diff --git a/src/eynollah/image_enhancer.py b/src/eynollah/image_enhancer.py index c89f532..983712d 100644 --- a/src/eynollah/image_enhancer.py +++ b/src/eynollah/image_enhancer.py @@ -225,47 +225,23 @@ class Enhancer: def calculate_width_height_by_columns(self, img, num_col, width_early, label_p_pred): self.logger.debug("enter calculate_width_height_by_columns") - if num_col == 1 and width_early < 1100: + if num_col == 1: img_w_new = 2000 - elif num_col == 1 and width_early >= 2500: - img_w_new = 2000 - elif num_col == 1 and width_early >= 1100 and width_early < 2500: - img_w_new = width_early - elif num_col == 2 and width_early < 2000: + elif num_col == 2: img_w_new = 2400 - elif num_col == 2 and width_early >= 3500: - img_w_new = 2400 - elif num_col == 2 and width_early >= 2000 and width_early < 3500: - img_w_new = width_early - elif num_col == 3 and width_early < 2000: + elif num_col == 3: img_w_new = 3000 - elif num_col == 3 and width_early >= 4000: - img_w_new = 3000 - elif num_col == 3 and width_early >= 2000 and width_early < 4000: - img_w_new = width_early - elif num_col == 4 and width_early < 2500: + elif num_col == 4: img_w_new = 4000 - elif num_col == 4 and width_early >= 5000: - img_w_new = 4000 - elif num_col == 4 and width_early >= 2500 and width_early < 5000: - img_w_new = width_early - elif num_col == 5 and width_early < 3700: + elif num_col == 5: img_w_new = 5000 - elif num_col == 5 and width_early >= 7000: - img_w_new = 5000 - elif num_col == 5 and width_early >= 3700 and width_early < 7000: - img_w_new = width_early - elif num_col == 6 and width_early < 4500: - img_w_new = 6500 # 5400 + elif num_col == 6: + img_w_new = 6500 else: img_w_new = width_early img_h_new = img_w_new * img.shape[0] // img.shape[1] - if label_p_pred[0][int(num_col - 1)] < 0.9 and img_w_new < width_early: - img_new = np.copy(img) - num_column_is_classified = False - #elif label_p_pred[0][int(num_col - 1)] < 0.8 and img_h_new >= 8000: - elif img_h_new >= 8000: + if img_h_new >= 8000: img_new = np.copy(img) num_column_is_classified = False else: