|
|
|
@ -1263,30 +1263,25 @@ class eynollah:
|
|
|
|
|
|
|
|
|
|
# create the file structure
|
|
|
|
|
pcgts, page = create_page_xml(self.image_filename, self.height_org, self.width_org)
|
|
|
|
|
|
|
|
|
|
page_print_sub = ET.SubElement(page, "Border")
|
|
|
|
|
coord_page = ET.SubElement(page_print_sub, "Coords")
|
|
|
|
|
coord_page.set('points', self.calculate_page_coords())
|
|
|
|
|
|
|
|
|
|
if len(contours)>0:
|
|
|
|
|
region_order=ET.SubElement(page, 'ReadingOrder')
|
|
|
|
|
if len(contours) > 0:
|
|
|
|
|
region_order = ET.SubElement(page, 'ReadingOrder')
|
|
|
|
|
region_order_sub = ET.SubElement(region_order, 'OrderedGroup')
|
|
|
|
|
|
|
|
|
|
region_order_sub.set('id',"ro357564684568544579089")
|
|
|
|
|
|
|
|
|
|
#args_sort=order_of_texts
|
|
|
|
|
for vj in order_of_texts:
|
|
|
|
|
name="coord_text_"+str(vj)
|
|
|
|
|
name = "coord_text_" + str(vj)
|
|
|
|
|
name = ET.SubElement(region_order_sub, 'RegionRefIndexed')
|
|
|
|
|
name.set('index',str(order_of_texts[vj]) )
|
|
|
|
|
name.set('index', str(order_of_texts[vj]) )
|
|
|
|
|
name.set('regionRef',id_of_texts[vj])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
id_of_marginalia=[]
|
|
|
|
|
indexer_region=len(contours)+len(contours_h)
|
|
|
|
|
indexer_region = len(contours) + len(contours_h)
|
|
|
|
|
for vm in range(len(found_polygons_marginals)):
|
|
|
|
|
id_of_marginalia.append('r'+str(indexer_region))
|
|
|
|
|
|
|
|
|
|
name="coord_text_"+str(indexer_region)
|
|
|
|
|
id_of_marginalia.append('r' + str(indexer_region))
|
|
|
|
|
name = "coord_text_"+str(indexer_region)
|
|
|
|
|
name = ET.SubElement(region_order_sub, 'RegionRefIndexed')
|
|
|
|
|
name.set('index',str(indexer_region) )
|
|
|
|
|
name.set('regionRef','r'+str(indexer_region))
|
|
|
|
@ -1503,7 +1498,6 @@ class eynollah:
|
|
|
|
|
self.logger.debug('enter write_into_page_xml')
|
|
|
|
|
|
|
|
|
|
found_polygons_text_region = contours
|
|
|
|
|
##found_polygons_text_region_h=contours_h
|
|
|
|
|
|
|
|
|
|
# create the file structure
|
|
|
|
|
pcgts, page = create_page_xml(self.image_filename, self.height_org, self.width_org)
|
|
|
|
@ -1515,18 +1509,14 @@ class eynollah:
|
|
|
|
|
region_order = ET.SubElement(page, 'ReadingOrder')
|
|
|
|
|
region_order_sub = ET.SubElement(region_order, 'OrderedGroup')
|
|
|
|
|
region_order_sub.set('id',"ro357564684568544579089")
|
|
|
|
|
|
|
|
|
|
indexer_region=0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
for vj in order_of_texts:
|
|
|
|
|
name="coord_text_"+str(vj)
|
|
|
|
|
name = ET.SubElement(region_order_sub, 'RegionRefIndexed')
|
|
|
|
|
|
|
|
|
|
name.set('index',str(indexer_region) )
|
|
|
|
|
name.set('regionRef',id_of_texts[vj])
|
|
|
|
|
indexer_region+=1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
id_of_marginalia=[]
|
|
|
|
|
for vm in range(len(found_polygons_marginals)):
|
|
|
|
|
id_of_marginalia.append('r'+str(indexer_region))
|
|
|
|
@ -2150,16 +2140,14 @@ class eynollah:
|
|
|
|
|
