|
|
|
@ -159,6 +159,9 @@ class Eynollah:
|
|
|
|
|
key += '_uint8'
|
|
|
|
|
return self._imgs[key].copy()
|
|
|
|
|
|
|
|
|
|
def isNaN(self, num):
|
|
|
|
|
return num != num
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def predict_enhancement(self, img):
|
|
|
|
|
self.logger.debug("enter predict_enhancement")
|
|
|
|
@ -920,16 +923,16 @@ class Eynollah:
|
|
|
|
|
textline_con, hierarchy = return_contours_of_image(img_int_p)
|
|
|
|
|
textline_con_fil = filter_contours_area_of_image(img_int_p, textline_con, hierarchy, max_area=1, min_area=0.0008)
|
|
|
|
|
y_diff_mean = find_contours_mean_y_diff(textline_con_fil)
|
|
|
|
|
sigma_des = max(1, int(y_diff_mean * (4.0 / 40.0)))
|
|
|
|
|
if self.isNaN(y_diff_mean):
|
|
|
|
|
slope_for_all = MAX_SLOPE
|
|
|
|
|
else:
|
|
|
|
|
sigma_des = max(1, int(y_diff_mean * (4.0 / 40.0)))
|
|
|
|
|
img_int_p[img_int_p > 0] = 1
|
|
|
|
|
slope_for_all = return_deskew_slop(img_int_p, sigma_des, plotter=self.plotter)
|
|
|
|
|
|
|
|
|
|
img_int_p[img_int_p > 0] = 1
|
|
|
|
|
slope_for_all = return_deskew_slop(img_int_p, sigma_des, plotter=self.plotter)
|
|
|
|
|
if abs(slope_for_all) < 0.5:
|
|
|
|
|
slope_for_all = [slope_deskew][0]
|
|
|
|
|
|
|
|
|
|
if abs(slope_for_all) < 0.5:
|
|
|
|
|
slope_for_all = [slope_deskew][0]
|
|
|
|
|
# old method
|
|
|
|
|
# slope_for_all=self.textline_contours_to_get_slope_correctly(self.all_text_region_raw[mv],denoised,contours[mv])
|
|
|
|
|
# text_patch_processed=textline_contours_postprocessing(gada)
|
|
|
|
|
except Exception as why:
|
|
|
|
|
self.logger.error(why)
|
|
|
|
|
slope_for_all = MAX_SLOPE
|
|
|
|
@ -1031,13 +1034,16 @@ class Eynollah:
|
|
|
|
|
textline_con, hierarchy = return_contours_of_image(img_int_p)
|
|
|
|
|
textline_con_fil = filter_contours_area_of_image(img_int_p, textline_con, hierarchy, max_area=1, min_area=0.00008)
|
|
|
|
|
y_diff_mean = find_contours_mean_y_diff(textline_con_fil)
|
|
|
|
|
sigma_des = int(y_diff_mean * (4.0 / 40.0))
|
|
|
|
|
if sigma_des < 1:
|
|
|
|
|
sigma_des = 1
|
|
|
|
|
img_int_p[img_int_p > 0] = 1
|
|
|
|
|
slope_for_all = return_deskew_slop(img_int_p, sigma_des, plotter=self.plotter)
|
|
|
|
|
if abs(slope_for_all) <= 0.5:
|
|
|
|
|
slope_for_all = [slope_deskew][0]
|
|
|
|
|
if self.isNaN(y_diff_mean):
|
|
|
|
|
slope_for_all = MAX_SLOPE
|
|
|
|
|
else:
|
|
|
|
|
sigma_des = int(y_diff_mean * (4.0 / 40.0))
|
|
|
|
|
if sigma_des < 1:
|
|
|
|
|
sigma_des = 1
|
|
|
|
|
img_int_p[img_int_p > 0] = 1
|
|
|
|
|
slope_for_all = return_deskew_slop(img_int_p, sigma_des, plotter=self.plotter)
|
|
|
|
|
if abs(slope_for_all) <= 0.5:
|
|
|
|
|
slope_for_all = [slope_deskew][0]
|
|
|
|
|
except Exception as why:
|
|
|
|
|
self.logger.error(why)
|
|
|
|
|
slope_for_all = MAX_SLOPE
|
|
|
|
@ -1891,52 +1897,59 @@ class Eynollah:
|
|
|
|
|
areas_cnt_text_d = np.array([cv2.contourArea(contours_only_text_parent_d[j]) for j in range(len(contours_only_text_parent_d))])
|
|
|
|
|
areas_cnt_text_d = areas_cnt_text_d / float(text_only_d.shape[0] * text_only_d.shape[1])
|
|
|
|
|
|
|
|
|
|
contours_biggest_d = contours_only_text_parent_d[np.argmax(areas_cnt_text_d)]
