mirror of
https://github.com/qurator-spk/eynollah.git
synced 2025-10-26 23:34:13 +01:00
return_boxes_of_images_by_order_of_reading_new: simplify
- enumeration instead of indexing - array instead of list operations - add better plotting (but commented out)
This commit is contained in:
parent
cd35241e81
commit
7c3e418588
1 changed files with 165 additions and 184 deletions
|
|
@ -5,6 +5,7 @@ import math
|
|||
|
||||
try:
|
||||
import matplotlib.pyplot as plt
|
||||
import matplotlib.patches as patches
|
||||
except ImportError:
|
||||
plt = None
|
||||
import numpy as np
|
||||
|
|
@ -20,6 +21,7 @@ from .contour import (contours_in_same_horizon,
|
|||
return_contours_of_image,
|
||||
return_parent_contours)
|
||||
|
||||
|
||||
def pairwise(iterable):
|
||||
# pairwise('ABCDEFG') → AB BC CD DE EF FG
|
||||
|
||||
|
|
@ -205,15 +207,15 @@ def return_x_start_end_mothers_childs_and_type_of_reading_order(
|
|||
#print(x_end,'x_end')
|
||||
#print(len_sep)
|
||||
|
||||
deleted=[]
|
||||
deleted = set()
|
||||
for i in range(len(x_start)-1):
|
||||
nodes_i=set(range(x_start[i],x_end[i]+1))
|
||||
for j in range(i+1,len(x_start)):
|
||||
if nodes_i==set(range(x_start[j],x_end[j]+1)):
|
||||
deleted.append(j)
|
||||
deleted.add(j)
|
||||
#print(np.unique(deleted))
|
||||
|
||||
remained_sep_indexes=set(range(len(x_start)))-set(np.unique(deleted) )
|
||||
remained_sep_indexes = set(range(len(x_start))) - deleted
|
||||
#print(remained_sep_indexes,'remained_sep_indexes')
|
||||
mother=[]#if it has mother
|
||||
child=[]
|
||||
|
|
@ -262,7 +264,7 @@ def return_x_start_end_mothers_childs_and_type_of_reading_order(
|
|||
x_start_with_child_without_mother = x_start[remained_sep_indexes_with_child_without_mother]
|
||||
y_lines_with_child_without_mother = y_sep[remained_sep_indexes_with_child_without_mother]
|
||||
|
||||
reading_orther_type=0
|
||||
reading_order_type=0
|
||||
x_end_without_mother = x_end[remained_sep_indexes_without_mother]
|
||||
x_start_without_mother = x_start[remained_sep_indexes_without_mother]
|
||||
y_lines_without_mother = y_sep[remained_sep_indexes_without_mother]
|
||||
|
|
@ -278,12 +280,11 @@ def return_x_start_end_mothers_childs_and_type_of_reading_order(
|
|||
x_end[remained_sep_indexes_without_mother[j]]
|
||||
# + 1
|
||||
))
|
||||
set_diff = nodes_i - nodes_j
|
||||
if set_diff != nodes_i:
|
||||
reading_orther_type = 1
|
||||
if nodes_i - nodes_j != nodes_i:
|
||||
reading_order_type = 1
|
||||
else:
|
||||
reading_orther_type = 0
|
||||
#print(reading_orther_type,'javab')
|
||||
reading_order_type = 0
|
||||
#print(reading_order_type,'javab')
|
||||
#print(y_lines_with_child_without_mother,'y_lines_with_child_without_mother')
|
||||
#print(x_start_with_child_without_mother,'x_start_with_child_without_mother')
|
||||
#print(x_end_with_child_without_mother,'x_end_with_hild_without_mother')
|
||||
|
|
@ -297,7 +298,7 @@ def return_x_start_end_mothers_childs_and_type_of_reading_order(
|
|||
#print(all_args_uniq,'all_args_uniq')
|
||||
#print(args_to_be_unified,'args_to_be_unified')
|
||||
|
||||
return (reading_orther_type,
|
||||
return (reading_order_type,
|
||||
x_start_returned,
|
||||
x_end_returned,
|
||||
y_sep_returned,
|
||||
|
|
@ -1590,77 +1591,90 @@ def return_boxes_of_images_by_order_of_reading_new(
|
|||
if logger is None:
|
||||
logger = getLogger(__package__)
|
||||
logger.debug('enter return_boxes_of_images_by_order_of_reading_new')
|
||||
# def dbg_plt(box=None, title=None):
|
||||
# if box is None:
|
||||
# box = [None, None, None, None]
|
||||
# img = regions_without_separators[box[2]:box[3], box[0]:box[1]]
|
||||
# plt.imshow(img)
|
||||