img_only_regions_with_sep = img_only_regions_with_sep.astype(np.uint8)
|
|
|
|
|
img_only_regions = cv2.erode(img_only_regions_with_sep[:, :], self.kernel, iterations=6)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
try:
|
|
|
|
|
num_col, peaks_neg_fin = find_num_col(img_only_regions, multiplier=6.0)
|
|
|
|
|
|
|
|
|
|
if not num_column_is_classified:
|
|
|
|
|
num_col_classifier = num_col + 1
|
|
|
|
|
except:
|
|
|
|
|
num_col = None
|
|
|
|
|
peaks_neg_fin = []
|
|
|
|
|
return num_col+1, num_col_classifier, img_only_regions, page_coord, image_page, mask_images, mask_lines, text_regions_p_1
|
|
|
|
|
return num_col + 1, num_col_classifier, img_only_regions, page_coord, image_page, mask_images, mask_lines, text_regions_p_1
|
|
|
|
|
|
|
|
|
|
def run_enhancement(self):
|
|
|
|
|
self.logger.info("resize and enhance image")
|
|
|
|
@ -2212,7 +2200,7 @@ class eynollah:
|
|
|
|
|
def run_marginals(self, image_page, textline_mask_tot_ea, mask_images, mask_lines, num_col_classifier, slope_deskew, text_regions_p_1):
|
|
|
|
|
image_page_rotated, textline_mask_tot = image_page[:, :], textline_mask_tot_ea[:, :]
|
|
|
|
|
textline_mask_tot[mask_images[:, :] == 1] = 0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
pixel_img = 1
|
|
|
|
|
min_area = 0.00001
|
|
|
|
|
max_area = 0.0006
|
|
|
|
@ -2225,15 +2213,10 @@ class eynollah:
|
|
|
|
|
try:
|
|
|
|
|
regions_without_seperators = (text_regions_p[:, :] == 1) * 1
|
|
|
|
|
regions_without_seperators = regions_without_seperators.astype(np.uint8)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
text_regions_p = get_marginals(rotate_image(regions_without_seperators, slope_deskew), text_regions_p, num_col_classifier, slope_deskew, kernel=self.kernel)
|
|
|
|
|
except:
|
|
|
|
|
pass
|
|
|
|
|
|
|
|
|
|
# plt.imshow(text_regions_p)
|
|
|
|
|
# plt.show()
|
|
|
|
|
|
|
|
|
|
if self.plotter:
|
|
|
|
|
self.plotter.save_plot_of_layout_main_all(text_regions_p, image_page)
|
|
|
|
|
self.plotter.save_plot_of_layout_main(text_regions_p, image_page)
|
|
|
|
@ -2247,13 +2230,10 @@ class eynollah:
|
|
|
|
|
textline_mask_tot_d = resize_image(textline_mask_tot_d, text_regions_p.shape[0], text_regions_p.shape[1])
|
|
|
|
|
regions_without_seperators_d = (text_regions_p_1_n[:, :] == 1) * 1
|
|
|
|
|
regions_without_seperators = (text_regions_p[:, :] == 1) * 1 # ( (text_regions_p[:,:]==1) | (text_regions_p[:,:]==2) )*1 #self.return_regions_without_seperators_new(text_regions_p[:,:,0],img_only_regions)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if np.abs(slope_deskew) < SLOPE_THRESHOLD:
|
|
|
|
|
text_regions_p_1_n = None
|
|
|
|
|
textline_mask_tot_d = None
|
|
|
|
|
regions_without_seperators_d = None
|
|
|
|
|
|
|
|
|
|
pixel_lines = 3
|
|
|
|
|
if np.abs(slope_deskew) < SLOPE_THRESHOLD:
|
|
|
|
|
num_col, peaks_neg_fin, matrix_of_lines_ch, spliter_y_new, seperators_closeup_n = find_number_of_columns_in_document(np.repeat(text_regions_p[:, :, np.newaxis], 3, axis=2), num_col_classifier, pixel_lines)