|
|
|
|
|
index_con_parents_d=np.argsort(areas_cnt_text_d)
|
|
|
|
|
contours_only_text_parent_d=list(np.array(contours_only_text_parent_d)[index_con_parents_d] )
|
|
|
|
|
areas_cnt_text_d=list(np.array(areas_cnt_text_d)[index_con_parents_d] )
|
|
|
|
|
if len(areas_cnt_text_d)>0:
|
|
|
|
|
contours_biggest_d = contours_only_text_parent_d[np.argmax(areas_cnt_text_d)]
|
|
|
|
|
index_con_parents_d=np.argsort(areas_cnt_text_d)
|
|
|
|
|
contours_only_text_parent_d=list(np.array(contours_only_text_parent_d)[index_con_parents_d] )
|
|
|
|
|
areas_cnt_text_d=list(np.array(areas_cnt_text_d)[index_con_parents_d] )
|
|
|
|
|
|
|
|
|
|
cx_bigest_d_big, cy_biggest_d_big, _, _, _, _, _ = find_new_features_of_contours([contours_biggest_d])
|
|
|
|
|
cx_bigest_d, cy_biggest_d, _, _, _, _, _ = find_new_features_of_contours(contours_only_text_parent_d)
|
|
|
|
|
try:
|
|
|
|
|
if len(cx_bigest_d) >= 5:
|
|
|
|
|
cx_bigest_d_last5 = cx_bigest_d[-5:]
|
|
|
|
|
cy_biggest_d_last5 = cy_biggest_d[-5:]
|
|
|
|
|
dists_d = [math.sqrt((cx_bigest_big[0] - cx_bigest_d_last5[j]) ** 2 + (cy_biggest_big[0] - cy_biggest_d_last5[j]) ** 2) for j in range(len(cy_biggest_d_last5))]
|
|
|
|
|
ind_largest = len(cx_bigest_d) -5 + np.argmin(dists_d)
|
|
|
|
|
else:
|
|
|
|
|
cx_bigest_d_last5 = cx_bigest_d[-len(cx_bigest_d):]
|
|
|
|
|
cy_biggest_d_last5 = cy_biggest_d[-len(cx_bigest_d):]
|
|
|
|
|
dists_d = [math.sqrt((cx_bigest_big[0]-cx_bigest_d_last5[j])**2 + (cy_biggest_big[0]-cy_biggest_d_last5[j])**2) for j in range(len(cy_biggest_d_last5))]
|
|
|
|
|
ind_largest = len(cx_bigest_d) - len(cx_bigest_d) + np.argmin(dists_d)
|
|
|
|
|
|
|
|
|
|
cx_bigest_d_big[0] = cx_bigest_d[ind_largest]
|
|
|
|
|
cy_biggest_d_big[0] = cy_biggest_d[ind_largest]
|
|
|
|
|
except Exception as why:
|
|
|
|
|
self.logger.error(why)
|
|
|
|
|
cx_bigest_d_big, cy_biggest_d_big, _, _, _, _, _ = find_new_features_of_contours([contours_biggest_d])
|
|
|
|
|
cx_bigest_d, cy_biggest_d, _, _, _, _, _ = find_new_features_of_contours(contours_only_text_parent_d)
|
|
|
|
|
try:
|
|
|
|
|
if len(cx_bigest_d) >= 5:
|
|
|
|
|
cx_bigest_d_last5 = cx_bigest_d[-5:]
|
|
|
|
|
cy_biggest_d_last5 = cy_biggest_d[-5:]
|
|
|
|
|
dists_d = [math.sqrt((cx_bigest_big[0] - cx_bigest_d_last5[j]) ** 2 + (cy_biggest_big[0] - cy_biggest_d_last5[j]) ** 2) for j in range(len(cy_biggest_d_last5))]
|
|
|
|
|
ind_largest = len(cx_bigest_d) -5 + np.argmin(dists_d)
|
|
|
|
|
else:
|
|
|
|
|
cx_bigest_d_last5 = cx_bigest_d[-len(cx_bigest_d):]
|
|
|
|
|
cy_biggest_d_last5 = cy_biggest_d[-len(cx_bigest_d):]
|
|
|
|
|
dists_d = [math.sqrt((cx_bigest_big[0]-cx_bigest_d_last5[j])**2 + (cy_biggest_big[0]-cy_biggest_d_last5[j])**2) for j in range(len(cy_biggest_d_last5))]
|
|
|
|
|
ind_largest = len(cx_bigest_d) - len(cx_bigest_d) + np.argmin(dists_d)
|
|
|
|
|
|
|
|
|
|
cx_bigest_d_big[0] = cx_bigest_d[ind_largest]
|
|
|
|
|
cy_biggest_d_big[0] = cy_biggest_d[ind_largest]
|
|
|
|
|
except Exception as why:
|
|
|
|
|
self.logger.error(why)
|
|
|
|
|
|
|
|
|
|
(h, w) = text_only.shape[:2]
|
|
|
|
|
center = (w // 2.0, h // 2.0)
|
|
|
|