# xrange = np.arange(0, img.shape[1], 100)
|
||||
# yrange = np.arange(0, img.shape[0], 100)
|
||||
# plt.gca().set_xticks(xrange, xrange + (box[0] or 0))
|
||||
# plt.gca().set_yticks(yrange, yrange + (box[2] or 0))
|
||||
# if title:
|
||||
# plt.title(title)
|
||||
# plt.show()
|
||||
# dbg_plt()
|
||||
|
||||
boxes=[]
|
||||
peaks_neg_tot_tables = []
|
||||
splitter_y_new = np.array(splitter_y_new, dtype=int)
|
||||
for i in range(len(splitter_y_new)-1):
|
||||
#print(splitter_y_new[i],splitter_y_new[i+1])
|
||||
matrix_new = matrix_of_lines_ch[:,:][(matrix_of_lines_ch[:,6]> splitter_y_new[i] ) &
|
||||
(matrix_of_lines_ch[:,7]< splitter_y_new[i+1] )]
|
||||
width_tot = regions_without_separators.shape[1]
|
||||
for top, bot in pairwise(splitter_y_new):
|
||||
# print("%d:%d" % (top, bot), 'i')
|
||||
# dbg_plt([None, None, top, bot],
|
||||
# "image cut for y split %d:%d" % (
|
||||
# top, bot))
|
||||
matrix_new = matrix_of_lines_ch[(matrix_of_lines_ch[:,6] > top) &
|
||||
(matrix_of_lines_ch[:,7] < bot)]
|
||||
#print(len( matrix_new[:,9][matrix_new[:,9]==1] ))
|
||||
#print(matrix_new[:,8][matrix_new[:,9]==1],'gaddaaa')
|
||||
# check to see is there any vertical separator to find holes.
|
||||
#if (len(matrix_new[:,9][matrix_new[:,9]==1]) > 0 and
|
||||
# np.max(matrix_new[:,8][matrix_new[:,9]==1]) >=
|
||||
# 0.1 * (np.abs(splitter_y_new[i+1]-splitter_y_new[i]))):
|
||||
# 0.1 * (np.abs(bot-top))):
|
||||
if True:
|
||||
try:
|
||||
num_col, peaks_neg_fin = find_num_col(
|
||||
regions_without_separators[splitter_y_new[i]:splitter_y_new[i+1], :],
|
||||
regions_without_separators[top:bot],
|
||||
num_col_classifier, tables, multiplier=6. if erosion_hurts else 7.)
|
||||
except:
|
||||
peaks_neg_fin=[]
|
||||
num_col = 0
|
||||
try:
|
||||
if (len(peaks_neg_fin)+1)<num_col_classifier or num_col_classifier==6:
|
||||
# found too few columns here
|
||||
#print('burda')
|
||||
peaks_neg_fin_org = np.copy(peaks_neg_fin)
|
||||
#print("peaks_neg_fin_org", peaks_neg_fin_org)
|
||||
if len(peaks_neg_fin)==0:
|
||||
num_col, peaks_neg_fin = find_num_col(
|
||||
regions_without_separators[splitter_y_new[i]:splitter_y_new[i+1], :],
|
||||
regions_without_separators[top:bot],
|
||||
num_col_classifier, tables, multiplier=3.)
|
||||
peaks_neg_fin_early=[]
|
||||
peaks_neg_fin_early.append(0)
|
||||
#print(peaks_neg_fin,'peaks_neg_fin')
|
||||
for p_n in peaks_neg_fin:
|
||||
peaks_neg_fin_early.append(p_n)
|
||||
peaks_neg_fin_early.append(regions_without_separators.shape[1]-1)
|
||||
peaks_neg_fin_early = [0] + peaks_neg_fin + [width_tot-1]
|
||||
|
||||
#print(peaks_neg_fin_early,'burda2')
|
||||
peaks_neg_fin_rev=[]
|
||||
for i_n in range(len(peaks_neg_fin_early)-1):
|
||||
#print(i_n,'i_n')
|
||||
#plt.plot(regions_without_separators[splitter_y_new[i]:
|
||||
# splitter_y_new[i+1],
|
||||
# peaks_neg_fin_early[i_n]:
|
||||
# peaks_neg_fin_early[i_n+1]].sum(axis=0) )
|
||||
for left, right in pairwise(peaks_neg_fin_early):
|
||||
# print("%d:%d" % (left, right), 'i_n')
|
||||
# dbg_plt([left, right, top, bot],
|
||||
# "image cut for y split %d:%d / x gap %d:%d" % (
|
||||
# top, bot, left, right))
|
||||
# plt.plot(regions_without_separators[top:bot, left:right].sum(axis=0))
|
||||
# plt.title("vertical projection (sum over y)")
|
||||
# plt.show()
|
||||
try:
|
||||
num_col, peaks_neg_fin1 = find_num_col(
|
||||
regions_without_separators[splitter_y_new[i]:splitter_y_new[i+1],
|
||||
peaks_neg_fin_early[i_n]:peaks_neg_fin_early[i_n+1]],
|
||||
_, peaks_neg_fin1 = find_num_col(
|
||||
regions_without_separators[top:bot, left:right],
|
||||
num_col_classifier, tables, multiplier=7.)
