mirror of
https://github.com/qurator-spk/eynollah.git
synced 2026-02-20 16:32:03 +01:00
Merge a9496bbc70 into 586077fbcd
This commit is contained in:
commit
8162f64297
30 changed files with 3173 additions and 4200 deletions
278
docs/train.md
278
docs/train.md
|
|
@ -47,9 +47,9 @@ on how to generate the corresponding training dataset.
|
||||||
The following three tasks can all be accomplished using the code in the
|
The following three tasks can all be accomplished using the code in the
|
||||||
[`train`](https://github.com/qurator-spk/eynollah/tree/main/train) directory:
|
[`train`](https://github.com/qurator-spk/eynollah/tree/main/train) directory:
|
||||||
|
|
||||||
* generate training dataset
|
* [Generate training dataset](#generate-training-dataset)
|
||||||
* train a model
|
* [Train a model](#train-a-model)
|
||||||
* inference with the trained model
|
* [Inference with the trained model](#inference-with-the-trained-model)
|
||||||
|
|
||||||
## Training, evaluation and output
|
## Training, evaluation and output
|
||||||
|
|
||||||
|
|
@ -101,7 +101,7 @@ serve as labels. The enhancement model can be trained with this generated datase
|
||||||
For machine-based reading order, we aim to determine the reading priority between two sets of text regions. The model's
|
For machine-based reading order, we aim to determine the reading priority between two sets of text regions. The model's
|
||||||
input is a three-channel image: the first and last channels contain information about each of the two text regions,
|
input is a three-channel image: the first and last channels contain information about each of the two text regions,
|
||||||
while the middle channel encodes prominent layout elements necessary for reading order, such as separators and headers.
|
while the middle channel encodes prominent layout elements necessary for reading order, such as separators and headers.
|
||||||
To generate the training dataset, our script requires a page XML file that specifies the image layout with the correct
|
To generate the training dataset, our script requires a PAGE XML file that specifies the image layout with the correct
|
||||||
reading order.
|
reading order.
|
||||||
|
|
||||||
For output images, it is necessary to specify the width and height. Additionally, a minimum text region size can be set
|
For output images, it is necessary to specify the width and height. Additionally, a minimum text region size can be set
|
||||||
|
|
@ -120,8 +120,14 @@ eynollah-training generate-gt machine-based-reading-order \
|
||||||
|
|
||||||
### pagexml2label
|
### pagexml2label
|
||||||
|
|
||||||
pagexml2label is designed to generate labels from GT page XML files for various pixel-wise segmentation use cases,
|
`pagexml2label` is designed to generate labels from PAGE XML GT files for various pixel-wise segmentation use cases,
|
||||||
including 'layout,' 'textline,' 'printspace,' 'glyph,' and 'word' segmentation.
|
including:
|
||||||
|
- `printspace` (i.e. page frame),
|
||||||
|
- `layout` (i.e. regions),
|
||||||
|
- `textline`,
|
||||||
|
- `word`, and
|
||||||
|
- `glyph`.
|
||||||
|
|
||||||
To train a pixel-wise segmentation model, we require images along with their corresponding labels. Our training script
|
To train a pixel-wise segmentation model, we require images along with their corresponding labels. Our training script
|
||||||
expects a PNG image where each pixel corresponds to a label, represented by an integer. The background is always labeled
|
expects a PNG image where each pixel corresponds to a label, represented by an integer. The background is always labeled
|
||||||
as zero, while other elements are assigned different integers. For instance, if we have ground truth data with four
|
as zero, while other elements are assigned different integers. For instance, if we have ground truth data with four
|
||||||
|
|
@ -131,7 +137,7 @@ In binary segmentation scenarios such as textline or page extraction, the backgr
|
||||||
element is automatically encoded as 1 in the PNG label.
|
element is automatically encoded as 1 in the PNG label.
|
||||||
|
|
||||||
To specify the desired use case and the elements to be extracted in the PNG labels, a custom JSON file can be passed.
|
To specify the desired use case and the elements to be extracted in the PNG labels, a custom JSON file can be passed.
|
||||||
For example, in the case of 'textline' detection, the JSON file would resemble this:
|
For example, in the case of textline detection, the JSON contents could be this:
|
||||||
|
|
||||||
```yaml
|
```yaml
|
||||||
{
|
{
|
||||||
|
|
@ -139,61 +145,77 @@ For example, in the case of 'textline' detection, the JSON file would resemble t
|
||||||
}
|
}
|
||||||
```
|
```
|
||||||
|
|
||||||
In the case of layout segmentation a custom config json file can look like this:
|
In the case of layout segmentation, the config JSON file might look like this:
|
||||||
|
|
||||||
```yaml
|
```yaml
|
||||||
{
|
{
|
||||||
"use_case": "layout",
|
"use_case": "layout",
|
||||||
"textregions":{"rest_as_paragraph":1 , "drop-capital": 1, "header":2, "heading":2, "marginalia":3},
|
"textregions": {"rest_as_paragraph": 1, "drop-capital": 1, "header": 2, "heading": 2, "marginalia": 3},
|
||||||
"imageregion":4,
|
"imageregion": 4,
|
||||||
"separatorregion":5,
|
"separatorregion": 5,
|
||||||
"graphicregions" :{"rest_as_decoration":6 ,"stamp":7}
|
"graphicregions": {"rest_as_decoration": 6, "stamp": 7}
|
||||||
}
|
}
|
||||||
```
|
```
|
||||||
|
|
||||||
A possible custom config json file for layout segmentation where the "printspace" is a class:
|
The same example if `PrintSpace` (or `Border`) should be represented as a unique class:
|
||||||
|
|
||||||
```yaml
|
```yaml
|
||||||
{
|
{
|
||||||
"use_case": "layout",
|
"use_case": "layout",
|
||||||
"textregions":{"rest_as_paragraph":1 , "drop-capital": 1, "header":2, "heading":2, "marginalia":3},
|
"textregions": {"rest_as_paragraph": 1, "drop-capital": 1, "header": 2, "heading": 2, "marginalia": 3},
|
||||||
"imageregion":4,
|
"imageregion": 4,
|
||||||
"separatorregion":5,
|
"separatorregion": 5,
|
||||||
"graphicregions" :{"rest_as_decoration":6 ,"stamp":7}
|
"graphicregions": {"rest_as_decoration": 6, "stamp": 7}
|
||||||
"printspace_as_class_in_layout" : 8
|
"printspace_as_class_in_layout": 8
|
||||||
}
|
}
|
||||||
```
|
```
|
||||||
|
|
||||||
For the layout use case, it is beneficial to first understand the structure of the page XML file and its elements.
|
In the `layout` use-case, it is beneficial to first understand the structure of the PAGE XML file and its elements.
|
||||||
In a given image, the annotations of elements are recorded in a page XML file, including their contours and classes.
|
For a given page image, the visible segments are annotated in XML with their polygon coordinates and types.
|
||||||
For an image document, the known regions are 'textregion', 'separatorregion', 'imageregion', 'graphicregion',
|
On the region level, available segment types include `TextRegion`, `SeparatorRegion`, `ImageRegion`, `GraphicRegion`,
|
||||||
'noiseregion', and 'tableregion'.
|
`NoiseRegion` and `TableRegion`.
|
||||||
|
|
||||||
Text regions and graphic regions also have their own specific types. The known types for text regions are 'paragraph',
|
Moreover, text regions and graphic regions in particular are subdivided via `@type`:
|
||||||
'header', 'heading', 'marginalia', 'drop-capital', 'footnote', 'footnote-continued', 'signature-mark', 'page-number',
|
- The allowed subtypes for text regions are `paragraph`, `heading`, `marginalia`, `drop-capital`, `header`, `footnote`,
|
||||||
and 'catch-word'. The known types for graphic regions are 'handwritten-annotation', 'decoration', 'stamp', and
|
`footnote-continued`, `signature-mark`, `page-number` and `catch-word`.
|
||||||
'signature'.
|
- The known subtypes for graphic regions are `handwritten-annotation`, `decoration`, `stamp` and `signature`.
|
||||||
Since we don't know all types of text and graphic regions, unknown cases can arise. To handle these, we have defined
|
|
||||||
two additional types, "rest_as_paragraph" and "rest_as_decoration", to ensure that no unknown types are missed.
|
|
||||||
This way, users can extract all known types from the labels and be confident that no unknown types are overlooked.
|
|
||||||
|
|
||||||
In the custom JSON file shown above, "header" and "heading" are extracted as the same class, while "marginalia" is shown
|
These types and subtypes must be mapped to classes for the segmentation model. However, sometimes these fine-grained
|
||||||
as a different class. All other text region types, including "drop-capital," are grouped into the same class. For the
|
distinctions are not useful or the existing annotations are not very usable (too scarce or too unreliable).
|
||||||
graphic region, "stamp" has its own class, while all other types are classified together. "Image region" and "separator
|
In that case, instead of these subtypes with a specific mapping, they can be pooled together by using the two special
|
||||||
region" are also present in the label. However, other regions like "noise region" and "table region" will not be
|
types:
|
||||||
included in the label PNG file, even if they have information in the page XML files, as we chose not to include them.
|
- `rest_as_paragraph` (mapping missing TextRegion subtypes and `paragraph`)
|
||||||
|
- `rest_as_decoration` (mapping missing GraphicRegion subtypes and `decoration`)
|
||||||
|
|
||||||
|
(That way, users can extract all known types from the labels and be confident that no subtypes are overlooked.)
|
||||||
|
|
||||||
|
In the custom JSON example shown above, `header` and `heading` are extracted as the same class,
|
||||||
|
while `marginalia` is modelled as a different class. All other text region types, including `drop-capital`,
|
||||||
|
are grouped into the same class. For graphic regions, `stamp` has its own class, while all other types
|
||||||
|
are classified together. `ImageRegion` and `SeparatorRegion` will also represented with a class label in the
|
||||||
|
training data. However, other regions like `NoiseRegion` or `TableRegion` will not be included in the PNG files,
|
||||||
|
even if they were present in the PAGE XML.
|
||||||
|
|
||||||
|
The tool expects various command-line options:
|
||||||
|
|
||||||
```sh
|
```sh
|
||||||
eynollah-training generate-gt pagexml2label \
|
eynollah-training generate-gt pagexml2label \
|
||||||
-dx "dir of GT xml files" \
|
-dx "dir of input PAGE XML files" \
|
||||||
-do "dir where output label png files will be written" \
|
-do "dir of output label PNG files" \
|
||||||
-cfg "custom config json file" \
|
-cfg "custom config JSON file" \
|
||||||
-to "output type which has 2d and 3d. 2d is used for training and 3d is just to visualise the labels"
|
-to "output type (2d or 3d)"
|
||||||
```
|
```
|
||||||
|
|
||||||
We have also defined an artificial class that can be added to the boundary of text region types or text lines. This key
|
As output type, use
|
||||||
is called "artificial_class_on_boundary." If users want to apply this to certain text regions in the layout use case,
|
- `2d` for training,
|
||||||
the example JSON config file should look like this:
|
- `3d` to just visualise the labels.
|
||||||
|
|
||||||
|
We have also defined an artificial class that can be added to (rendered around) the boundary
|
||||||
|
of text region types or text lines in order to make separation of neighbouring segments more
|
||||||
|
reliable. The key is called `artificial_class_on_boundary`, and it takes a list of text region
|
||||||
|
types to be applied to.
|
||||||
|
|
||||||
|
Our example JSON config file could then look like this:
|
||||||
|
|
||||||
```yaml
|
```yaml
|
||||||
{
|
{
|
||||||
|
|
@ -215,14 +237,15 @@ the example JSON config file should look like this:
|
||||||
}
|
}
|
||||||
```
|
```
|
||||||
|
|
||||||
This implies that the artificial class label, denoted by 7, will be present on PNG files and will only be added to the
|
This implies that the artificial class label (denoted by 7) will be present in the generated PNG files
|
||||||
elements labeled as "paragraph," "header," "heading," and "marginalia."
|
and will only be added around segments labeled `paragraph`, `header`, `heading` or `marginalia`. (This
|
||||||
|
class will be handled specially during decoding at inference, and not show up in final results.)