|
M = cv2.getRotationMatrix2D(center, slope_deskew, 1.0)
|
|
|
|
|
M_22 = np.array(M)[:2, :2]
|
|
|
|
|
p_big = np.dot(M_22, [cx_bigest_big, cy_biggest_big])
|
|
|
|
|
x_diff = p_big[0] - cx_bigest_d_big
|
|
|
|
|
y_diff = p_big[1] - cy_biggest_d_big
|
|
|
|
|
(h, w) = text_only.shape[:2]
|
|
|
|
|
center = (w // 2.0, h // 2.0)
|
|
|
|
|
M = cv2.getRotationMatrix2D(center, slope_deskew, 1.0)
|
|
|
|
|
M_22 = np.array(M)[:2, :2]
|
|
|
|
|
p_big = np.dot(M_22, [cx_bigest_big, cy_biggest_big])
|
|
|
|
|
x_diff = p_big[0] - cx_bigest_d_big
|
|
|
|
|
y_diff = p_big[1] - cy_biggest_d_big
|
|
|
|
|
|
|
|
|
|
contours_only_text_parent_d_ordered = []
|
|
|
|
|
for i in range(len(contours_only_text_parent)):
|
|
|
|
|
p = np.dot(M_22, [cx_bigest[i], cy_biggest[i]])
|
|
|
|
|
p[0] = p[0] - x_diff[0]
|
|
|
|
|
p[1] = p[1] - y_diff[0]
|
|
|
|
|
dists = [math.sqrt((p[0] - cx_bigest_d[j]) ** 2 + (p[1] - cy_biggest_d[j]) ** 2) for j in range(len(cx_bigest_d))]
|
|
|
|
|
contours_only_text_parent_d_ordered.append(contours_only_text_parent_d[np.argmin(dists)])
|
|
|
|
|
# img2=np.zeros((text_only.shape[0],text_only.shape[1],3))
|
|
|
|
|
# img2=cv2.fillPoly(img2,pts=[contours_only_text_parent_d[np.argmin(dists)]] ,color=(1,1,1))
|
|
|
|
|
# plt.imshow(img2[:,:,0])
|
|
|
|
|
# plt.show()
|
|
|
|
|
else:
|
|
|
|
|
contours_only_text_parent_d_ordered = []
|
|
|
|
|
contours_only_text_parent_d = []
|
|
|
|
|
contours_only_text_parent = []
|
|
|
|
|
|
|
|
|
|
contours_only_text_parent_d_ordered = []
|
|
|
|
|
for i in range(len(contours_only_text_parent)):
|
|
|
|
|
p = np.dot(M_22, [cx_bigest[i], cy_biggest[i]])
|
|
|
|
|
p[0] = p[0] - x_diff[0]
|
|
|
|
|
p[1] = p[1] - y_diff[0]
|
|
|
|
|
dists = [math.sqrt((p[0] - cx_bigest_d[j]) ** 2 + (p[1] - cy_biggest_d[j]) ** 2) for j in range(len(cx_bigest_d))]
|
|
|
|
|
contours_only_text_parent_d_ordered.append(contours_only_text_parent_d[np.argmin(dists)])
|
|
|
|
|
# img2=np.zeros((text_only.shape[0],text_only.shape[1],3))
|
|
|
|
|
# img2=cv2.fillPoly(img2,pts=[contours_only_text_parent_d[np.argmin(dists)]] ,color=(1,1,1))
|
|
|
|
|
# plt.imshow(img2[:,:,0])
|
|
|
|
|
# plt.show()
|
|
|
|
|
else:
|
|
|
|
|
contours_only_text_parent_d_ordered = []
|
|
|
|
|
contours_only_text_parent_d = []
|
|
|
|
|
contours_only_text_parent = []
|
|
|
|
|
|
|
|
|
|
else:
|
|
|
|
|
contours_only_text, hir_on_text = return_contours_of_image(text_only)
|
|
|
|
@ -1968,7 +1981,6 @@ class Eynollah:
|
|
|
|
|
if not self.curved_line:
|
|
|
|
|
slopes, all_found_texline_polygons, boxes_text, txt_con_org, contours_only_text_parent, all_box_coord, index_by_text_par_con = self.get_slopes_and_deskew_new(txt_con_org, contours_only_text_parent, textline_mask_tot_ea, image_page_rotated, boxes_text, slope_deskew)
|
|
|
|
|
slopes_marginals, all_found_texline_polygons_marginals, boxes_marginals, _, polygons_of_marginals, all_box_coord_marginals, _ = self.get_slopes_and_deskew_new(polygons_of_marginals, polygons_of_marginals, textline_mask_tot_ea, image_page_rotated, boxes_marginals, slope_deskew)
|
|
|
|
|
|
|
|
|
|
else:
|
|
|
|
|
|
|
|
|
|
scale_param = 1
|
|
|
|
|