|
||||
except:
|
||||
peaks_neg_fin1 = []
|
||||
try:
|
||||
num_col, peaks_neg_fin2 = find_num_col(
|
||||
regions_without_separators[splitter_y_new[i]:splitter_y_new[i+1],
|
||||
peaks_neg_fin_early[i_n]:peaks_neg_fin_early[i_n+1]],
|
||||
_, peaks_neg_fin2 = find_num_col(
|
||||
regions_without_separators[top:bot, left:right],
|
||||
num_col_classifier, tables, multiplier=5.)
|
||||
except:
|
||||
peaks_neg_fin2 = []
|
||||
|
||||
if len(peaks_neg_fin1) >= len(peaks_neg_fin2):
|
||||
peaks_neg_fin=list(np.copy(peaks_neg_fin1))
|
||||
peaks_neg_fin = peaks_neg_fin1
|
||||
else:
|
||||
peaks_neg_fin=list(np.copy(peaks_neg_fin2))
|
||||
peaks_neg_fin=list(np.array(peaks_neg_fin)+peaks_neg_fin_early[i_n])
|
||||
|
||||
if i_n!=(len(peaks_neg_fin_early)-2):
|
||||
peaks_neg_fin_rev.append(peaks_neg_fin_early[i_n+1])
|
||||
peaks_neg_fin = peaks_neg_fin2
|
||||
peaks_neg_fin = list(np.array(peaks_neg_fin) + left)
|
||||
#print(peaks_neg_fin,'peaks_neg_fin')
|
||||
peaks_neg_fin_rev=peaks_neg_fin_rev+peaks_neg_fin
|
||||
|
||||
if right < peaks_neg_fin_early[-1]:
|
||||
peaks_neg_fin_rev.append(right)
|
||||
peaks_neg_fin_rev.extend(peaks_neg_fin)
|
||||
|
||||
if len(peaks_neg_fin_rev)>=len(peaks_neg_fin_org):
|
||||
peaks_neg_fin=list(np.sort(peaks_neg_fin_rev))
|
||||
|
|
@ -1673,21 +1687,20 @@ def return_boxes_of_images_by_order_of_reading_new(
|
|||
except:
|
||||
logger.exception("cannot find peaks consistent with columns")
|
||||
#num_col, peaks_neg_fin = find_num_col(
|
||||
# regions_without_separators[splitter_y_new[i]:splitter_y_new[i+1],:],
|
||||
# regions_without_separators[top:bot,:],
|
||||
# multiplier=7.0)
|
||||
x_min_hor_some=matrix_new[:,2][ (matrix_new[:,9]==0) ]
|
||||
x_max_hor_some=matrix_new[:,3][ (matrix_new[:,9]==0) ]
|
||||
cy_hor_some=matrix_new[:,5][ (matrix_new[:,9]==0) ]
|
||||
cy_hor_diff=matrix_new[:,7][ (matrix_new[:,9]==0) ]
|
||||
arg_org_hor_some=matrix_new[:,0][ (matrix_new[:,9]==0) ]
|
||||
|
||||
if right2left_readingorder:
|
||||
x_max_hor_some_new = regions_without_separators.shape[1] - x_min_hor_some
|
||||
x_min_hor_some_new = regions_without_separators.shape[1] - x_max_hor_some
|
||||
x_max_hor_some_new = width_tot - x_min_hor_some
|
||||
x_min_hor_some_new = width_tot - x_max_hor_some
|
||||
x_min_hor_some =list(np.copy(x_min_hor_some_new))
|
||||
x_max_hor_some =list(np.copy(x_max_hor_some_new))
|
||||
|
||||
peaks_neg_tot=return_points_with_boundies(peaks_neg_fin,0, regions_without_separators[:,:].shape[1])
|
||||
peaks_neg_tot = [0] + peaks_neg_fin + [width_tot]
|
||||
peaks_neg_tot_tables.append(peaks_neg_tot)
|
||||
|
||||
reading_order_type, x_starting, x_ending, y_type_2, y_diff_type_2, \
|
||||
|
|
@ -1697,26 +1710,27 @@ def return_boxes_of_images_by_order_of_reading_new(
|
|||
x_min_hor_some, x_max_hor_some, cy_hor_some, peaks_neg_tot, cy_hor_diff)
|
||||
|
||||
all_columns = set(range(len(peaks_neg_tot) - 1))
|
||||
if ((reading_order_type==1) or
|
||||
(reading_order_type==0 and
|
||||
(len(y_lines_without_mother)>=2 or there_is_sep_with_child==1))):
|
||||
# print("all_columns", all_columns)
|
||||
if (reading_order_type == 1 or
|
||||
len(y_lines_without_mother) >= 2 or
|
||||
there_is_sep_with_child == 1):
|
||||
try:
|
||||
y_grenze = splitter_y_new[i] + 300
|
||||
y_grenze = top + 300
|
||||
#check if there is a big separator in this y_mains_sep_ohne_grenzen
|
||||
|
||||
args_early_ys=np.arange(len(y_type_2))
|
||||
#print(args_early_ys,'args_early_ys')
|
||||
#print(splitter_y_new[i], splitter_y_new[i+1])
|
||||
#print(top, bot)
|
||||
|
||||
x_starting_up = x_starting[(y_type_2 > splitter_y_new[i]) &
|
||||
x_starting_up = x_starting[(y_type_2 > top) &
|
||||
(y_type_2 <= y_grenze)]
|
||||
x_ending_up = x_ending[(y_type_2 > splitter_y_new[i]) &
|
||||
x_ending_up = x_ending[(y_type_2 > top) &
|
||||
(y_type_2 <= y_grenze)]
|
||||
y_type_2_up = y_type_2[(y_type_2 > splitter_y_new[i]) &
|
||||
y_type_2_up = y_type_2[(y_type_2 > top) &
|
||||
(y_type_2 <= y_grenze)]
|
||||
y_diff_type_2_up = y_diff_type_2[(y_type_2 > splitter_y_new[i]) &
|
||||
y_diff_type_2_up = y_diff_type_2[(y_type_2 > top) &
|
||||
(y_type_2 <= y_grenze)]
|
||||
args_up = args_early_ys[(y_type_2 > splitter_y_new[i]) &
|
||||
args_up = args_early_ys[(y_type_2 > top) &
|
||||
(y_type_2 <= y_grenze)]
|
||||
if len(y_type_2_up) > 0:
|
||||
y_main_separator_up = y_type_2_up [(x_starting_up==0) &
|
||||
|
|
@ -1730,27 +1744,28 @@ def return_boxes_of_images_by_order_of_reading_new(
|
|||
args_to_be_kept = np.array(list( set(args_early_ys) - set(args_main_to_deleted) ))
|
||||
#print(args_to_be_kept,'args_to_be_kept')
|
||||
boxes.append([0, peaks_neg_tot[len(peaks_neg_tot)-1],
|
||||
splitter_y_new[i], y_diff_main_separator_up.max()])
|
||||
splitter_y_new[i] = y_diff_main_separator_up.max()
|
||||
top, y_diff_main_separator_up.max()])
|
||||
# dbg_plt(boxes[-1], "first box")
|
||||
top = y_diff_main_separator_up.max()
|
||||
|
||||
#print(splitter_y_new[i],'splitter_y_new[i]')
|
||||
#print(top,'top')
|
||||
y_type_2 = y_type_2[args_to_be_kept]
|
||||
x_starting = x_starting[args_to_be_kept]
|
||||
x_ending = x_ending[args_to_be_kept]
|
||||
y_diff_type_2 = y_diff_type_2[args_to_be_kept]
|
||||
|
||||
#print('galdiha')
|
||||
y_grenze = splitter_y_new[i] + 200
|
||||
y_grenze = top + 200
|
||||
args_early_ys2=np.arange(len(y_type_2))
|
||||
y_type_2_up=y_type_2[(y_type_2 > splitter_y_new[i]) &
|
||||
y_type_2_up=y_type_2[(y_type_2 > top) &
|
||||
(y_type_2 <= y_grenze)]
|
||||
x_starting_up=x_starting[(y_type_2 > splitter_y_new[i]) &
|
||||
x_starting_up=x_starting[(y_type_2 > top) &
|
||||
(y_type_2 <= y_grenze)]
|
||||
x_ending_up=x_ending[(y_type_2 > splitter_y_new[i]) &
|
||||
x_ending_up=x_ending[(y_type_2 > top) &
|
||||
(y_type_2 <= y_grenze)]
|
||||
y_diff_type_2_up=y_diff_type_2[(y_type_2 > splitter_y_new[i]) &
|
||||
y_diff_type_2_up=y_diff_type_2[(y_type_2 > top) &
|
||||
(y_type_2 <= y_grenze)]
|
||||
args_up2=args_early_ys2[(y_type_2 > splitter_y_new[i]) &
|
||||
args_up2=args_early_ys2[(y_type_2 > top) &
|
||||
(y_type_2 <= y_grenze)]
|
||||
#print(y_type_2_up,x_starting_up,x_ending_up,'didid')
|
||||
nodes_in = set()
|
||||
|
|
@ -1804,13 +1819,14 @@ def return_boxes_of_images_by_order_of_reading_new(
|
|||
pass
|
||||
#print('burdaydikh2')
|
||||
|
||||
#int(splitter_y_new[i])
|
||||
#int(top)
|
||||
y_lines_by_order=[]
|
||||
x_start_by_order=[]
|
||||
x_end_by_order=[]
|
||||
if (len(x_end_with_child_without_mother)==0 and reading_order_type==0) or reading_order_type==1:
|
||||
if (reading_order_type == 1 or
|
||||
len(x_end_with_child_without_mother) == 0):
|
||||
if reading_order_type == 1:
|
||||
y_lines_by_order.append(splitter_y_new[i])
|
||||
y_lines_by_order.append(top)
|
||||
x_start_by_order.append(0)
|
||||
x_end_by_order.append(len(peaks_neg_tot)-2)
|
||||
else:
|
||||
|
|
@ -1823,8 +1839,8 @@ def return_boxes_of_images_by_order_of_reading_new(
|
|||
columns_not_covered = list(all_columns - columns_covered_by_mothers)
|
||||
y_type_2 = np.append(y_type_2, np.ones(len(columns_not_covered) +
|
||||
len(x_start_without_mother),
|
||||
dtype=int) * splitter_y_new[i])
|
||||
##y_lines_by_order = np.append(y_lines_by_order, [splitter_y_new[i]] * len(columns_not_covered))
|
||||
dtype=int) * top)
|
||||
##y_lines_by_order = np.append(y_lines_by_order, [top] * len(columns_not_covered))
|
||||
##x_start_by_order = np.append(x_start_by_order, [0] * len(columns_not_covered))
|
||||
x_starting = np.append(x_starting, np.array(columns_not_covered, int))
|
||||
x_starting = np.append(x_starting, x_start_without_mother)
|
||||
|
|
@ -1839,22 +1855,15 @@ def return_boxes_of_images_by_order_of_reading_new(
|
|||
ind_args_in_col=ind_args[x_starting==column]
|
||||
#print('babali2')
|
||||
#print(ind_args_in_col,'ind_args_in_col')
|
||||
ind_args_in_col=np.array(ind_args_in_col)
|
||||
#print(len(y_type_2))
|
||||
y_column=y_type_2[ind_args_in_col]
|
||||
x_start_column=x_starting[ind_args_in_col]
|
||||
x_end_column=x_ending[ind_args_in_col]
|
||||
#print('babali3')
|
||||
ind_args_col_sorted=np.argsort(y_column)
|
||||
y_col_sort=y_column[ind_args_col_sorted]
|
||||
x_start_column_sort=x_start_column[ind_args_col_sorted]
|
||||
x_end_column_sort=x_end_column[ind_args_col_sorted]
|
||||
#print('babali4')
|
||||
for ii in range(len(y_col_sort)):
|
||||
#print('babali5')
|
||||
y_lines_by_order.append(y_col_sort[ii])
|
||||
x_start_by_order.append(x_start_column_sort[ii])
|
||||
x_end_by_order.append(x_end_column_sort[ii]-1)
|
||||
y_lines_by_order.extend(y_column[ind_args_col_sorted])
|
||||
x_start_by_order.extend(x_start_column[ind_args_col_sorted])
|
||||
x_end_by_order.extend(x_end_column[ind_args_col_sorted] - 1)
|
||||
else:
|
||||
#print(x_start_without_mother,x_end_without_mother,peaks_neg_tot,'dodo')
|
||||
columns_covered_by_mothers = set()
|
||||
|
|
@ -1864,8 +1873,8 @@ def return_boxes_of_images_by_order_of_reading_new(
|
|||
x_end_without_mother[dj]))
|
||||
columns_not_covered = list(all_columns - columns_covered_by_mothers)
|
||||
y_type_2 = np.append(y_type_2, np.ones(len(columns_not_covered) + len(x_start_without_mother),
|
||||
dtype=int) * splitter_y_new[i])
|
||||
##y_lines_by_order = np.append(y_lines_by_order, [splitter_y_new[i]] * len(columns_not_covered))
|
||||
dtype=int) * top)
|
||||
##y_lines_by_order = np.append(y_lines_by_order, [top] * len(columns_not_covered))
|
||||
##x_start_by_order = np.append(x_start_by_order, [0] * len(columns_not_covered))
|
||||
x_starting = np.append(x_starting, np.array(columns_not_covered, int))
|
||||
x_starting = np.append(x_starting, x_start_without_mother)
|
||||
|
|
@ -1888,23 +1897,22 @@ def return_boxes_of_images_by_order_of_reading_new(
|
|||
x_start_with_child_without_mother = np.array(x_start_with_child_without_mother, int)
|
||||
for i_s_nc in columns_not_covered_child_no_mother:
|
||||
if i_s_nc in x_start_with_child_without_mother:
|
||||
#print("i_s_nc", i_s_nc)
|
||||
x_end_biggest_column = \
|
||||
x_end_with_child_without_mother[x_start_with_child_without_mother==i_s_nc][0]
|
||||
args_all_biggest_lines = ind_args[(x_starting==i_s_nc) &
|
||||
(x_ending==x_end_biggest_column)]
|
||||
y_column_nc = y_type_2[args_all_biggest_lines]
|
||||
x_start_column_nc = x_starting[args_all_biggest_lines]
|
||||
x_end_column_nc = x_ending[args_all_biggest_lines]
|
||||
#x_start_column_nc = x_starting[args_all_biggest_lines]
|
||||
#x_end_column_nc = x_ending[args_all_biggest_lines]
|
||||
y_column_nc = np.sort(y_column_nc)
|
||||
for i_c in range(len(y_column_nc)):