|
||||||
|
|
||||||
For "textline", "word", and "glyph", the artificial class on the boundaries will be activated only if the
|
For `printspace`, `textline`, `word`, and `glyph` segmentation use-cases, there is no `artificial_class_on_boundary` key,
|
||||||
"artificial_class_label" key is specified in the config file. Its value should be set as 2 since these elements
|
but `artificial_class_label` is available. If specified in the config file, then its value should be set at 2, because
|
||||||
represent binary cases. For example, if the background and textline are denoted as 0 and 1 respectively, then the
|
these elements represent binary classification problems (with background represented as 0, and segments as 1, respectively).
|
||||||
artificial class should be assigned the value 2. The example JSON config file should look like this for "textline" use
|
|
||||||
case:
|
For example, the JSON config for textline detection could look as follows:
|
||||||
|
|
||||||
```yaml
|
```yaml
|
||||||
{
|
{
|
||||||
|
|
@ -231,33 +254,33 @@ case:
|
||||||
}
|
}
|
||||||
```
|
```
|
||||||
|
|
||||||
If the coordinates of "PrintSpace" or "Border" are present in the page XML ground truth files, and the user wishes to
|
If the coordinates of `PrintSpace` (or `Border`) are present in the PAGE XML ground truth files,
|
||||||
crop only the print space area, this can be achieved by activating the "-ps" argument. However, it should be noted that
|
and one wishes to crop images to only cover the print space bounding box, this can be achieved
|
||||||
in this scenario, since cropping will be applied to the label files, the directory of the original images must be
|
by passing the `-ps` option. Note that in this scenario, the directory of the original images
|
||||||
provided to ensure that they are cropped in sync with the labels. This ensures that the correct images and labels
|
must also be provided, to ensure that the images are cropped in sync with the labels. The command
|
||||||
required for training are obtained. The command should resemble the following:
|
line would then resemble this:
|
||||||
|
|
||||||
```sh
|
```sh
|
||||||
eynollah-training generate-gt pagexml2label \
|
eynollah-training generate-gt pagexml2label \
|
||||||
-dx "dir of GT xml files" \
|
-dx "dir of input PAGE XML files" \
|
||||||
-do "dir where output label png files will be written" \
|
-do "dir of output label PNG files" \
|
||||||
-cfg "custom config json file" \
|
-cfg "custom config JSON file" \
|
||||||
-to "output type which has 2d and 3d. 2d is used for training and 3d is just to visualise the labels" \
|
-to "output type (2d or 3d)" \
|
||||||
-ps \
|
-ps \
|
||||||
-di "dir where the org images are located" \
|
-di "dir of input original images" \
|
||||||
-doi "dir where the cropped output images will be written"
|
-doi "dir of output cropped images"
|
||||||
```
|
```
|
||||||
|
|
||||||
## Train a model
|
## Train a model
|
||||||
|
|
||||||
### classification
|
### classification
|
||||||
|
|
||||||
For the classification use case, we haven't provided a ground truth generator, as it's unnecessary. For classification,
|
For the image classification use-case, we have not provided a ground truth generator, as it is unnecessary.
|
||||||
all we require is a training directory with subdirectories, each containing images of its respective classes. We need
|
All we require is a training directory with subdirectories, each containing images of its respective classes. We need
|
||||||
separate directories for training and evaluation, and the class names (subdirectories) must be consistent across both
|
separate directories for training and evaluation, and the class names (subdirectories) must be consistent across both
|
||||||
directories. Additionally, the class names should be specified in the config JSON file, as shown in the following
|
directories. Additionally, the class names should be specified in the config JSON file, as shown in the following
|
||||||
example. If, for instance, we aim to classify "apple" and "orange," with a total of 2 classes, the
|
example. If, for instance, we aim to classify "apple" and "orange," with a total of 2 classes, the
|
||||||
"classification_classes_name" key in the config file should appear as follows:
|
`classification_classes_name` key in the config file should appear as follows:
|
||||||
|
|
||||||
```yaml
|
```yaml
|
||||||
{
|
{
|
||||||
|
|
@ -279,7 +302,7 @@ example. If, for instance, we aim to classify "apple" and "orange," with a total
|
||||||
}
|
}
|
||||||
```
|
```
|
||||||
|
|
||||||
The "dir_train" should be like this:
|
Then `dir_train` should be like this:
|
||||||
|
|
||||||
```
|
```
|
||||||
.
|
.
|
||||||
|
|
@ -288,7 +311,7 @@ The "dir_train" should be like this:
|
||||||
└── orange # directory of images for orange class
|
└── orange # directory of images for orange class
|
||||||
```
|
```
|
||||||
|
|
||||||
And the "dir_eval" the same structure as train directory:
|
And `dir_eval` analogously:
|
||||||
|
|
||||||
```
|
```
|
||||||
.
|
.
|
||||||
|
|
@ -348,7 +371,7 @@ And the "dir_eval" the same structure as train directory:
|
||||||
└── labels # directory of labels
|
└── labels # directory of labels
|
||||||
```
|
```
|
||||||
|
|
||||||
The classification model can be trained like the classification case command line.
|
The reading-order model can be trained like the classification case command line.
|
||||||
|
|
||||||
### Segmentation (Textline, Binarization, Page extraction and layout) and enhancement
|
### Segmentation (Textline, Binarization, Page extraction and layout) and enhancement
|
||||||
|
|
||||||
|
|
@ -358,51 +381,17 @@ The following parameter configuration can be applied to all segmentation use cas
|
||||||
its sub-parameters, and continued training are defined only for segmentation use cases and enhancements, not for
|
its sub-parameters, and continued training are defined only for segmentation use cases and enhancements, not for
|
||||||
classification and machine-based reading order, as you can see in their example config files.
|
classification and machine-based reading order, as you can see in their example config files.
|
||||||
|
|
||||||
* `backbone_type`: For segmentation tasks (such as text line, binarization, and layout detection) and enhancement, we
|
* `task`: The task parameter must be one of the following values:
|
||||||
offer two backbone options: a "nontransformer" and a "transformer" backbone. For the "transformer" backbone, we first
|
- `binarization`,
|
||||||
apply a CNN followed by a transformer. In contrast, the "nontransformer" backbone utilizes only a CNN ResNet-50.
|
- `enhancement`,
|
||||||
* `task`: The task parameter can have values such as "segmentation", "enhancement", "classification", and "reading_order".
|
- `segmentation`,
|
||||||
* `patches`: If you want to break input images into smaller patches (input size of the model) you need to set this
|
- `classification`,
|
||||||
* parameter to `true`. In the case that the model should see the image once, like page extraction, patches should be
|
- `reading_order`.
|
||||||
set to ``false``.
|
* `backbone_type`: For the tasks `segmentation` (such as text line, and region layout detection),
|
||||||
* `n_batch`: Number of batches at each iteration.
|
`binarization` and `enhancement`, we offer two backbone options:
|
||||||
* `n_classes`: Number of classes. In the case of binary classification this should be 2. In the case of reading_order it
|
- `nontransformer` (only a CNN ResNet-50).
|
||||||
should set to 1. And for the case of layout detection just the unique number of classes should be given.
|
- `transformer` (first apply a CNN, followed by a transformer)
|
||||||
* `n_epochs`: Number of epochs.
|
* `transformer_cnn_first`: Whether to apply the CNN first (followed by the transformer) when using `transformer` backbone.
|
||||||
* `input_height`: This indicates the height of model's input.
|
|
||||||
* `input_width`: This indicates the width of model's input.
|
|
||||||
* `weight_decay`: Weight decay of l2 regularization of model layers.
|
|
||||||
* `pretraining`: Set to `true` to load pretrained weights of ResNet50 encoder. The downloaded weights should be saved
|
|
||||||
in a folder named "pretrained_model" in the same directory of "train.py" script.
|
|
||||||
* `augmentation`: If you want to apply any kind of augmentation this parameter should first set to `true`.
|
|
||||||
* `flip_aug`: If `true`, different types of filp will be applied on image. Type of flips is given with "flip_index" parameter.
|
|
||||||
* `blur_aug`: If `true`, different types of blurring will be applied on image. Type of blurrings is given with "blur_k" parameter.
|
|
||||||
* `scaling`: If `true`, scaling will be applied on image. Scale of scaling is given with "scales" parameter.
|
|
||||||
* `degrading`: If `true`, degrading will be applied to the image. The amount of degrading is defined with "degrade_scales" parameter.
|
|
||||||
* `brightening`: If `true`, brightening will be applied to the image. The amount of brightening is defined with "brightness" parameter.
|
|
||||||
* `rotation_not_90`: If `true`, rotation (not 90 degree) will be applied on image. Rotation angles are given with "thetha" parameter.
|
|
||||||
* `rotation`: If `true`, 90 degree rotation will be applied on image.
|
|
||||||
* `binarization`: If `true`,Otsu thresholding will be applied to augment the input data with binarized images.
|
|
||||||
* `scaling_bluring`: If `true`, combination of scaling and blurring will be applied on image.
|
|
||||||
* `scaling_binarization`: If `true`, combination of scaling and binarization will be applied on image.
|
|
||||||
* `scaling_flip`: If `true`, combination of scaling and flip will be applied on image.
|
|
||||||
* `flip_index`: Type of flips.
|
|
||||||
* `blur_k`: Type of blurrings.
|
|
||||||
* `scales`: Scales of scaling.
|
|
||||||
* `brightness`: The amount of brightenings.
|
|
||||||
* `thetha`: Rotation angles.
|
|
||||||
* `degrade_scales`: The amount of degradings.
|
|
||||||
* `continue_training`: If `true`, it means that you have already trained a model and you would like to continue the
|
|
||||||
training. So it is needed to providethe dir of trained model with "dir_of_start_model" and index for naming
|
|
||||||
themodels. For example if you have already trained for 3 epochs then your lastindex is 2 and if you want to continue
|
|
||||||
from model_1.h5, you can set `index_start` to 3 to start naming model with index 3.
|
|
||||||
* `weighted_loss`: If `true`, this means that you want to apply weighted categorical_crossentropy as loss fucntion. Be carefull if you set to `true`the parameter "is_loss_soft_dice" should be ``false``
|
|
||||||
* `data_is_provided`: If you have already provided the input data you can set this to `true`. Be sure that the train
|
|
||||||
and eval data are in"dir_output".Since when once we provide training data we resize and augmentthem and then wewrite
|
|
||||||
them in sub-directories train and eval in "dir_output".
|
|
||||||
* `dir_train`: This is the directory of "images" and "labels" (dir_train should include two subdirectories with names of images and labels ) for raw images and labels. Namely they are not prepared (not resized and not augmented) yet for training the model. When we run this tool these raw data will be transformed to suitable size needed for the model and they will be written in "dir_output" in train and eval directories. Each of train and eval include "images" and "labels" sub-directories.
|
|
||||||
* `index_start`: Starting index for saved models in the case that "continue_training" is `true`.
|
|
||||||
* `dir_of_start_model`: Directory containing pretrained model to continue training the model in the case that "continue_training" is `true`.
|
|
||||||
* `transformer_num_patches_xy`: Number of patches for vision transformer in x and y direction respectively.
|
* `transformer_num_patches_xy`: Number of patches for vision transformer in x and y direction respectively.
|
||||||
* `transformer_patchsize_x`: Patch size of vision transformer patches in x direction.
|
* `transformer_patchsize_x`: Patch size of vision transformer patches in x direction.
|
||||||
* `transformer_patchsize_y`: Patch size of vision transformer patches in y direction.
|
* `transformer_patchsize_y`: Patch size of vision transformer patches in y direction.
|
||||||
|
|
@ -410,11 +399,63 @@ classification and machine-based reading order, as you can see in their example
|
||||||
* `transformer_mlp_head_units`: Transformer Multilayer Perceptron (MLP) head units. Default value is [128, 64].
|
* `transformer_mlp_head_units`: Transformer Multilayer Perceptron (MLP) head units. Default value is [128, 64].
|
||||||
* `transformer_layers`: transformer layers. Default value is 8.
|
* `transformer_layers`: transformer layers. Default value is 8.