|
|
|
|
@ -2279,7 +2259,6 @@ class eynollah:
|
|
|
|
|
#random_pixels_for_image = np.random.randn(regions_without_seperators_d.shape[0], regions_without_seperators_d.shape[1])
|
|
|
|
|
#random_pixels_for_image[random_pixels_for_image < -0.5] = 0
|
|
|
|
|
#random_pixels_for_image[random_pixels_for_image != 0] = 1
|
|
|
|
|
|
|
|
|
|
#regions_without_seperators_d[(random_pixels_for_image[:, :] == 1) & (text_regions_p_1_n[:, :] == 2)] = 1
|
|
|
|
|
|
|
|
|
|
t1 = time.time()
|
|
|
|
@ -2291,7 +2270,7 @@ class eynollah:
|
|
|
|
|
boxes_d = return_boxes_of_images_by_order_of_reading_new(spliter_y_new_d, regions_without_seperators_d, matrix_of_lines_ch_d, num_col_classifier)
|
|
|
|
|
boxes = None
|
|
|
|
|
self.logger.debug("len(boxes): %s", len(boxes_d))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
self.logger.info("detecting boxes took %ss", str(time.time() - t1))
|
|
|
|
|
img_revised_tab = text_regions_p[:, :]
|
|
|
|
|
polygons_of_images = return_contours_of_interested_region(img_revised_tab, 2)
|
|
|
|
@ -2369,21 +2348,17 @@ class eynollah:
|
|
|
|
|
textline_mask_tot_d = resize_image(textline_mask_tot_d, text_regions_p.shape[0], text_regions_p.shape[1])
|
|
|
|
|
regions_fully_n = resize_image(regions_fully_n, text_regions_p.shape[0], text_regions_p.shape[1])
|
|
|
|
|
regions_without_seperators_d = (text_regions_p_1_n[:, :] == 1) * 1
|
|
|
|
|
|
|
|
|
|
else:
|
|
|
|
|
text_regions_p_1_n = None
|
|
|
|
|
textline_mask_tot_d = None
|
|
|
|
|
regions_without_seperators_d = None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
regions_without_seperators = (text_regions_p[:, :] == 1) * 1 # ( (text_regions_p[:,:]==1) | (text_regions_p[:,:]==2) )*1 #self.return_regions_without_seperators_new(text_regions_p[:,:,0],img_only_regions)
|
|
|
|
|
|
|
|
|
|
K.clear_session()
|
|
|
|
|
gc.collect()
|
|
|
|
|
img_revised_tab = np.copy(text_regions_p[:, :])
|
|
|
|
|
pixel_img = 5
|
|
|
|
|
polygons_of_images = return_contours_of_interested_region(img_revised_tab, pixel_img)
|
|
|
|
|
polygons_of_images = return_contours_of_interested_region(img_revised_tab, 5)
|
|
|
|
|
self.logger.debug('exit run_boxes_full_layout')
|
|
|
|
|
return polygons_of_images, img_revised_tab, text_regions_p_1_n, textline_mask_tot_d, regions_without_seperators_d, regions_fully, regions_without_seperators
|
|
|
|
|
|
|
|
|
@ -2405,8 +2380,7 @@ class eynollah:
|
|
|
|
|
num_col, num_col_classifier, img_only_regions, page_coord, image_page, mask_images, mask_lines, text_regions_p_1 = \
|
|
|
|
|
self.run_graphics_and_columns(text_regions_p_1, num_col_classifier, num_column_is_classified)
|
|
|
|
|
self.logger.info("Graphics detection took %ss ", str(time.time() - t1))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if not num_col:
|
|
|
|
|
self.logger.info("No columns detected, outputting an empty PAGE-XML")
|
|
|
|
|
self.write_into_page_xml([], page_coord, self.dir_out, [], [], [], [], [], [], [], [], self.curved_line, [], [])