|
||||
if i_c==(len(y_column_nc)-1):
|
||||
ind_all_lines_between_nm_wc=ind_args[(y_type_2>y_column_nc[i_c]) &
|
||||
(y_type_2<splitter_y_new[i+1]) &
|
||||
(x_starting>=i_s_nc) &
|
||||
(x_ending<=x_end_biggest_column)]
|
||||
else:
|
||||
ind_all_lines_between_nm_wc=ind_args[(y_type_2>y_column_nc[i_c]) &
|
||||
(y_type_2<y_column_nc[i_c+1]) &
|
||||
#print("i_c", i_c)
|
||||
ind_all_lines_between_nm_wc = \
|
||||
ind_args[(y_type_2 > y_column_nc[i_c]) &
|
||||
(y_type_2 < (y_column_nc[i_c+1]
|
||||
if i_c < len(y_column_nc)-1
|
||||
else bot)) &
|
||||
(x_starting >= i_s_nc) &
|
||||
(x_ending <= x_end_biggest_column)]
|
||||
y_all_between_nm_wc = y_type_2[ind_all_lines_between_nm_wc]
|
||||
|
|
@ -1965,78 +1973,58 @@ def return_boxes_of_images_by_order_of_reading_new(
|
|||
ind_args_in_col=ind_args_between[x_starting_all_between_nm_wc==column]
|
||||
#print('babali2')
|
||||
#print(ind_args_in_col,'ind_args_in_col')
|
||||
ind_args_in_col=np.array(ind_args_in_col)
|
||||
#print(len(y_type_2))
|
||||
y_column=y_all_between_nm_wc[ind_args_in_col]
|
||||
x_start_column=x_starting_all_between_nm_wc[ind_args_in_col]
|
||||
x_end_column=x_ending_all_between_nm_wc[ind_args_in_col]
|
||||
#print('babali3')
|
||||
ind_args_col_sorted=np.argsort(y_column)
|
||||
y_col_sort=y_column[ind_args_col_sorted]
|
||||
x_start_column_sort=x_start_column[ind_args_col_sorted]
|
||||
x_end_column_sort=x_end_column[ind_args_col_sorted]
|
||||
#print('babali4')
|
||||
for ii in range(len(y_col_sort)):
|
||||
#print('babali5')
|
||||
y_lines_by_order.append(y_col_sort[ii])
|
||||
x_start_by_order.append(x_start_column_sort[ii])
|
||||
x_end_by_order.append(x_end_column_sort[ii]-1)
|
||||
y_lines_by_order.extend(y_column[ind_args_col_sorted])
|
||||
x_start_by_order.extend(x_start_column[ind_args_col_sorted])
|
||||
x_end_by_order.extend(x_end_column[ind_args_col_sorted] - 1)
|
||||
else:
|
||||
#print(column,'column')
|
||||
ind_args_in_col=ind_args[x_starting==i_s_nc]
|
||||
#print('babali2')
|
||||
#print(ind_args_in_col,'ind_args_in_col')
|
||||
ind_args_in_col=np.array(ind_args_in_col)
|
||||
#print(len(y_type_2))
|
||||
y_column=y_type_2[ind_args_in_col]
|
||||
x_start_column=x_starting[ind_args_in_col]
|
||||
x_end_column=x_ending[ind_args_in_col]
|
||||
#print('babali3')
|
||||
ind_args_col_sorted = np.argsort(y_column)
|
||||
y_col_sort=y_column[ind_args_col_sorted]
|
||||
x_start_column_sort=x_start_column[ind_args_col_sorted]
|
||||
x_end_column_sort=x_end_column[ind_args_col_sorted]
|
||||
#print('babali4')
|
||||
for ii in range(len(y_col_sort)):
|
||||
y_lines_by_order.append(y_col_sort[ii])
|
||||
x_start_by_order.append(x_start_column_sort[ii])
|
||||
x_end_by_order.append(x_end_column_sort[ii]-1)
|
||||
y_lines_by_order.extend(y_column[ind_args_col_sorted])
|
||||
x_start_by_order.extend(x_start_column[ind_args_col_sorted])
|
||||
x_end_by_order.extend(x_end_column[ind_args_col_sorted] - 1)
|
||||
|
||||
y_lines_by_order = np.array(y_lines_by_order)
|
||||
x_start_by_order = np.array(x_start_by_order)
|
||||
x_end_by_order = np.array(x_end_by_order)
|
||||
for il in range(len(y_lines_by_order)):
|
||||
y_copy = list(y_lines_by_order)
|
||||
x_start_copy = list(x_start_by_order)
|
||||
x_end_copy = list(x_end_by_order)
|
||||
|
||||
#print(y_copy,'y_copy')
|
||||
y_itself=y_copy.pop(il)
|
||||
x_start_itself=x_start_copy.pop(il)
|
||||
x_end_itself=x_end_copy.pop(il)
|
||||
|
||||
#print(y_copy,'y_copy2')
|
||||
#print(il, "il")
|
||||
y_itself = y_lines_by_order[il]
|
||||
x_start_itself = x_start_by_order[il]
|
||||
x_end_itself = x_end_by_order[il]
|
||||
for column in range(int(x_start_itself), int(x_end_itself)+1):
|
||||
#print(column,'cols')
|
||||
y_in_cols=[]
|
||||
for yic in range(len(y_copy)):
|
||||
y_in_cols = y_lines_by_order[(y_itself < y_lines_by_order) &
|
||||
(column >= x_start_by_order) &
|
||||
(column <= x_end_by_order)]
|
||||
#print('burda')
|
||||
if (y_copy[yic]>y_itself and
|
||||
column>=x_start_copy[yic] and
|
||||
column<=x_end_copy[yic]):
|
||||
y_in_cols.append(y_copy[yic])
|
||||
y_down = y_in_cols.min(initial=bot)
|
||||
#print('burda2')
|
||||
#print(y_in_cols,'y_in_cols')
|
||||
if len(y_in_cols)>0:
|
||||
y_down=np.min(y_in_cols)
|
||||
else:
|
||||
y_down=splitter_y_new[i+1]
|
||||
#print(y_itself,'y_itself')
|
||||
boxes.append([peaks_neg_tot[column],
|
||||
peaks_neg_tot[column+1],
|
||||
y_itself,
|
||||
y_down])
|
||||
# dbg_plt(boxes[-1], "A column %d box" % (column + 1))
|
||||
except:
|
||||
logger.exception("cannot assign boxes")
|
||||
boxes.append([0, peaks_neg_tot[len(peaks_neg_tot)-1],
|
||||
splitter_y_new[i], splitter_y_new[i+1]])
|
||||
top, bot])
|
||||
# dbg_plt(boxes[-1], "fallback box")
|
||||
else:
|
||||
y_lines_by_order=[]
|
||||
x_start_by_order=[]
|
||||
|
|
@ -2050,8 +2038,8 @@ def return_boxes_of_images_by_order_of_reading_new(
|
|||
columns_not_covered = list(all_columns - columns_covered_by_lines_covered_more_than_2col)
|
||||
|
||||
y_type_2 = np.append(y_type_2, np.ones(len(columns_not_covered) + 1,
|
||||
dtype=int) * splitter_y_new[i])
|
||||
##y_lines_by_order = np.append(y_lines_by_order, [splitter_y_new[i]] * len(columns_not_covered))
|
||||
dtype=int) * top)
|
||||
##y_lines_by_order = np.append(y_lines_by_order, [top] * len(columns_not_covered))
|
||||
##x_start_by_order = np.append(x_start_by_order, [0] * len(columns_not_covered))
|
||||
x_starting = np.append(x_starting, np.array(columns_not_covered, x_starting.dtype))
|
||||
x_ending = np.append(x_ending, np.array(columns_not_covered, x_ending.dtype) + 1)
|
||||
|
|
@ -2064,8 +2052,8 @@ def return_boxes_of_images_by_order_of_reading_new(
|
|||
else:
|
||||
columns_not_covered = list(all_columns)
|
||||
y_type_2 = np.append(y_type_2, np.ones(len(columns_not_covered),
|
||||
dtype=int) * splitter_y_new[i])
|
||||
##y_lines_by_order = np.append(y_lines_by_order, [splitter_y_new[i]] * len(columns_not_covered))
|
||||
dtype=int) * top)
|
||||
##y_lines_by_order = np.append(y_lines_by_order, [top] * len(columns_not_covered))
|
||||
##x_start_by_order = np.append(x_start_by_order, [0] * len(columns_not_covered))
|
||||
x_starting = np.append(x_starting, np.array(columns_not_covered, x_starting.dtype))
|
||||
x_ending = np.append(x_ending, np.array(columns_not_covered, x_ending.dtype) + 1)
|
||||
|
|
@ -2075,71 +2063,64 @@ def return_boxes_of_images_by_order_of_reading_new(
|
|||
for column in range(len(peaks_neg_tot)-1):
|
||||
#print(column,'column')
|
||||
ind_args_in_col=ind_args[x_starting==column]
|
||||
ind_args_in_col=np.array(ind_args_in_col)
|
||||
#print(len(y_type_2))
|
||||
y_column=y_type_2[ind_args_in_col]
|
||||
x_start_column=x_starting[ind_args_in_col]
|
||||
x_end_column=x_ending[ind_args_in_col]
|
||||
|
||||
ind_args_col_sorted = np.argsort(y_column)
|
||||
y_col_sort=y_column[ind_args_col_sorted]
|
||||
x_start_column_sort=x_start_column[ind_args_col_sorted]
|
||||
x_end_column_sort=x_end_column[ind_args_col_sorted]
|
||||
#print('babali4')
|
||||
