boxes[jj][2] and y_cor_x_min_main[ii] < boxes[jj][3]:
arg_text_con.append(jj) arg_text_con.append(jj)
break break
arg_arg_text_con = np.argsort(arg_text_con)
args_contours = np.array(range(len(arg_text_con))) args_contours = np.array(range(len(arg_text_con)))
arg_text_con_h = [] arg_text_con_h = []
@ -1668,7 +1666,6 @@ class eynollah:
if (x_min_text_only_h[ii] + 80) >= boxes[jj][0] and (x_min_text_only_h[ii] + 80) < boxes[jj][1] and y_cor_x_min_main_h[ii] >= boxes[jj][2] and y_cor_x_min_main_h[ii] < boxes[jj][3]: if (x_min_text_only_h[ii] + 80) >= boxes[jj][0] and (x_min_text_only_h[ii] + 80) < boxes[jj][1] and y_cor_x_min_main_h[ii] >= boxes[jj][2] and y_cor_x_min_main_h[ii] < boxes[jj][3]:
arg_text_con_h.append(jj) arg_text_con_h.append(jj)
break break
arg_arg_text_con = np.argsort(arg_text_con_h)
args_contours_h = np.array(range(len(arg_text_con_h))) args_contours_h = np.array(range(len(arg_text_con_h)))
order_by_con_head = np.zeros(len(arg_text_con_h)) order_by_con_head = np.zeros(len(arg_text_con_h))
@ -1738,7 +1735,6 @@ class eynollah:
if cx_text_only[ii] >= boxes[jj][0] and cx_text_only[ii] < boxes[jj][1] and cy_text_only[ii] >= boxes[jj][2] and cy_text_only[ii] < boxes[jj][3]: # this is valid if the center of region identify in which box it is located if cx_text_only[ii] >= boxes[jj][0] and cx_text_only[ii] < boxes[jj][1] and cy_text_only[ii] >= boxes[jj][2] and cy_text_only[ii] < boxes[jj][3]: # this is valid if the center of region identify in which box it is located
arg_text_con.append(jj) arg_text_con.append(jj)
break break
arg_arg_text_con = np.argsort(arg_text_con)
args_contours = np.array(range(len(arg_text_con))) args_contours = np.array(range(len(arg_text_con)))
order_by_con_main = np.zeros(len(arg_text_con)) order_by_con_main = np.zeros(len(arg_text_con))
@ -1825,7 +1821,6 @@ class eynollah:
if (x_min_text_only[ii] + 80) >= boxes[jj][0] and (x_min_text_only[ii] + 80) < boxes[jj][1] and y_cor_x_min_main[ii] >= boxes[jj][2] and y_cor_x_min_main[ii] < boxes[jj][3]: if (x_min_text_only[ii] + 80) >= boxes[jj][0] and (x_min_text_only[ii] + 80) < boxes[jj][1] and y_cor_x_min_main[ii] >= boxes[jj][2] and y_cor_x_min_main[ii] < boxes[jj][3]:
arg_text_con.append(jj) arg_text_con.append(jj)
break break
arg_arg_text_con = np.argsort(arg_text_con)
args_contours = np.array(range(len(arg_text_con))) args_contours = np.array(range(len(arg_text_con)))
order_by_con_main = np.zeros(len(arg_text_con)) order_by_con_main = np.zeros(len(arg_text_con))
@ -1849,8 +1844,6 @@ class eynollah:
indexes_sorted_main = np.array(indexes_sorted)[np.array(kind_of_texts_sorted) == 1] indexes_sorted_main = np.array(indexes_sorted)[np.array(kind_of_texts_sorted) == 1]
indexes_by_type_main = np.array(index_by_kind_sorted)[np.array(kind_of_texts_sorted) == 1] indexes_by_type_main = np.array(index_by_kind_sorted)[np.array(kind_of_texts_sorted) == 1]
indexes_sorted_head = np.array(indexes_sorted)[np.array(kind_of_texts_sorted) == 2]
indexes_by_type_head = np.array(index_by_kind_sorted)[np.array(kind_of_texts_sorted) == 2]
zahler = 0 zahler = 0
for mtv in args_contours_box: for mtv in args_contours_box:
@ -1880,7 +1873,6 @@ class eynollah:
if cx_text_only[ii] >= boxes[jj][0] and cx_text_only[ii] < boxes[jj][1] and cy_text_only[ii] >= boxes[jj][2] and cy_text_only[ii] < boxes[jj][3]: # this is valid if the center of region identify in which box it is located if cx_text_only[ii] >= boxes[jj][0] and cx_text_only[ii] < boxes[jj][1] and cy_text_only[ii] >= boxes[jj][2] and cy_text_only[ii] < boxes[jj][3]: # this is valid if the center of region identify in which box it is located
arg_text_con.append(jj) arg_text_con.append(jj)
break break
arg_arg_text_con = np.argsort(arg_text_con)
args_contours = np.array(range(len(arg_text_con))) args_contours = np.array(range(len(arg_text_con)))
order_by_con_main = np.zeros(len(arg_text_con)) order_by_con_main = np.zeros(len(arg_text_con))
@ -2397,9 +2389,9 @@ class eynollah:
num_col_d, peaks_neg_fin_d, matrix_of_lines_ch_d, spliter_y_new_d, _ = find_number_of_columns_in_document(np.repeat(text_regions_p_1_n[:, :, np.newaxis], 3, axis=2), num_col_classifier, pixel_lines, contours_only_text_parent_h_d_ordered) num_col_d, peaks_neg_fin_d, matrix_of_lines_ch_d, spliter_y_new_d, _ = find_number_of_columns_in_document(np.repeat(text_regions_p_1_n[:, :, np.newaxis], 3, axis=2), num_col_classifier, pixel_lines, contours_only_text_parent_h_d_ordered)
elif self.headers_off: elif self.headers_off:
if np.abs(slope_deskew) < SLOPE_THRESHOLD: if np.abs(slope_deskew) < SLOPE_THRESHOLD:
num_col, peaks_neg_fin, matrix_of_lines_ch, spliter_y_new, seperators_closeup_n = find_number_of_columns_in_document(np.repeat(text_regions_p[:, :, np.newaxis], 3, axis=2), num_col_classifier, pixel_lines) num_col, peaks_neg_fin, matrix_of_lines_ch, spliter_y_new, _ = find_number_of_columns_in_document(np.repeat(text_regions_p[:, :, np.newaxis], 3, axis=2), num_col_classifier, pixel_lines)
else: else:
num_col_d, peaks_neg_fin_d, matrix_of_lines_ch_d, spliter_y_new_d, seperators_closeup_n_d = find_number_of_columns_in_document(np.repeat(text_regions_p_1_n[:, :, np.newaxis], 3, axis=2), num_col_classifier, pixel_lines) num_col_d, peaks_neg_fin_d, matrix_of_lines_ch_d, spliter_y_new_d, _ = find_number_of_columns_in_document(np.repeat(text_regions_p_1_n[:, :, np.newaxis], 3, axis=2), num_col_classifier, pixel_lines)
# print(peaks_neg_fin,peaks_neg_fin_d,'num_col2') # print(peaks_neg_fin,peaks_neg_fin_d,'num_col2')
# print(spliter_y_new,spliter_y_new_d,'num_col_classifier') # print(spliter_y_new,spliter_y_new_d,'num_col_classifier')

Loading…
Cancel
Save