|
|
|
|
@ -2497,11 +2471,8 @@ class eynollah:
|
|
|
|
|
(h, w) = text_only.shape[:2]
|
|
|
|
|
center = (w // 2.0, h // 2.0)
|
|
|
|
|
M = cv2.getRotationMatrix2D(center, slope_deskew, 1.0)
|
|
|
|
|
|
|
|
|
|
M_22 = np.array(M)[:2, :2]
|
|
|
|
|
|
|
|
|
|
p_big = np.dot(M_22, [cx_bigest_big, cy_biggest_big])
|
|
|
|
|
|
|
|
|
|
x_diff = p_big[0] - cx_bigest_d_big
|
|
|
|
|
y_diff = p_big[1] - cy_biggest_d_big
|
|
|
|
|
|
|
|
|
@ -2547,9 +2518,9 @@ class eynollah:
|
|
|
|
|
|
|
|
|
|
cx_bigest_big, cy_biggest_big, _, _, _, _, _ = find_new_features_of_contoures([contours_biggest])
|
|
|
|
|
cx_bigest, cy_biggest, _, _, _, _, _ = find_new_features_of_contoures(contours_only_text_parent)
|
|
|
|
|
# print(areas_cnt_text_parent,'areas_cnt_text_parent')
|
|
|
|
|
# print(areas_cnt_text_parent_d,'areas_cnt_text_parent_d')
|
|
|
|
|
# print(len(contours_only_text_parent),len(contours_only_text_parent_d),'vizzz')
|
|
|
|
|
self.logger.debug('areas_cnt_text_parent %s', areas_cnt_text_parent)
|
|
|
|
|
self.logger.debug('areas_cnt_text_parent_d %s', areas_cnt_text_parent_d)
|
|
|
|
|
self.logger.debug('len(contours_only_text_parent) %s', len(contours_only_text_parent_d))
|
|
|
|
|
|
|
|
|
|
txt_con_org = get_textregion_contours_in_org_image(contours_only_text_parent, self.image, slope_first)
|
|
|
|
|
boxes_text, _ = get_text_region_boxes_by_given_contours(contours_only_text_parent)
|
|
|
|
@ -2579,8 +2550,6 @@ class eynollah:
|
|
|
|
|
else:
|
|
|
|
|
contours_only_text_parent_d_ordered = None
|
|
|
|
|
text_regions_p, contours_only_text_parent, contours_only_text_parent_h, all_box_coord, all_box_coord_h, all_found_texline_polygons, all_found_texline_polygons_h, slopes, slopes_h, contours_only_text_parent_d_ordered, contours_only_text_parent_h_d_ordered = check_any_text_region_in_model_one_is_main_or_header(text_regions_p, regions_fully, contours_only_text_parent, all_box_coord, all_found_texline_polygons, slopes, contours_only_text_parent_d_ordered)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if self.plotter:
|
|
|
|
|
self.plotter.save_plot_of_layout(text_regions_p, image_page)
|
|
|
|
@ -2599,9 +2568,9 @@ class eynollah:
|
|
|
|
|
|
|
|
|
|
if not self.headers_off:
|
|
|
|
|
if np.abs(slope_deskew) < SLOPE_THRESHOLD:
|
|
|
|
|
num_col, peaks_neg_fin, matrix_of_lines_ch, spliter_y_new, seperators_closeup_n = find_number_of_columns_in_document(np.repeat(text_regions_p[:, :, np.newaxis], 3, axis=2), num_col_classifier, pixel_lines, contours_only_text_parent_h)
|
|
|
|
|
num_col, peaks_neg_fin, matrix_of_lines_ch, spliter_y_new, _ = find_number_of_columns_in_document(np.repeat(text_regions_p[:, :, np.newaxis], 3, axis=2), num_col_classifier, pixel_lines, contours_only_text_parent_h)
|
|
|
|
|
else:
|
|
|
|
|
num_col_d, peaks_neg_fin_d, matrix_of_lines_ch_d, spliter_y_new_d, seperators_closeup_n_d = find_number_of_columns_in_document(np.repeat(text_regions_p_1_n[:, :, np.newaxis], 3, axis=2), num_col_classifier, pixel_lines, contours_only_text_parent_h_d_ordered)
|
|
|
|
|
num_col_d, peaks_neg_fin_d, matrix_of_lines_ch_d, spliter_y_new_d, _ = find_number_of_columns_in_document(np.repeat(text_regions_p_1_n[:, :, np.newaxis], 3, axis=2), num_col_classifier, pixel_lines, contours_only_text_parent_h_d_ordered)
|
|
|
|
|
elif self.headers_off:
|
|
|
|
|
if np.abs(slope_deskew) < SLOPE_THRESHOLD:
|
|
|
|
|
num_col, peaks_neg_fin, matrix_of_lines_ch, spliter_y_new, seperators_closeup_n = find_number_of_columns_in_document(np.repeat(text_regions_p[:, :, np.newaxis], 3, axis=2), num_col_classifier, pixel_lines)
|
|
|
|
@ -2613,7 +2582,6 @@ class eynollah:
|
|
|
|
|
# print(matrix_of_lines_ch.shape,matrix_of_lines_ch_d.shape,'matrix_of_lines_ch')
|
|
|
|
|
|
|
|
|
|
if num_col_classifier >= 3:
|
|
|
|
|
|
|
|
|
|
if np.abs(slope_deskew) < SLOPE_THRESHOLD:
|
|
|
|
|
regions_without_seperators = regions_without_seperators.astype(np.uint8)
|
|
|
|
|
regions_without_seperators = cv2.erode(regions_without_seperators[:, :], self.kernel, iterations=6)
|
|
|
|
@ -2644,16 +2612,14 @@ class eynollah:
|
|
|
|
|
order_text_new, id_of_texts_tot = self.do_order_of_regions(contours_only_text_parent_d_ordered, contours_only_text_parent_h_d_ordered, boxes_d, textline_mask_tot_d)
|
|
|
|
|
|
|
|
|
|
self.write_into_page_xml_full(contours_only_text_parent, contours_only_text_parent_h, page_coord, self.dir_out, order_text_new, id_of_texts_tot, all_found_texline_polygons, all_found_texline_polygons_h, all_box_coord, all_box_coord_h, polygons_of_images, polygons_of_tabels, polygons_of_drop_capitals, polygons_of_marginals, all_found_texline_polygons_marginals, all_box_coord_marginals, slopes, slopes_marginals)
|
|
|
|
|
|
|
|
|
|
else:
|
|
|
|
|
contours_only_text_parent_h = None
|
|
|
|
|
# self.logger.debug('bura galmir?')
|
|
|
|
|
if np.abs(slope_deskew) < SLOPE_THRESHOLD:
|
|
|
|
|
#contours_only_text_parent = list(np.array(contours_only_text_parent)[index_by_text_par_con])
|
|
|
|
|
order_text_new, id_of_texts_tot = self.do_order_of_regions(contours_only_text_parent, contours_only_text_parent_h, boxes, textline_mask_tot)
|
|
|
|
|
else:
|
|
|
|
|
contours_only_text_parent_d_ordered = list(np.array(contours_only_text_parent_d_ordered)[index_by_text_par_con])
|
|
|
|
|
order_text_new, id_of_texts_tot = self.do_order_of_regions(contours_only_text_parent_d_ordered, contours_only_text_parent_h, boxes_d, textline_mask_tot_d)
|
|
|
|
|
# order_text_new , id_of_texts_tot=self.do_order_of_regions(contours_only_text_parent,contours_only_text_parent_h,boxes,textline_mask_tot)
|
|
|
|
|
self.write_into_page_xml(txt_con_org, page_coord, self.dir_out, order_text_new, id_of_texts_tot, all_found_texline_polygons, all_box_coord, polygons_of_images, polygons_of_marginals, all_found_texline_polygons_marginals, all_box_coord_marginals, self.curved_line, slopes, slopes_marginals)
|
|
|
|
|
|
|
|
|
|
self.logger.info("Job done in %ss", str(time.time() - t1))
|
|
|
|
|