for ii in range(len(y_col_sort)):
|
||||
#print('babali5')
|
||||
y_lines_by_order.append(y_col_sort[ii])
|
||||
x_start_by_order.append(x_start_column_sort[ii])
|
||||
x_end_by_order.append(x_end_column_sort[ii]-1)
|
||||
y_lines_by_order.extend(y_column[ind_args_col_sorted])
|
||||
x_start_by_order.extend(x_start_column[ind_args_col_sorted])
|
||||
x_end_by_order.extend(x_end_column[ind_args_col_sorted] - 1)
|
||||
|
||||
y_lines_by_order = np.array(y_lines_by_order)
|
||||
x_start_by_order = np.array(x_start_by_order)
|
||||
x_end_by_order = np.array(x_end_by_order)
|
||||
for il in range(len(y_lines_by_order)):
|
||||
y_copy = list(y_lines_by_order)
|
||||
x_start_copy = list(x_start_by_order)
|
||||
x_end_copy = list(x_end_by_order)
|
||||
|
||||
#print(y_copy,'y_copy')
|
||||
y_itself=y_copy.pop(il)
|
||||
x_start_itself=x_start_copy.pop(il)
|
||||
x_end_itself=x_end_copy.pop(il)
|
||||
|
||||
#print(il, "il")
|
||||
y_itself = y_lines_by_order[il]
|
||||
#print(y_itself,'y_itself')
|
||||
x_start_itself = x_start_by_order[il]
|
||||
x_end_itself = x_end_by_order[il]
|
||||
for column in range(x_start_itself, x_end_itself+1):
|
||||
#print(column,'cols')
|
||||
y_in_cols=[]
|
||||
for yic in range(len(y_copy)):
|
||||
#print('burda')
|
||||
if (y_copy[yic]>y_itself and
|
||||
column>=x_start_copy[yic] and
|
||||
column<=x_end_copy[yic]):
|
||||
y_in_cols.append(y_copy[yic])
|
||||
y_in_cols = y_lines_by_order[(y_itself < y_lines_by_order) &
|
||||
(column >= x_start_by_order) &
|
||||
(column <= x_end_by_order)]
|
||||
#print('burda2')
|
||||
#print(y_in_cols,'y_in_cols')
|
||||
if len(y_in_cols)>0:
|
||||
y_down=np.min(y_in_cols)
|
||||
else:
|
||||
y_down=splitter_y_new[i+1]
|
||||
#print(y_itself,'y_itself')
|
||||
y_down = y_in_cols.min(initial=bot)
|
||||
#print(y_down,'y_down')
|
||||
boxes.append([peaks_neg_tot[column],
|
||||
peaks_neg_tot[column+1],
|
||||
y_itself,
|
||||
y_down])
|
||||
# dbg_plt(boxes[-1], "B column %d box" % (column + 1))
|
||||
#else:
|
||||
#boxes.append([ 0, regions_without_separators[:,:].shape[1] ,splitter_y_new[i],splitter_y_new[i+1]])
|
||||
#boxes.append([ 0, regions_without_separators[:,:].shape[1] ,top, bot])
|
||||
|
||||
if right2left_readingorder:
|
||||
peaks_neg_tot_tables_new = []
|
||||
if len(peaks_neg_tot_tables)>=1:
|
||||
for peaks_tab_ind in peaks_neg_tot_tables:
|
||||
peaks_neg_tot_tables_ind = regions_without_separators.shape[1] - np.array(peaks_tab_ind)
|
||||
peaks_neg_tot_tables_ind = width_tot - np.array(peaks_tab_ind)
|
||||
peaks_neg_tot_tables_ind = list(peaks_neg_tot_tables_ind[::-1])
|
||||
peaks_neg_tot_tables_new.append(peaks_neg_tot_tables_ind)
|
||||
|
||||
for i in range(len(boxes)):
|
||||
x_start_new = regions_without_separators.shape[1] - boxes[i][1]
|
||||
x_end_new = regions_without_separators.shape[1] - boxes[i][0]
|
||||
x_start_new = width_tot - boxes[i][1]
|
||||
x_end_new = width_tot - boxes[i][0]
|
||||
boxes[i][0] = x_start_new
|
||||
boxes[i][1] = x_end_new
|
||||
peaks_neg_tot_tables = peaks_neg_tot_tables_new
|
||||
|
||||
# show final xy-cut
|
||||
# plt.imshow(regions_without_separators)
|
||||
# for xmin, xmax, ymin, ymax in boxes:
|
||||
# plt.gca().add_patch(patches.Rectangle((xmin, ymin), xmax - xmin, ymax - ymin,
|
||||
# fill=False, linewidth=1, edgecolor='r'))
|
||||
# plt.show()
|
||||
|
||||
logger.debug('exit return_boxes_of_images_by_order_of_reading_new')
|
||||
return boxes, peaks_neg_tot_tables
|
||||
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue