|
|
|
@ -504,11 +504,11 @@ class Eynollah:
|
|
|
|
|
def calculate_width_height_by_columns_1_2(self, img, num_col, width_early, label_p_pred):
|
|
|
|
|
self.logger.debug("enter calculate_width_height_by_columns")
|
|
|
|
|
if num_col == 1:
|
|
|
|
|
img_w_new = 1000
|
|
|
|
|
img_h_new = int(img.shape[0] / float(img.shape[1]) * 1000)
|
|
|
|
|
else:
|
|
|
|
|
img_w_new = 1300
|
|
|
|
|
img_h_new = int(img.shape[0] / float(img.shape[1]) * 1300)
|
|
|
|
|
else:
|
|
|
|
|
img_w_new = 1500
|
|
|
|
|
img_h_new = int(img.shape[0] / float(img.shape[1]) * 1500)
|
|
|
|
|
|
|
|
|
|
if label_p_pred[0][int(num_col - 1)] < 0.9 and img_w_new < width_early:
|
|
|
|
|
img_new = np.copy(img)
|
|
|
|
@ -1213,7 +1213,7 @@ class Eynollah:
|
|
|
|
|
|
|
|
|
|
marginal_of_patch_percent = 0.1
|
|
|
|
|
|
|
|
|
|
prediction_regions = self.do_prediction(patches, img, model_region, marginal_of_patch_percent=marginal_of_patch_percent, n_batch_inference=4)
|
|
|
|
|
prediction_regions = self.do_prediction(patches, img, model_region, marginal_of_patch_percent=marginal_of_patch_percent, n_batch_inference=3)
|
|
|
|
|
|
|
|
|
|
prediction_regions = resize_image(prediction_regions, img_height_h, img_width_h)
|
|
|
|
|
self.logger.debug("exit extract_text_regions")
|
|
|
|
@ -1810,7 +1810,8 @@ class Eynollah:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#print("inside 2 ", time.time()-t_in)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#print(img_resized.shape, num_col_classifier, "num_col_classifier")
|
|
|
|
|
if not self.dir_in:
|
|
|
|
|
if num_col_classifier == 1 or num_col_classifier == 2:
|
|
|
|
|
model_region, session_region = self.start_new_session_and_model(self.model_region_dir_p_1_2_sp_np)
|
|
|
|
|