|
||||||
* `transformer_num_heads`: Transformer number of heads. Default value is 4.
|
* `transformer_num_heads`: Transformer number of heads. Default value is 4.
|
||||||
* `transformer_cnn_first`: We have two types of vision transformers. In one type, a CNN is applied first, followed by a transformer. In the other type, this order is reversed. If transformer_cnn_first is true, it means the CNN will be applied before the transformer. Default value is true.
|
* `patches`: Whether to break up (tile) input images into smaller patches (input size of the model).
|
||||||
|
If `false`, the model will see the image once (resized to the input size of the model).
|
||||||
|
Should be set to `false` for cases like page extraction.
|
||||||
|
* `n_batch`: Number of batches at each iteration.
|
||||||
|
* `n_classes`: Number of classes. In the case of binary classification this should be 2. In the case of reading_order it
|
||||||
|
should set to 1. And for the case of layout detection just the unique number of classes should be given.
|
||||||
|
* `n_epochs`: Number of epochs (iterations over the data) to train.
|
||||||
|
* `input_height`: the image height for the model's input.
|
||||||
|
* `input_width`: the image width for the model's input.
|
||||||
|
* `weight_decay`: Weight decay of l2 regularization of model layers.
|
||||||
|
* `weighted_loss`: If `true`, this means that you want to apply weighted categorical crossentropy as loss function.
|
||||||
|
(Mutually exclusive with `is_loss_soft_dice`, and only applies for `segmentation` and `binarization` tasks.)
|
||||||
|
* `pretraining`: Set to `true` to (download and) initialise pretrained weights of ResNet50 encoder.
|
||||||
|
* `dir_train`: Path to directory of raw training data (as extracted via `pagexml2labels`, i.e. with subdirectories
|
||||||
|
`images` and `labels` for input images and output labels.
|
||||||
|
(These are not prepared for training the model, yet. Upon first run, the raw data will be transformed to suitable size
|
||||||
|
needed for the model, and written in `dir_output` under `train` and `eval` subdirectories. See `data_is_provided`.)
|
||||||
|
* `dir_eval`: Ditto for raw evaluation data.
|
||||||
|
* `dir_output`: Directory to write model checkpoints, logs (for Tensorboard) and precomputed images to.
|
||||||
|
* `data_is_provided`: If you have already trained at least one complete epoch (using the same data settings) before,
|
||||||
|
you can set this to `true` to avoid computing the resized / patched / augmented image files again.
|
||||||
|
Be sure that there are subdirectories `train` and `eval` data are in `dir_output` (each with subdirectories `images`
|
||||||
|
and `labels`, respectively).
|
||||||
|
* `continue_training`: If `true`, continue training a model checkpoint from a previous run.
|
||||||
|
This requires providing the directory of the model checkpoint to load via `dir_of_start_model`
|
||||||
|
and setting `index_start` counter for naming new checkpoints.
|
||||||
|
For example if you have already trained for 3 epochs, then your last index is 2, so if you want
|
||||||
|
to continue with `model_04`, `model_05` etc., set `index_start=3`.
|
||||||
|
* `index_start`: Starting index for saving models in the case that `continue_training` is `true`.
|
||||||
|
(Existing checkpoints above this will be overwritten.)
|
||||||
|
* `dir_of_start_model`: Directory containing existing model checkpoint to initialise model weights from when `continue_training=true`.
|
||||||
|
(Can be an epoch-interval checkpoint, or batch-interval checkpoint from `save_interval`.)
|
||||||
|
* `augmentation`: If you want to apply any kind of augmentation this parameter should first set to `true`.
|
||||||
|
The remaining settings pertain to that...
|
||||||
|
* `flip_aug`: If `true`, different types of flipping over the image arrays. Requires `flip_index` parameter.
|
||||||
|
* `flip_index`: List of flip codes (as in `cv2.flip`, i.e. 0 for vertical, positive for horizontal shift, negative for vertical and horizontal shift).
|
||||||
|
* `blur_aug`: If `true`, different types of blurring will be applied on image. Requires `blur_k` parameter.
|
||||||
|
* `blur_k`: Method of blurring (`gauss`, `median` or `blur`).
|
||||||
|
* `scaling`: If `true`, scaling will be applied on image. Requires `scales` parameter.
|
||||||
|
* `scales`: List of scale factors for scaling.
|
||||||
|
* `scaling_bluring`: If `true`, combination of scaling and blurring will be applied on image.
|
||||||
|
* `scaling_binarization`: If `true`, combination of scaling and binarization will be applied on image.
|
||||||
|
* `scaling_flip`: If `true`, combination of scaling and flip will be applied on image.
|
||||||
|
* `degrading`: If `true`, degrading will be applied to the image. Requires `degrade_scales` parameter.
|
||||||
|
* `degrade_scales`: List of intensity factors for degrading.
|
||||||
|
* `brightening`: If `true`, brightening will be applied to the image. Requires `brightness` parameter.
|
||||||
|
* `brightness`: List of intensity factors for brightening.
|
||||||
|
* `binarization`: If `true`, Otsu thresholding will be applied to augment the input data with binarized images.
|
||||||
|
* `dir_img_bin`: With `binarization`, use this directory to read precomputed binarized images instead of ad-hoc Otsu.
|
||||||
|
(Base names should correspond to the files in `dir_train/images`.)
|
||||||
|
* `rotation`: If `true`, 90° rotation will be applied on images.
|
||||||
|
* `rotation_not_90`: If `true`, random rotation (other than 90°) will be applied on image. Requires `thetha` parameter.
|
||||||
|
* `thetha`: List of rotation angles (in degrees).
|
||||||
|
|
||||||
In the case of segmentation and enhancement the train and evaluation directory should be as following.
|
In case of segmentation and enhancement the train and evaluation data should be organised as follows.
|
||||||
|
|
||||||
The "dir_train" should be like this:
|
The "dir_train" directory should be like this:
|
||||||
|
|
||||||
```
|
```
|
||||||
.
|
.
|
||||||
|
|
@ -432,11 +473,12 @@ And the "dir_eval" the same structure as train directory:
|
||||||
└── labels # directory of labels
|
└── labels # directory of labels
|
||||||
```
|
```
|
||||||
|
|
||||||
After configuring the JSON file for segmentation or enhancement, training can be initiated by running the following
|
After configuring the JSON file for segmentation or enhancement,
|
||||||
command, similar to the process for classification and reading order:
|
training can be initiated by running the following command line,
|
||||||
|
similar to classification and reading-order model training:
|
||||||
|
|
||||||
```
|
```sh
|
||||||
eynollah-training train with config_classification.json`
|
eynollah-training train with config_classification.json
|
||||||
```
|
```
|
||||||
|
|
||||||
#### Binarization
|
#### Binarization
|
||||||
|
|
@ -728,7 +770,7 @@ This will straightforwardly return the class of the image.
|
||||||
|
|
||||||
### machine based reading order
|
### machine based reading order
|
||||||
|
|
||||||
To infer the reading order using a reading order model, we need a page XML file containing layout information but
|
To infer the reading order using a reading order model, we need a PAGE XML file containing layout information but
|
||||||
without the reading order. We simply need to provide the model directory, the XML file, and the output directory. The
|
without the reading order. We simply need to provide the model directory, the XML file, and the output directory. The
|
||||||
new XML file with the added reading order will be written to the output directory with the same name. We need to run:
|
new XML file with the added reading order will be written to the output directory with the same name. We need to run:
|
||||||
|
|
||||||
|
|
|
||||||
|
|
@ -1,8 +1,9 @@
|
||||||
# ocrd includes opencv, numpy, shapely, click
|
# ocrd includes opencv, numpy, shapely, click
|
||||||
ocrd >= 3.3.0
|
ocrd >= 3.3.0
|
||||||
numpy <1.24.0
|
numpy < 2.0
|
||||||
scikit-learn >= 0.23.2
|
scikit-learn >= 0.23.2
|
||||||
tensorflow < 2.13
|
tensorflow
|
||||||
|
tf-keras # avoid keras 3 (also needs TF_USE_LEGACY_KERAS=1)
|
||||||
numba <= 0.58.1
|
numba <= 0.58.1
|
||||||
scikit-image
|
scikit-image
|
||||||
biopython
|
biopython
|
||||||
|
|
|
||||||
|
|
@ -2,14 +2,12 @@
|
||||||
# this must be the first import of the CLI!
|
# this must be the first import of the CLI!
|
||||||
from ..eynollah_imports import imported_libs
|
from ..eynollah_imports import imported_libs
|
||||||
|
|
||||||
from .cli_models import models_cli
|
|
||||||
from .cli_binarize import binarize_cli
|
|
||||||
|
|
||||||
from .cli import main
|
from .cli import main
|
||||||
from .cli_binarize import binarize_cli
|
from .cli_binarize import binarize_cli
|
||||||
from .cli_enhance import enhance_cli
|
from .cli_enhance import enhance_cli
|
||||||
from .cli_extract_images import extract_images_cli
|
from .cli_extract_images import extract_images_cli
|
||||||
from .cli_layout import layout_cli
|
from .cli_layout import layout_cli
|
||||||
|
from .cli_models import models_cli
|
||||||
from .cli_ocr import ocr_cli
|
from .cli_ocr import ocr_cli
|
||||||
from .cli_readingorder import readingorder_cli
|
from .cli_readingorder import readingorder_cli
|
||||||
|
|
||||||
|
|
|
||||||
|
|
@ -21,13 +21,20 @@ import click
|
||||||
type=click.Path(file_okay=True, dir_okay=True),
|
type=click.Path(file_okay=True, dir_okay=True),
|
||||||
required=True,
|
required=True,
|
||||||
)
|
)
|
||||||
|
@click.option(
|
||||||
|
"--overwrite",
|
||||||
|
"-O",
|
||||||
|
help="overwrite (instead of skipping) if output xml exists",
|
||||||
|
is_flag=True,
|
||||||
|
)
|
||||||
@click.pass_context
|
@click.pass_context
|
||||||
def binarize_cli(
|
def binarize_cli(
|
||||||
ctx,
|
ctx,
|
||||||
patches,
|
patches,
|
||||||
input_image,
|
input_image,
|
||||||
dir_in,
|
dir_in,
|
||||||
output,
|
output,
|
||||||
|
overwrite,
|
||||||
):
|
):
|
||||||
"""
|
"""
|
||||||
Binarize images with a ML model
|
Binarize images with a ML model
|
||||||
|
|
@ -39,6 +46,7 @@ def binarize_cli(
|
||||||
image_path=input_image,
|
image_path=input_image,
|
||||||
use_patches=patches,
|
use_patches=patches,
|
||||||
output=output,
|
output=output,
|
||||||
dir_in=dir_in
|
dir_in=dir_in,
|
||||||
|
overwrite=overwrite
|
||||||
)
|
)
|
||||||
|
|
||||||
|
|
|
||||||
|
|
@ -116,19 +116,19 @@ class EynollahImageExtractor(Eynollah):
|
||||||
prediction_regions_org = prediction_regions_org[page_coord[0] : page_coord[1], page_coord[2] : page_coord[3]]
|
prediction_regions_org = prediction_regions_org[page_coord[0] : page_coord[1], page_coord[2] : page_coord[3]]
|
||||||
prediction_regions_org=prediction_regions_org[:,:,0]
|
prediction_regions_org=prediction_regions_org[:,:,0]
|
||||||
|
|
||||||
mask_lines_only = (prediction_regions_org[:,:] ==3)*1
|
mask_seps_only = (prediction_regions_org[:,:] ==3)*1
|
||||||
mask_texts_only = (prediction_regions_org[:,:] ==1)*1
|
mask_texts_only = (prediction_regions_org[:,:] ==1)*1
|
||||||
mask_images_only=(prediction_regions_org[:,:] ==2)*1
|
mask_images_only=(prediction_regions_org[:,:] ==2)*1
|
||||||
|
|
||||||
polygons_seplines, hir_seplines = return_contours_of_image(mask_lines_only)
|
polygons_seplines, hir_seplines = return_contours_of_image(mask_seps_only)
|
||||||
polygons_seplines = filter_contours_area_of_image(
|
polygons_seplines = filter_contours_area_of_image(
|
||||||
mask_lines_only, polygons_seplines, hir_seplines, max_area=1, min_area=0.00001, dilate=1)
|
mask_seps_only, polygons_seplines, hir_seplines, max_area=1, min_area=0.00001, dilate=1)
|
||||||
|
|
||||||
polygons_of_only_texts = return_contours_of_interested_region(mask_texts_only,1,0.00001)
|
polygons_of_only_texts = return_contours_of_interested_region(mask_texts_only,1,0.00001)
|
||||||
polygons_of_only_lines = return_contours_of_interested_region(mask_lines_only,1,0.00001)
|
polygons_of_only_seps = return_contours_of_interested_region(mask_seps_only,1,0.00001)
|
||||||
|
|
||||||
text_regions_p_true = np.zeros(prediction_regions_org.shape)
|
text_regions_p_true = np.zeros(prediction_regions_org.shape)
|
||||||
text_regions_p_true = cv2.fillPoly(text_regions_p_true, pts = polygons_of_only_lines, color=(3,3,3))
|
text_regions_p_true = cv2.fillPoly(text_regions_p_true, pts = polygons_of_only_seps, color=(3,3,3))
|
||||||
|
|
||||||
text_regions_p_true[:,:][mask_images_only[:,:] == 1] = 2
|
text_regions_p_true[:,:][mask_images_only[:,:] == 1] = 2
|
||||||
text_regions_p_true = cv2.fillPoly(text_regions_p_true, pts=polygons_of_only_texts, color=(1,1,1))
|
text_regions_p_true = cv2.fillPoly(text_regions_p_true, pts=polygons_of_only_texts, color=(1,1,1))
|
||||||
|
|
@ -255,24 +255,24 @@ class EynollahImageExtractor(Eynollah):
|
||||||
self.get_regions_light_v_extract_only_images(img_res, num_col_classifier)
|
self.get_regions_light_v_extract_only_images(img_res, num_col_classifier)
|
||||||
|
|
||||||
pcgts = self.writer.build_pagexml_no_full_layout(
|
pcgts = self.writer.build_pagexml_no_full_layout(
|
||||||
found_polygons_text_region=[],
|
found_polygons_text_region=[],
|
||||||
page_coord=page_coord,
|
page_coord=page_coord,
|
||||||
order_of_texts=[],
|
order_of_texts=[],
|
||||||
all_found_textline_polygons=[],
|
all_found_textline_polygons=[],
|
||||||
all_box_coord=[],
|
all_box_coord=[],
|
||||||
found_polygons_text_region_img=polygons_of_images,
|
found_polygons_text_region_img=polygons_of_images,
|
||||||
found_polygons_marginals_left=[],
|
found_polygons_marginals_left=[],
|
||||||
found_polygons_marginals_right=[],
|
found_polygons_marginals_right=[],
|
||||||
all_found_textline_polygons_marginals_left=[],
|
all_found_textline_polygons_marginals_left=[],
|
||||||
all_found_textline_polygons_marginals_right=[],
|
all_found_textline_polygons_marginals_right=[],
|
||||||
all_box_coord_marginals_left=[],
|
all_box_coord_marginals_left=[],
|
||||||
all_box_coord_marginals_right=[],
|
all_box_coord_marginals_right=[],
|
||||||
slopes=[],
|
slopes=[],
|
||||||
slopes_marginals_left=[],
|
slopes_marginals_left=[],
|
||||||
slopes_marginals_right=[],
|
slopes_marginals_right=[],
|
||||||
cont_page=cont_page,
|
cont_page=cont_page,
|
||||||
polygons_seplines=[],
|
polygons_seplines=[],
|
||||||
found_polygons_tables=[],
|
found_polygons_tables=[],
|
||||||
)
|
)
|
||||||
if self.plotter:
|
if self.plotter:
|
||||||
self.plotter.write_images_into_directory(polygons_of_images, image_page)
|
self.plotter.write_images_into_directory(polygons_of_images, image_page)
|
||||||
|
|
|
||||||
File diff suppressed because it is too large
Load diff
|
|
@ -1,6 +1,9 @@
|
||||||
"""
|
"""
|
||||||
Load libraries with possible race conditions once. This must be imported as the first module of eynollah.
|
Load libraries with possible race conditions once. This must be imported as the first module of eynollah.
|
||||||
"""
|
"""
|
||||||
|
import os
|
||||||
|
os.environ['TF_USE_LEGACY_KERAS'] = '1' # avoid Keras 3 after TF 2.15
|
||||||
|
|
||||||
from ocrd_utils import tf_disable_interactive_logs
|
from ocrd_utils import tf_disable_interactive_logs
|
||||||
from torch import *
|
from torch import *
|
||||||
tf_disable_interactive_logs()
|
tf_disable_interactive_logs()
|
||||||
|
|
|
||||||
|
|
@ -15,11 +15,13 @@ from pathlib import Path
|
||||||
import gc
|
import gc
|
||||||
|
|
||||||
import cv2
|
import cv2
|
||||||
from keras.models import Model
|
|
||||||
import numpy as np
|
import numpy as np
|
||||||
import tensorflow as tf # type: ignore
|
|
||||||
from skimage.morphology import skeletonize
|
from skimage.morphology import skeletonize
|
||||||
|
|
||||||
|
os.environ['TF_USE_LEGACY_KERAS'] = '1' # avoid Keras 3 after TF 2.15
|
||||||
|
import tensorflow as tf # type: ignore
|
||||||
|
from tensorflow.keras.models import Model
|
||||||
|
|
||||||
from .model_zoo import EynollahModelZoo
|
from .model_zoo import EynollahModelZoo
|
||||||
from .utils.resize import resize_image
|
from .utils.resize import resize_image
|
||||||
from .utils.pil_cv2 import pil2cv
|
from .utils.pil_cv2 import pil2cv
|
||||||
|
|
|
||||||
|
|
@ -14,10 +14,12 @@ from pathlib import Path
|
||||||
import xml.etree.ElementTree as ET
|
import xml.etree.ElementTree as ET
|
||||||
|
|
||||||
import cv2
|
import cv2
|
||||||
from keras.models import Model
|
|
||||||
import numpy as np
|
import numpy as np
|
||||||
import statistics
|
import statistics
|
||||||
|
|
||||||
|
os.environ['TF_USE_LEGACY_KERAS'] = '1' # avoid Keras 3 after TF 2.15
|
||||||
import tensorflow as tf
|
import tensorflow as tf
|
||||||
|
from tensorflow.keras.models import Model
|
||||||
|
|
||||||
from .model_zoo import EynollahModelZoo
|
from .model_zoo import EynollahModelZoo
|
||||||
from .utils.resize import resize_image
|
from .utils.resize import resize_image
|
||||||
|
|
|
||||||
|
|
@ -1,16 +1,19 @@
|
||||||
|
import os
|
||||||
import json
|
import json
|
||||||
import logging
|
import logging
|
||||||
from copy import deepcopy
|
from copy import deepcopy
|
||||||
from pathlib import Path
|
from pathlib import Path
|
||||||
from typing import Dict, List, Optional, Tuple, Type, Union
|
from typing import Dict, List, Optional, Tuple, Type, Union
|
||||||
|
|
||||||
|
os.environ['TF_USE_LEGACY_KERAS'] = '1' # avoid Keras 3 after TF 2.15
|
||||||
from ocrd_utils import tf_disable_interactive_logs
|
from ocrd_utils import tf_disable_interactive_logs
|
||||||
tf_disable_interactive_logs()
|
tf_disable_interactive_logs()
|
||||||
|
|
||||||
from keras.layers import StringLookup
|
from tensorflow.keras.layers import StringLookup
|
||||||
from keras.models import Model as KerasModel
|
from tensorflow.keras.models import Model as KerasModel
|
||||||
from keras.models import load_model
|
from tensorflow.keras.models import load_model
|
||||||
from tabulate import tabulate
|
from tabulate import tabulate
|
||||||
|
|
||||||
from ..patch_encoder import PatchEncoder, Patches
|
from ..patch_encoder import PatchEncoder, Patches
|
||||||
from .specs import EynollahModelSpecSet
|
from .specs import EynollahModelSpecSet
|
||||||
from .default_specs import DEFAULT_MODEL_SPECS
|
from .default_specs import DEFAULT_MODEL_SPECS
|
||||||
|
|
|
||||||
|
|
@ -28,7 +28,19 @@
|
||||||
"full_layout": {
|
"full_layout": {
|
||||||
"type": "boolean",
|
"type": "boolean",
|
||||||
"default": true,
|
"default": true,
|
||||||
"description": "Try to detect all element subtypes, including drop-caps and headings"
|
"description": "Try to detect all region subtypes, including drop-capital and heading"
|
||||||
|
},
|
||||||
|
"light_version": {
|
||||||
|
"type": "boolean",
|
||||||
|
"default": true,
|
||||||
|
"enum": [true],
|
||||||
|
"description": "ignored (only for backwards-compatibility)"
|
||||||
|
},
|
||||||
|
"textline_light": {
|
||||||
|
"type": "boolean",
|
||||||
|
"default": true,
|
||||||
|
"enum": [true],
|
||||||
|
"description": "ignored (only for backwards-compatibility)"
|
||||||
},
|
},
|
||||||
"tables": {
|
"tables": {
|
||||||
"type": "boolean",
|
"type": "boolean",
|
||||||
|
|
@ -38,12 +50,12 @@
|
||||||
"curved_line": {
|
"curved_line": {
|
||||||
"type": "boolean",
|
"type": "boolean",
|
||||||
"default": false,
|
"default": false,
|
||||||
"description": "try to return contour of textlines instead of just rectangle bounding box. Needs more processing time"
|
"description": "retrieve textline polygons independent of each other (needs more processing time)"
|
||||||
},
|
},
|
||||||
"ignore_page_extraction": {
|
"ignore_page_extraction": {
|
||||||
"type": "boolean",
|
"type": "boolean",
|
||||||
"default": false,
|
"default": false,
|
||||||
"description": "if this parameter set to true, this tool would ignore page extraction"
|
"description": "if true, do not attempt page frame detection (cropping)"
|
||||||
},
|
},
|
||||||
"allow_scaling": {
|
"allow_scaling": {
|
||||||
"type": "boolean",
|
"type": "boolean",
|
||||||
|
|
@ -58,7 +70,7 @@
|
||||||
"right_to_left": {
|
"right_to_left": {
|
||||||
"type": "boolean",
|
"type": "boolean",
|
||||||
"default": false,
|
"default": false,
|
||||||
"description": "if this parameter set to true, this tool will extract right-to-left reading order."
|
"description": "if true, return reading order in right-to-left reading direction."
|
||||||
},
|
},
|
||||||
"headers_off": {
|
"headers_off": {
|
||||||
"type": "boolean",
|
"type": "boolean",
|
||||||
|
|
@ -123,13 +135,22 @@
|
||||||
}
|
}
|
||||||
},
|
},
|
||||||
"resources": [
|
"resources": [
|
||||||
|
{
|
||||||
|
"url": "https://zenodo.org/records/17580627/files/models_all_v0_7_0.zip?download=1",
|
||||||
|
"name": "models_layout_v0_7_0",
|
||||||
|
"type": "archive",
|
||||||
|
"size": 6119874002,
|
||||||
|
"description": "Models for layout detection, reading order detection, textline detection, page extraction, column classification, table detection, binarization, image enhancement and OCR",
|
||||||
|
"version_range": ">= v0.7.0"
|
||||||
|
},
|
||||||
{
|
{
|
||||||
"url": "https://github.com/qurator-spk/sbb_binarization/releases/download/v0.0.11/saved_model_2020_01_16.zip",
|
"url": "https://github.com/qurator-spk/sbb_binarization/releases/download/v0.0.11/saved_model_2020_01_16.zip",
|
||||||
"name": "default",
|
"name": "default",
|
||||||
"type": "archive",
|
"type": "archive",
|
||||||
"path_in_archive": "saved_model_2020_01_16",
|
"path_in_archive": "saved_model_2020_01_16",
|
||||||
"size": 563147331,
|
"size": 563147331,
|
||||||
"description": "default models provided by github.com/qurator-spk (SavedModel format)"
|
"description": "default models provided by github.com/qurator-spk (SavedModel format)",
|
||||||
|
"version_range": "< v0.7.0"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"url": "https://github.com/qurator-spk/sbb_binarization/releases/download/v0.0.11/saved_model_2021_03_09.zip",
|
"url": "https://github.com/qurator-spk/sbb_binarization/releases/download/v0.0.11/saved_model_2021_03_09.zip",
|
||||||
|
|
@ -137,7 +158,8 @@
|
||||||
"type": "archive",
|
"type": "archive",
|
||||||
"path_in_archive": ".",
|
"path_in_archive": ".",
|
||||||
"size": 133230419,
|
"size": 133230419,
|
||||||
"description": "updated default models provided by github.com/qurator-spk (SavedModel format)"
|
"description": "updated default models provided by github.com/qurator-spk (SavedModel format)",
|
||||||
|
"version_range": "< v0.7.0"
|
||||||
}
|
}
|
||||||
]
|
]
|
||||||
}
|
}
|
||||||
|
|
|
||||||
|
|
@ -75,7 +75,7 @@ class SbbBinarizeProcessor(Processor):
|
||||||
|
|
||||||
if oplevel == 'page':
|
if oplevel == 'page':
|
||||||
self.logger.info("Binarizing on 'page' level in page '%s'", page_id)
|
self.logger.info("Binarizing on 'page' level in page '%s'", page_id)
|
||||||
page_image_bin = cv2pil(self.binarizer.run(image=pil2cv(page_image), use_patches=True))
|
page_image_bin = cv2pil(self.binarizer.run_single(image=pil2cv(page_image), use_patches=True))
|
||||||
# update PAGE (reference the image file):
|
# update PAGE (reference the image file):
|
||||||
page_image_ref = AlternativeImageType(comments=page_xywh['features'] + ',binarized,clipped')
|
page_image_ref = AlternativeImageType(comments=page_xywh['features'] + ',binarized,clipped')
|
||||||
page.add_AlternativeImage(page_image_ref)
|
page.add_AlternativeImage(page_image_ref)
|
||||||
|
|
@ -88,7 +88,7 @@ class SbbBinarizeProcessor(Processor):
|
||||||
for region in regions:
|
for region in regions:
|
||||||
region_image, region_xywh = self.workspace.image_from_segment(
|
region_image, region_xywh = self.workspace.image_from_segment(
|
||||||
region, page_image, page_xywh, feature_filter='binarized')
|
region, page_image, page_xywh, feature_filter='binarized')
|
||||||
region_image_bin = cv2pil(self.binarizer.run(image=pil2cv(region_image), use_patches=True))
|
region_image_bin = cv2pil(self.binarizer.run_single(image=pil2cv(region_image), use_patches=True))
|
||||||
# update PAGE (reference the image file):
|
# update PAGE (reference the image file):
|
||||||
region_image_ref = AlternativeImageType(comments=region_xywh['features'] + ',binarized')
|
region_image_ref = AlternativeImageType(comments=region_xywh['features'] + ',binarized')
|
||||||
region.add_AlternativeImage(region_image_ref)
|
region.add_AlternativeImage(region_image_ref)
|
||||||
|
|
@ -100,7 +100,7 @@ class SbbBinarizeProcessor(Processor):
|
||||||
self.logger.warning("Page '%s' contains no text lines", page_id)
|
self.logger.warning("Page '%s' contains no text lines", page_id)
|
||||||
for line in lines:
|
for line in lines:
|
||||||
line_image, line_xywh = self.workspace.image_from_segment(line, page_image, page_xywh, feature_filter='binarized')
|
line_image, line_xywh = self.workspace.image_from_segment(line, page_image, page_xywh, feature_filter='binarized')
|
||||||
line_image_bin = cv2pil(self.binarizer.run(image=pil2cv(line_image), use_patches=True))
|
line_image_bin = cv2pil(self.binarizer.run_single(image=pil2cv(line_image), use_patches=True))
|
||||||
# update PAGE (reference the image file):
|
# update PAGE (reference the image file):
|
||||||
line_image_ref = AlternativeImageType(comments=line_xywh['features'] + ',binarized')
|
line_image_ref = AlternativeImageType(comments=line_xywh['features'] + ',binarized')
|
||||||
line.add_AlternativeImage(line_image_ref)
|
line.add_AlternativeImage(line_image_ref)
|
||||||
|
|
|
||||||
|
|
@ -1,52 +1,46 @@
|
||||||
from keras import layers
|
import os
|
||||||
|
os.environ['TF_USE_LEGACY_KERAS'] = '1' # avoid Keras 3 after TF 2.15
|
||||||
import tensorflow as tf
|
import tensorflow as tf
|
||||||
|
from tensorflow.keras import layers
|
||||||
projection_dim = 64
|
|
||||||
patch_size = 1
|
|
||||||
num_patches =21*21#14*14#28*28#14*14#28*28
|
|
||||||
|
|
||||||
class PatchEncoder(layers.Layer):
|
class PatchEncoder(layers.Layer):
|
||||||
|
|
||||||
def __init__(self):
|
# 441=21*21 # 14*14 # 28*28
|
||||||
|
def __init__(self, num_patches=441, projection_dim=64):
|
||||||
super().__init__()
|
super().__init__()
|
||||||
self.projection = layers.Dense(units=projection_dim)
|
self.num_patches = num_patches
|
||||||
self.position_embedding = layers.Embedding(input_dim=num_patches, output_dim=projection_dim)
|
self.projection_dim = projection_dim
|
||||||
|
self.projection = layers.Dense(self.projection_dim)
|
||||||
|
self.position_embedding = layers.Embedding(self.num_patches, self.projection_dim)
|
||||||
|
|
||||||
def call(self, patch):
|
def call(self, patch):
|
||||||
positions = tf.range(start=0, limit=num_patches, delta=1)
|
positions = tf.range(start=0, limit=self.num_patches, delta=1)
|
||||||
encoded = self.projection(patch) + self.position_embedding(positions)
|
return self.projection(patch) + self.position_embedding(positions)
|
||||||
return encoded
|
|
||||||
|
|
||||||
def get_config(self):
|
def get_config(self):
|
||||||
config = super().get_config().copy()
|
return dict(num_patches=self.num_patches,
|
||||||
config.update({
|
projection_dim=self.projection_dim,
|
||||||
'num_patches': num_patches,
|
**super().get_config())
|
||||||
'projection': self.projection,
|
|
||||||
'position_embedding': self.position_embedding,
|
|
||||||
})
|
|
||||||
return config
|
|
||||||
|
|
||||||
class Patches(layers.Layer):
|
class Patches(layers.Layer):
|
||||||
def __init__(self, **kwargs):
|
def __init__(self, patch_size_x=1, patch_size_y=1):
|
||||||
super(Patches, self).__init__()
|
super().__init__()
|
||||||
self.patch_size = patch_size
|
self.patch_size_x = patch_size_x
|
||||||
|
self.patch_size_y = patch_size_y
|
||||||
|
|
||||||
def call(self, images):
|
def call(self, images):
|
||||||
batch_size = tf.shape(images)[0]
|
batch_size = tf.shape(images)[0]
|
||||||
patches = tf.image.extract_patches(
|
patches = tf.image.extract_patches(
|
||||||
images=images,
|
images=images,
|
||||||
sizes=[1, self.patch_size, self.patch_size, 1],
|
sizes=[1, self.patch_size_y, self.patch_size_x, 1],
|
||||||
strides=[1, self.patch_size, self.patch_size, 1],
|
strides=[1, self.patch_size_y, self.patch_size_x, 1],
|
||||||
rates=[1, 1, 1, 1],
|
rates=[1, 1, 1, 1],
|
||||||
padding="VALID",
|
padding="VALID",
|
||||||
)
|
)
|
||||||
patch_dims = patches.shape[-1]
|
patch_dims = patches.shape[-1]
|
||||||
patches = tf.reshape(patches, [batch_size, -1, patch_dims])
|
return tf.reshape(patches, [batch_size, -1, patch_dims])
|
||||||
return patches
|
|
||||||
def get_config(self):
|
|
||||||
|
|
||||||
config = super().get_config().copy()
|
def get_config(self):
|
||||||
config.update({
|
return dict(patch_size_x=self.patch_size_x,
|
||||||
'patch_size': self.patch_size,
|
patch_size_y=self.patch_size_y,
|
||||||
})
|
**super().get_config())
|
||||||
return config
|
|
||||||
|
|
|
||||||
|
|
@ -9,17 +9,18 @@ Tool to load model and binarize a given image.
|
||||||
|
|
||||||
import os
|
import os
|
||||||
import logging
|
import logging
|
||||||
|
from pathlib import Path
|
||||||
from typing import Optional
|
from typing import Optional
|
||||||
|
|
||||||
import numpy as np
|
import numpy as np
|
||||||
import cv2
|
import cv2
|
||||||
from ocrd_utils import tf_disable_interactive_logs
|
|
||||||
|
|
||||||
from eynollah.model_zoo import EynollahModelZoo
|
os.environ['TF_USE_LEGACY_KERAS'] = '1' # avoid Keras 3 after TF 2.15
|
||||||
|
from ocrd_utils import tf_disable_interactive_logs
|
||||||
tf_disable_interactive_logs()
|
tf_disable_interactive_logs()
|
||||||
import tensorflow as tf
|
import tensorflow as tf
|
||||||
from tensorflow.python.keras import backend as tensorflow_backend
|
|
||||||
from pathlib import Path
|
from .model_zoo import EynollahModelZoo
|
||||||
from .utils import is_image_filename
|
from .utils import is_image_filename
|
||||||
|
|
||||||
def resize_image(img_in, input_height, input_width):
|
def resize_image(img_in, input_height, input_width):
|
||||||
|
|
@ -34,21 +35,13 @@ class SbbBinarizer:
|
||||||
logger: Optional[logging.Logger] = None,
|
logger: Optional[logging.Logger] = None,
|
||||||
):
|
):
|
||||||
self.logger = logger if logger else logging.getLogger('eynollah.binarization')
|
self.logger = logger if logger else logging.getLogger('eynollah.binarization')
|
||||||
|
try:
|
||||||
|
for device in tf.config.list_physical_devices('GPU'):
|
||||||
|
tf.config.experimental.set_memory_growth(device, True)
|
||||||
|
except:
|
||||||
|
self.logger.warning("no GPU device available")
|
||||||
self.models = (model_zoo.model_path('binarization'), model_zoo.load_model('binarization'))
|
self.models = (model_zoo.model_path('binarization'), model_zoo.load_model('binarization'))
|
||||||
self.session = self.start_new_session()
|
self.logger.info('Loaded model %s [%s]', self.models[1], self.models[0])
|
||||||
|
|
||||||
def start_new_session(self):
|
|
||||||
config = tf.compat.v1.ConfigProto()
|
|
||||||
config.gpu_options.allow_growth = True
|
|
||||||
|
|
||||||
session = tf.compat.v1.Session(config=config) # tf.InteractiveSession()
|
|
||||||
tensorflow_backend.set_session(session)
|
|
||||||
return session
|
|
||||||
|
|
||||||
def end_session(self):
|
|
||||||
tensorflow_backend.clear_session()
|
|
||||||
self.session.close()
|
|
||||||
del self.session
|
|
||||||
|
|
||||||
def predict(self, model, img, use_patches, n_batch_inference=5):
|
def predict(self, model, img, use_patches, n_batch_inference=5):
|
||||||
model_height = model.layers[len(model.layers)-1].output_shape[1]
|
model_height = model.layers[len(model.layers)-1].output_shape[1]
|
||||||
|
|
@ -311,34 +304,20 @@ class SbbBinarizer:
|
||||||
prediction_true = prediction_true.astype(np.uint8)
|
prediction_true = prediction_true.astype(np.uint8)
|
||||||
return prediction_true[:,:,0]
|
return prediction_true[:,:,0]
|
||||||
|
|
||||||
def run(self, image=None, image_path=None, output=None, use_patches=False, dir_in=None):
|
def run(self, image=None, image_path=None, output=None, use_patches=False, dir_in=None, overwrite=False):
|
||||||
# print(dir_in,'dir_in')
|
|
||||||
if not dir_in:
|
if not dir_in:
|
||||||
if (image is not None and image_path is not None) or \
|
if (image is None) == (image_path is None):
|
||||||
(image is None and image_path is None):
|
|
||||||
raise ValueError("Must pass either a opencv2 image or an image_path")
|
raise ValueError("Must pass either a opencv2 image or an image_path")
|
||||||
if image_path is not None:
|
if image_path is not None:
|
||||||
image = cv2.imread(image_path)
|
image = cv2.imread(image_path)
|
||||||
img_last = 0
|
img_last = self.run_single(image, use_patches)
|
||||||
model_file, model = self.models
|
|
||||||
self.logger.info('Predicting %s with model %s', image_path if image_path else '[image]', model_file)
|
|
||||||
res = self.predict(model, image, use_patches)
|
|
||||||
|
|
||||||
img_fin = np.zeros((res.shape[0], res.shape[1], 3))
|
|
||||||
res[:, :][res[:, :] == 0] = 2
|
|
||||||
res = res - 1
|
|
||||||
res = res * 255
|
|
||||||
img_fin[:, :, 0] = res
|
|
||||||
img_fin[:, :, 1] = res
|
|
||||||
img_fin[:, :, 2] = res
|
|
||||||
|
|
||||||
img_fin = img_fin.astype(np.uint8)
|
|
||||||
img_fin = (res[:, :] == 0) * 255
|
|
||||||
img_last = img_last + img_fin
|
|
||||||
|
|
||||||
img_last[:, :][img_last[:, :] > 0] = 255
|
|
||||||
img_last = (img_last[:, :] == 0) * 255
|
|
||||||
if output:
|
if output:
|
||||||
|
if os.path.exists(output):
|
||||||
|
if overwrite:
|
||||||
|
self.logger.warning("will overwrite existing output file '%s'", output)
|
||||||
|
else:
|
||||||
|
self.logger.warning("output file already exists '%s'", output)
|
||||||
|
return img_last
|
||||||
self.logger.info('Writing binarized image to %s', output)
|
self.logger.info('Writing binarized image to %s', output)
|
||||||
cv2.imwrite(output, img_last)
|
cv2.imwrite(output, img_last)
|
||||||
return img_last
|
return img_last
|
||||||
|
|
@ -346,29 +325,38 @@ class SbbBinarizer:
|
||||||
ls_imgs = list(filter(is_image_filename, os.listdir(dir_in)))
|
ls_imgs = list(filter(is_image_filename, os.listdir(dir_in)))
|
||||||
self.logger.info("Found %d image files to binarize in %s", len(ls_imgs), dir_in)
|
self.logger.info("Found %d image files to binarize in %s", len(ls_imgs), dir_in)
|
||||||
for i, image_path in enumerate(ls_imgs):
|
for i, image_path in enumerate(ls_imgs):
|
||||||
|
image_stem = os.path.splitext(image_path)[0]
|
||||||
|
output_path = os.path.join(output, image_stem + '.png')
|
||||||
|
if os.path.exists(output_path):
|
||||||
|
if overwrite:
|
||||||
|
self.logger.warning("will overwrite existing output file '%s'", output_path)
|
||||||
|
else:
|
||||||
|
self.logger.warning("will skip input for existing output file '%s'", output_path)
|
||||||
|
continue
|
||||||
self.logger.info('Binarizing [%3d/%d] %s', i + 1, len(ls_imgs), image_path)
|
self.logger.info('Binarizing [%3d/%d] %s', i + 1, len(ls_imgs), image_path)
|
||||||
image_stem = Path(image_path).stem
|
image = cv2.imread(os.path.join(dir_in, image_path))
|
||||||
image = cv2.imread(os.path.join(dir_in,image_path) )
|
img_last = self.run_single(image, use_patches)
|
||||||
img_last = 0
|
self.logger.info('Writing binarized image to %s', output_path)
|
||||||
model_file, model = self.models
|
cv2.imwrite(output_path, img_last)
|
||||||
self.logger.info('Predicting %s with model %s', image_path if image_path else '[image]', model_file)
|
|
||||||
res = self.predict(model, image, use_patches)
|
|
||||||
|
|
||||||
img_fin = np.zeros((res.shape[0], res.shape[1], 3))
|
def run_single(self, image: np.ndarray, use_patches=False):
|
||||||
res[:, :][res[:, :] == 0] = 2
|
img_last = 0
|
||||||
res = res - 1
|
model_file, model = self.models
|
||||||
res = res * 255
|
res = self.predict(model, image, use_patches)
|
||||||
img_fin[:, :, 0] = res
|
|
||||||
img_fin[:, :, 1] = res
|
|
||||||
img_fin[:, :, 2] = res
|
|
||||||
|
|
||||||
img_fin = img_fin.astype(np.uint8)
|
img_fin = np.zeros((res.shape[0], res.shape[1], 3))
|
||||||
img_fin = (res[:, :] == 0) * 255
|
res[:, :][res[:, :] == 0] = 2
|
||||||
img_last = img_last + img_fin
|
res = res - 1
|
||||||
|
res = res * 255
|
||||||
|
img_fin[:, :, 0] = res
|
||||||
|
img_fin[:, :, 1] = res
|
||||||
|
img_fin[:, :, 2] = res
|
||||||
|
|
||||||
img_last[:, :][img_last[:, :] > 0] = 255
|
img_fin = img_fin.astype(np.uint8)
|
||||||
img_last = (img_last[:, :] == 0) * 255
|
img_fin = (res[:, :] == 0) * 255
|
||||||
|
img_last = img_last + img_fin
|
||||||
output_filename = os.path.join(output, image_stem + '.png')
|
|
||||||
self.logger.info('Writing binarized image to %s', output_filename)
|
kernel = np.ones((5, 5), np.uint8)
|
||||||
cv2.imwrite(output_filename, img_last)
|
img_last[:, :][img_last[:, :] > 0] = 255
|
||||||
|
img_last = (img_last[:, :] == 0) * 255
|
||||||
|
return img_last
|
||||||
|
|
|
||||||
|
|
@ -1,13 +1,9 @@
|
||||||
|
import sys
|
||||||
import click
|
import click
|
||||||
import tensorflow as tf
|
|
||||||
|
|
||||||
from .models import resnet50_unet
|
from .models import resnet50_unet
|
||||||
|
|
||||||
|
|
||||||
def configuration():
|
|
||||||
gpu_options = tf.compat.v1.GPUOptions(allow_growth=True)
|
|
||||||
session = tf.compat.v1.Session(config=tf.compat.v1.ConfigProto(gpu_options=gpu_options))
|
|
||||||
|
|
||||||
@click.command()
|
@click.command()
|
||||||
def build_model_load_pretrained_weights_and_save():
|
def build_model_load_pretrained_weights_and_save():
|
||||||
n_classes = 2
|
n_classes = 2
|
||||||
|
|
@ -17,8 +13,6 @@ def build_model_load_pretrained_weights_and_save():
|
||||||
pretraining = False
|
pretraining = False
|
||||||
dir_of_weights = 'model_bin_sbb_ens.h5'
|
dir_of_weights = 'model_bin_sbb_ens.h5'
|
||||||
|
|
||||||
# configuration()
|
|
||||||
|
|
||||||
model = resnet50_unet(n_classes, input_height, input_width, weight_decay, pretraining)
|
model = resnet50_unet(n_classes, input_height, input_width, weight_decay, pretraining)
|
||||||
model.load_weights(dir_of_weights)
|
model.load_weights(dir_of_weights)
|
||||||
model.save('./name_in_another_python_version.h5')
|
model.save('./name_in_another_python_version.h5')
|
||||||
|
|
|
||||||
|
|
@ -9,7 +9,7 @@ from .generate_gt_for_training import main as generate_gt_cli
|
||||||
from .inference import main as inference_cli
|
from .inference import main as inference_cli
|
||||||
from .train import ex
|
from .train import ex
|
||||||
from .extract_line_gt import linegt_cli
|
from .extract_line_gt import linegt_cli
|
||||||
from .weights_ensembling import main as ensemble_cli
|
from .weights_ensembling import ensemble_cli
|
||||||
|
|
||||||
@click.command(context_settings=dict(
|
@click.command(context_settings=dict(
|
||||||
ignore_unknown_options=True,
|
ignore_unknown_options=True,
|
||||||
|
|
|
||||||
|
|
@ -7,7 +7,7 @@ from PIL import Image, ImageDraw, ImageFont
|
||||||
import cv2
|
import cv2
|
||||||
import numpy as np
|
import numpy as np
|
||||||
|
|
||||||
from eynollah.training.gt_gen_utils import (
|
from .gt_gen_utils import (
|
||||||
filter_contours_area_of_image,
|
filter_contours_area_of_image,
|
||||||
find_format_of_given_filename_in_dir,
|
find_format_of_given_filename_in_dir,
|
||||||
find_new_features_of_contours,
|
find_new_features_of_contours,
|
||||||
|
|
@ -26,6 +26,9 @@ from eynollah.training.gt_gen_utils import (
|
||||||
|
|
||||||
@click.group()
|
@click.group()
|
||||||
def main():
|
def main():
|
||||||
|
"""
|
||||||
|
extract GT data suitable for model training for various tasks
|
||||||
|
"""
|
||||||
pass
|
pass
|
||||||
|
|
||||||
@main.command()
|
@main.command()
|
||||||
|
|
@ -74,6 +77,9 @@ def main():
|
||||||
)
|
)
|
||||||
|
|
||||||
def pagexml2label(dir_xml,dir_out,type_output,config, printspace, dir_images, dir_out_images):
|
def pagexml2label(dir_xml,dir_out,type_output,config, printspace, dir_images, dir_out_images):
|
||||||
|
"""
|
||||||
|
extract PAGE-XML GT data suitable for model training for segmentation tasks
|
||||||
|
"""
|
||||||
if config:
|
if config:
|
||||||
with open(config) as f:
|
with open(config) as f:
|
||||||
config_params = json.load(f)
|
config_params = json.load(f)
|
||||||
|
|
@ -110,6 +116,9 @@ def pagexml2label(dir_xml,dir_out,type_output,config, printspace, dir_images, di
|
||||||
type=click.Path(exists=True, dir_okay=False),
|
type=click.Path(exists=True, dir_okay=False),
|
||||||
)
|
)
|
||||||
def image_enhancement(dir_imgs, dir_out_images, dir_out_labels, scales):
|
def image_enhancement(dir_imgs, dir_out_images, dir_out_labels, scales):
|
||||||
|
"""
|
||||||
|
extract image GT data suitable for model training for image enhancement tasks
|
||||||
|
"""
|
||||||
ls_imgs = os.listdir(dir_imgs)
|
ls_imgs = os.listdir(dir_imgs)
|
||||||
with open(scales) as f:
|
with open(scales) as f:
|
||||||
scale_dict = json.load(f)
|
scale_dict = json.load(f)
|
||||||
|
|
@ -175,6 +184,9 @@ def image_enhancement(dir_imgs, dir_out_images, dir_out_labels, scales):
|
||||||
)
|
)
|
||||||
|
|
||||||
def machine_based_reading_order(dir_xml, dir_out_modal_image, dir_out_classes, input_height, input_width, min_area_size, min_area_early):
|
def machine_based_reading_order(dir_xml, dir_out_modal_image, dir_out_classes, input_height, input_width, min_area_size, min_area_early):
|
||||||
|
"""
|
||||||
|
extract PAGE-XML GT data suitable for model training for reading-order task
|
||||||
|
"""
|
||||||
xml_files_ind = os.listdir(dir_xml)
|
xml_files_ind = os.listdir(dir_xml)
|
||||||
xml_files_ind = [ind_xml for ind_xml in xml_files_ind if ind_xml.endswith('.xml')]
|
xml_files_ind = [ind_xml for ind_xml in xml_files_ind if ind_xml.endswith('.xml')]
|
||||||
input_height = int(input_height)
|
input_height = int(input_height)
|
||||||
|
|
@ -205,14 +217,20 @@ def machine_based_reading_order(dir_xml, dir_out_modal_image, dir_out_classes, i
|
||||||
img_header_and_sep = np.zeros((y_len,x_len), dtype='uint8')
|
img_header_and_sep = np.zeros((y_len,x_len), dtype='uint8')
|
||||||
|
|
||||||
for j in range(len(cy_main)):
|
for j in range(len(cy_main)):
|
||||||
img_header_and_sep[int(y_max_main[j]):int(y_max_main[j])+12,int(x_min_main[j]):int(x_max_main[j]) ] = 1
|
img_header_and_sep[int(y_max_main[j]):int(y_max_main[j])+12,
|
||||||
|
int(x_min_main[j]):int(x_max_main[j]) ] = 1
|
||||||
|
|
||||||
|
|
||||||
texts_corr_order_index = [index_tot_regions[tot_region_ref.index(i)] for i in id_all_text ]
|
try:
|
||||||
texts_corr_order_index_int = [int(x) for x in texts_corr_order_index]
|
texts_corr_order_index_int = [int(index_tot_regions[tot_region_ref.index(i)])
|
||||||
|
for i in id_all_text]
|
||||||
|
except ValueError as e:
|
||||||
|
print("incomplete ReadingOrder in", xml_file, "- skipping:", str(e))
|
||||||
|
continue
|
||||||
|
|
||||||
co_text_all, texts_corr_order_index_int, regions_ar_less_than_early_min = filter_contours_area_of_image(img_poly, co_text_all, texts_corr_order_index_int, max_area, min_area, min_area_early)
|
co_text_all, texts_corr_order_index_int, regions_ar_less_than_early_min = \
|
||||||
|
filter_contours_area_of_image(img_poly, co_text_all, texts_corr_order_index_int,
|
||||||
|
max_area, min_area, min_area_early)
|
||||||
|
|
||||||
|
|
||||||
arg_array = np.array(range(len(texts_corr_order_index_int)))
|
arg_array = np.array(range(len(texts_corr_order_index_int)))
|
||||||
|
|
|
||||||
|
|
@ -1,15 +1,18 @@
|
||||||
import os
|
import os
|
||||||
import numpy as np
|
import numpy as np
|
||||||
import warnings
|
import warnings
|
||||||
import xml.etree.ElementTree as ET
|
from lxml import etree as ET
|
||||||
from tqdm import tqdm
|
from tqdm import tqdm
|
||||||
import cv2
|
import cv2
|
||||||
from shapely import geometry
|
from shapely import geometry
|
||||||
from pathlib import Path
|
from pathlib import Path
|
||||||
from PIL import ImageFont
|
from PIL import ImageFont
|
||||||
|
from ocrd_utils import bbox_from_points
|
||||||
|
|
||||||
|
|
||||||
KERNEL = np.ones((5, 5), np.uint8)
|
KERNEL = np.ones((5, 5), np.uint8)
|
||||||
|
NS = { 'pc': 'http://schema.primaresearch.org/PAGE/gts/pagecontent/2019-07-15'
|
||||||
|
}
|
||||||
|
|
||||||
with warnings.catch_warnings():
|
with warnings.catch_warnings():
|
||||||
warnings.simplefilter("ignore")
|
warnings.simplefilter("ignore")
|
||||||
|
|
@ -235,12 +238,11 @@ def update_region_contours(co_text, img_boundary, erosion_rate, dilation_rate, y
|
||||||
con_eroded = return_contours_of_interested_region(img_boundary_in,pixel, min_size )
|
con_eroded = return_contours_of_interested_region(img_boundary_in,pixel, min_size )
|
||||||
|
|
||||||
try:
|
try:
|
||||||
if len(con_eroded)>1:
|
if len(con_eroded) > 1:
|
||||||
cnt_size = np.array([cv2.contourArea(con_eroded[j]) for j in range(len(con_eroded))])
|
largest = np.argmax(list(map(cv2.contourArea, con_eroded)))
|
||||||
cnt = contours[np.argmax(cnt_size)]
|
|
||||||
co_text_eroded.append(cnt)
|
|
||||||
else:
|
else:
|
||||||
co_text_eroded.append(con_eroded[0])
|
largest = 0
|
||||||
|
co_text_eroded.append(con_eroded[largest])
|
||||||
except:
|
except:
|
||||||
co_text_eroded.append(con)
|
co_text_eroded.append(con)
|
||||||
|
|
||||||
|
|
@ -664,7 +666,10 @@ def get_images_of_ground_truth(gt_list, dir_in, output_dir, output_type, config_
|
||||||
|
|
||||||
if dir_images:
|
if dir_images:
|
||||||
ls_org_imgs = os.listdir(dir_images)
|
ls_org_imgs = os.listdir(dir_images)
|
||||||
ls_org_imgs_stem = [os.path.splitext(item)[0] for item in ls_org_imgs]
|
ls_org_imgs = {os.path.splitext(item)[0]: item
|
||||||
|
for item in ls_org_imgs
|
||||||
|
if not item.endswith('.xml')}
|
||||||
|
|
||||||
for index in tqdm(range(len(gt_list))):
|
for index in tqdm(range(len(gt_list))):
|
||||||
#try:
|
#try:
|
||||||
print(gt_list[index])
|
print(gt_list[index])
|
||||||
|
|
@ -681,6 +686,7 @@ def get_images_of_ground_truth(gt_list, dir_in, output_dir, output_type, config_
|
||||||
|
|
||||||
if 'columns_width' in list(config_params.keys()):
|
if 'columns_width' in list(config_params.keys()):
|
||||||
columns_width_dict = config_params['columns_width']
|
columns_width_dict = config_params['columns_width']
|
||||||
|
# FIXME: look in /Page/@custom as well
|
||||||
metadata_element = root1.find(link+'Metadata')
|
metadata_element = root1.find(link+'Metadata')
|
||||||
num_col = None
|
num_col = None
|
||||||
for child in metadata_element:
|
for child in metadata_element:
|
||||||
|
|
@ -694,55 +700,13 @@ def get_images_of_ground_truth(gt_list, dir_in, output_dir, output_type, config_
|
||||||
y_new = int ( x_new * (y_len / float(x_len)) )
|
y_new = int ( x_new * (y_len / float(x_len)) )
|
||||||
|
|
||||||
if printspace or "printspace_as_class_in_layout" in list(config_params.keys()):
|
if printspace or "printspace_as_class_in_layout" in list(config_params.keys()):
|
||||||
region_tags = np.unique([x for x in alltags if x.endswith('PrintSpace') or x.endswith('Border')])
|
ps = (root1.xpath('/pc:PcGts/pc:Page/pc:Border', namespaces=NS) +
|
||||||
co_use_case = []
|
root1.xpath('/pc:PcGts/pc:Page/pc:PrintSpace', namespaces=NS))
|
||||||
|
if len(ps):
|
||||||
for tag in region_tags:
|
points = ps[0].find('pc:Coords', NS).get('points')
|
||||||
tag_endings = ['}PrintSpace','}Border']
|
ps_bbox = bbox_from_points(points)
|
||||||
|
else:
|
||||||
if tag.endswith(tag_endings[0]) or tag.endswith(tag_endings[1]):
|
ps_bbox = [0, 0, None, None]
|
||||||
for nn in root1.iter(tag):
|
|
||||||
c_t_in = []
|
|
||||||
sumi = 0
|
|
||||||
for vv in nn.iter():
|
|
||||||
# check the format of coords
|
|
||||||
if vv.tag == link + 'Coords':
|
|
||||||
coords = bool(vv.attrib)
|
|
||||||
if coords:
|
|
||||||
p_h = vv.attrib['points'].split(' ')
|
|
||||||
c_t_in.append(
|
|
||||||
np.array([[int(x.split(',')[0]), int(x.split(',')[1])] for x in p_h]))
|
|
||||||
break
|
|
||||||
else:
|
|
||||||
pass
|
|
||||||
|
|
||||||
if vv.tag == link + 'Point':
|
|
||||||
c_t_in.append([int(float(vv.attrib['x'])), int(float(vv.attrib['y']))])
|
|
||||||
sumi += 1
|
|
||||||
elif vv.tag != link + 'Point' and sumi >= 1:
|
|
||||||
break
|
|
||||||
co_use_case.append(np.array(c_t_in))
|
|
||||||
|
|
||||||
img = np.zeros((y_len, x_len, 3))
|
|
||||||
|
|
||||||
img_poly = cv2.fillPoly(img, pts=co_use_case, color=(1, 1, 1))
|
|
||||||
|
|
||||||
img_poly = img_poly.astype(np.uint8)
|
|
||||||
|
|
||||||
imgray = cv2.cvtColor(img_poly, cv2.COLOR_BGR2GRAY)
|
|
||||||
_, thresh = cv2.threshold(imgray, 0, 255, 0)
|
|
||||||
|
|
||||||
contours, _ = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
|
|
||||||
|
|
||||||
cnt_size = np.array([cv2.contourArea(contours[j]) for j in range(len(contours))])
|
|
||||||
|
|
||||||
try:
|
|
||||||
cnt = contours[np.argmax(cnt_size)]
|
|
||||||
x, y, w, h = cv2.boundingRect(cnt)
|
|
||||||
except:
|
|
||||||
x, y , w, h = 0, 0, x_len, y_len
|
|
||||||
|
|
||||||
bb_xywh = [x, y, w, h]
|
|
||||||
|
|
||||||
|
|
||||||
if config_file and (config_params['use_case']=='textline' or config_params['use_case']=='word' or config_params['use_case']=='glyph' or config_params['use_case']=='printspace'):
|
if config_file and (config_params['use_case']=='textline' or config_params['use_case']=='word' or config_params['use_case']=='glyph' or config_params['use_case']=='printspace'):
|
||||||
|
|
@ -824,7 +788,8 @@ def get_images_of_ground_truth(gt_list, dir_in, output_dir, output_type, config_
|
||||||
|
|
||||||
|
|
||||||
if printspace and config_params['use_case']!='printspace':
|
if printspace and config_params['use_case']!='printspace':
|
||||||
img_poly = img_poly[bb_xywh[1]:bb_xywh[1]+bb_xywh[3], bb_xywh[0]:bb_xywh[0]+bb_xywh[2], :]
|
img_poly = img_poly[ps_bbox[1]:ps_bbox[3],
|
||||||
|
ps_bbox[0]:ps_bbox[2], :]
|
||||||
|
|
||||||
|
|
||||||
if 'columns_width' in list(config_params.keys()) and num_col and config_params['use_case']!='printspace':
|
if 'columns_width' in list(config_params.keys()) and num_col and config_params['use_case']!='printspace':
|
||||||
|
|
@ -838,11 +803,18 @@ def get_images_of_ground_truth(gt_list, dir_in, output_dir, output_type, config_
|
||||||
cv2.imwrite(os.path.join(output_dir, xml_file_stem + '.png'), img_poly)
|
cv2.imwrite(os.path.join(output_dir, xml_file_stem + '.png'), img_poly)
|
||||||
|
|
||||||
if dir_images:
|
if dir_images:
|
||||||
org_image_name = ls_org_imgs[ls_org_imgs_stem.index(xml_file_stem)]
|
org_image_name = ls_org_imgs[xml_file_stem]
|
||||||
|
if not org_image_name:
|
||||||
|
print("image file for XML stem", xml_file_stem, "is missing")
|
||||||
|
continue
|
||||||
|
if not os.path.isfile(os.path.join(dir_images, org_image_name)):
|
||||||
|
print("image file for XML stem", xml_file_stem, "is not readable")
|
||||||
|
continue
|
||||||
img_org = cv2.imread(os.path.join(dir_images, org_image_name))
|
img_org = cv2.imread(os.path.join(dir_images, org_image_name))
|
||||||
|
|
||||||
if printspace and config_params['use_case']!='printspace':
|
if printspace and config_params['use_case']!='printspace':
|
||||||
img_org = img_org[bb_xywh[1]:bb_xywh[1]+bb_xywh[3], bb_xywh[0]:bb_xywh[0]+bb_xywh[2], :]
|
img_org = img_org[ps_bbox[1]:ps_bbox[3],
|
||||||
|
ps_bbox[0]:ps_bbox[2], :]
|
||||||
|
|
||||||
if 'columns_width' in list(config_params.keys()) and num_col and config_params['use_case']!='printspace':
|
if 'columns_width' in list(config_params.keys()) and num_col and config_params['use_case']!='printspace':
|
||||||
img_org = resize_image(img_org, y_new, x_new)
|
img_org = resize_image(img_org, y_new, x_new)
|
||||||
|
|
@ -1254,7 +1226,8 @@ def get_images_of_ground_truth(gt_list, dir_in, output_dir, output_type, config_
|
||||||
|
|
||||||
if "printspace_as_class_in_layout" in list(config_params.keys()):
|
if "printspace_as_class_in_layout" in list(config_params.keys()):
|
||||||
printspace_mask = np.zeros((img_poly.shape[0], img_poly.shape[1]))
|
printspace_mask = np.zeros((img_poly.shape[0], img_poly.shape[1]))
|
||||||
printspace_mask[bb_xywh[1]:bb_xywh[1]+bb_xywh[3], bb_xywh[0]:bb_xywh[0]+bb_xywh[2]] = 1
|
printspace_mask[ps_bbox[1]:ps_bbox[3],
|
||||||
|
ps_bbox[0]:ps_bbox[2]] = 1
|
||||||
|
|
||||||
img_poly[:,:,0][printspace_mask[:,:] == 0] = printspace_class_rgb_color[0]
|
img_poly[:,:,0][printspace_mask[:,:] == 0] = printspace_class_rgb_color[0]
|
||||||
img_poly[:,:,1][printspace_mask[:,:] == 0] = printspace_class_rgb_color[1]
|
img_poly[:,:,1][printspace_mask[:,:] == 0] = printspace_class_rgb_color[1]
|
||||||
|
|
@ -1315,7 +1288,8 @@ def get_images_of_ground_truth(gt_list, dir_in, output_dir, output_type, config_
|
||||||
|
|
||||||
if "printspace_as_class_in_layout" in list(config_params.keys()):
|
if "printspace_as_class_in_layout" in list(config_params.keys()):
|
||||||
printspace_mask = np.zeros((img_poly.shape[0], img_poly.shape[1]))
|
printspace_mask = np.zeros((img_poly.shape[0], img_poly.shape[1]))
|
||||||
printspace_mask[bb_xywh[1]:bb_xywh[1]+bb_xywh[3], bb_xywh[0]:bb_xywh[0]+bb_xywh[2]] = 1
|
printspace_mask[ps_bbox[1]:ps_bbox[3],
|
||||||
|
ps_bbox[0]:ps_bbox[2]] = 1
|
||||||
|
|
||||||
img_poly[:,:,0][printspace_mask[:,:] == 0] = printspace_class_label
|
img_poly[:,:,0][printspace_mask[:,:] == 0] = printspace_class_label
|
||||||
img_poly[:,:,1][printspace_mask[:,:] == 0] = printspace_class_label
|
img_poly[:,:,1][printspace_mask[:,:] == 0] = printspace_class_label
|
||||||
|
|
@ -1324,7 +1298,8 @@ def get_images_of_ground_truth(gt_list, dir_in, output_dir, output_type, config_
|
||||||
|
|
||||||
|
|
||||||
if printspace:
|
if printspace:
|
||||||
img_poly = img_poly[bb_xywh[1]:bb_xywh[1]+bb_xywh[3], bb_xywh[0]:bb_xywh[0]+bb_xywh[2], :]
|
img_poly = img_poly[ps_bbox[1]:ps_bbox[3],
|
||||||
|
ps_bbox[0]:ps_bbox[2], :]
|
||||||
|
|
||||||
if 'columns_width' in list(config_params.keys()) and num_col:
|
if 'columns_width' in list(config_params.keys()) and num_col:
|
||||||
img_poly = resize_image(img_poly, y_new, x_new)
|
img_poly = resize_image(img_poly, y_new, x_new)
|
||||||
|
|
@ -1338,11 +1313,18 @@ def get_images_of_ground_truth(gt_list, dir_in, output_dir, output_type, config_
|
||||||
|
|
||||||
|
|
||||||
if dir_images:
|
if dir_images:
|
||||||
org_image_name = ls_org_imgs[ls_org_imgs_stem.index(xml_file_stem)]
|
org_image_name = ls_org_imgs[xml_file_stem]
|
||||||
|
if not org_image_name:
|
||||||
|
print("image file for XML stem", xml_file_stem, "is missing")
|
||||||
|
continue
|
||||||
|
if not os.path.isfile(os.path.join(dir_images, org_image_name)):
|
||||||
|
print("image file for XML stem", xml_file_stem, "is not readable")
|
||||||
|
continue
|
||||||
img_org = cv2.imread(os.path.join(dir_images, org_image_name))
|
img_org = cv2.imread(os.path.join(dir_images, org_image_name))
|
||||||
|
|
||||||
if printspace:
|
if printspace:
|
||||||
img_org = img_org[bb_xywh[1]:bb_xywh[1]+bb_xywh[3], bb_xywh[0]:bb_xywh[0]+bb_xywh[2], :]
|
img_org = img_org[ps_bbox[1]:ps_bbox[3],
|
||||||
|
ps_bbox[0]:ps_bbox[2], :]
|
||||||
|
|
||||||
if 'columns_width' in list(config_params.keys()) and num_col:
|
if 'columns_width' in list(config_params.keys()) and num_col:
|
||||||
img_org = resize_image(img_org, y_new, x_new)
|
img_org = resize_image(img_org, y_new, x_new)
|
||||||
|
|
@ -1383,6 +1365,7 @@ def find_new_features_of_contours(contours_main):
|
||||||
y_max_main = np.array([np.max(contours_main[j][:, 1]) for j in range(len(contours_main))])
|
y_max_main = np.array([np.max(contours_main[j][:, 1]) for j in range(len(contours_main))])
|
||||||
|
|
||||||
return cx_main, cy_main, x_min_main, x_max_main, y_min_main, y_max_main, y_corr_x_min_from_argmin
|
return cx_main, cy_main, x_min_main, x_max_main, y_min_main, y_max_main, y_corr_x_min_from_argmin
|
||||||
|
|
||||||
def read_xml(xml_file):
|
def read_xml(xml_file):
|
||||||
file_name = Path(xml_file).stem
|
file_name = Path(xml_file).stem
|
||||||
tree1 = ET.parse(xml_file, parser = ET.XMLParser(encoding='utf-8'))
|
tree1 = ET.parse(xml_file, parser = ET.XMLParser(encoding='utf-8'))
|
||||||
|
|
@ -1401,57 +1384,13 @@ def read_xml(xml_file):
|
||||||
index_tot_regions.append(jj.attrib['index'])
|
index_tot_regions.append(jj.attrib['index'])
|
||||||
tot_region_ref.append(jj.attrib['regionRef'])
|
tot_region_ref.append(jj.attrib['regionRef'])
|
||||||
|
|
||||||
if (link+'PrintSpace' in alltags) or (link+'Border' in alltags):
|
ps = (root1.xpath('/pc:PcGts/pc:Page/pc:Border', namespaces=NS) +
|
||||||
co_printspace = []
|
root1.xpath('/pc:PcGts/pc:Page/pc:PrintSpace', namespaces=NS))
|
||||||
if link+'PrintSpace' in alltags:
|
if len(ps):
|
||||||
region_tags_printspace = np.unique([x for x in alltags if x.endswith('PrintSpace')])
|
points = ps[0].find('pc:Coords', NS).get('points')
|
||||||
elif link+'Border' in alltags:
|
ps_bbox = bbox_from_points(points)
|
||||||
region_tags_printspace = np.unique([x for x in alltags if x.endswith('Border')])
|
|
||||||
|
|
||||||
for tag in region_tags_printspace:
|
|
||||||
if link+'PrintSpace' in alltags:
|
|
||||||
tag_endings_printspace = ['}PrintSpace','}printspace']
|
|
||||||
elif link+'Border' in alltags:
|
|
||||||
tag_endings_printspace = ['}Border','}border']
|
|
||||||
|
|
||||||
if tag.endswith(tag_endings_printspace[0]) or tag.endswith(tag_endings_printspace[1]):
|
|
||||||
for nn in root1.iter(tag):
|
|
||||||
c_t_in = []
|
|
||||||
sumi = 0
|
|
||||||
for vv in nn.iter():
|
|
||||||
# check the format of coords
|
|
||||||
if vv.tag == link + 'Coords':
|
|
||||||
coords = bool(vv.attrib)
|
|
||||||
if coords:
|
|
||||||
p_h = vv.attrib['points'].split(' ')
|
|
||||||
c_t_in.append(
|
|
||||||
np.array([[int(x.split(',')[0]), int(x.split(',')[1])] for x in p_h]))
|
|
||||||
break
|
|
||||||
else:
|
|
||||||
pass
|
|
||||||
|
|
||||||
if vv.tag == link + 'Point':
|
|
||||||
c_t_in.append([int(float(vv.attrib['x'])), int(float(vv.attrib['y']))])
|
|
||||||
sumi += 1
|
|
||||||
elif vv.tag != link + 'Point' and sumi >= 1:
|
|
||||||
break
|
|
||||||
co_printspace.append(np.array(c_t_in))
|
|
||||||
img_printspace = np.zeros( (y_len,x_len,3) )
|
|
||||||
img_printspace=cv2.fillPoly(img_printspace, pts =co_printspace, color=(1,1,1))
|
|
||||||
img_printspace = img_printspace.astype(np.uint8)
|
|
||||||
|
|
||||||
imgray = cv2.cvtColor(img_printspace, cv2.COLOR_BGR2GRAY)
|
|
||||||
_, thresh = cv2.threshold(imgray, 0, 255, 0)
|
|
||||||
contours, _ = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
|
|
||||||
cnt_size = np.array([cv2.contourArea(contours[j]) for j in range(len(contours))])
|
|
||||||
cnt = contours[np.argmax(cnt_size)]
|
|
||||||
x, y, w, h = cv2.boundingRect(cnt)
|
|
||||||
|
|
||||||
bb_coord_printspace = [x, y, w, h]
|
|
||||||
|
|
||||||
else:
|
else:
|
||||||
bb_coord_printspace = None
|
ps_bbox = [0, 0, None, None]
|
||||||
|
|
||||||
|
|
||||||
region_tags=np.unique([x for x in alltags if x.endswith('Region')])
|
region_tags=np.unique([x for x in alltags if x.endswith('Region')])
|
||||||
co_text_paragraph=[]
|
co_text_paragraph=[]
|
||||||
|
|
@ -1806,11 +1745,19 @@ def read_xml(xml_file):
|
||||||
img_poly=cv2.fillPoly(img, pts =co_img, color=(4,4,4))
|
img_poly=cv2.fillPoly(img, pts =co_img, color=(4,4,4))
|
||||||
img_poly=cv2.fillPoly(img, pts =co_sep, color=(5,5,5))
|
img_poly=cv2.fillPoly(img, pts =co_sep, color=(5,5,5))
|
||||||
|
|
||||||
return tree1, root1, bb_coord_printspace, file_name, id_paragraph, id_header+id_heading, co_text_paragraph, co_text_header+co_text_heading,\
|
return (tree1,
|
||||||
tot_region_ref,x_len, y_len,index_tot_regions, img_poly
|
root1,
|
||||||
|
ps_bbox,
|
||||||
|
file_name,
|
||||||
|
id_paragraph,
|
||||||
|
id_header + id_heading,
|
||||||
|
co_text_paragraph,
|
||||||
|
co_text_header + co_text_heading,
|
||||||
|
tot_region_ref,
|
||||||
|
x_len,
|
||||||
|
y_len,
|
||||||
|
index_tot_regions,
|
||||||
|
img_poly)
|
||||||
|
|
||||||
# def bounding_box(cnt,color, corr_order_index ):
|
# def bounding_box(cnt,color, corr_order_index ):
|
||||||
# x, y, w, h = cv2.boundingRect(cnt)
|
# x, y, w, h = cv2.boundingRect(cnt)
|
||||||
|
|
|
||||||
|
|
@ -1,19 +1,24 @@
|
||||||
|
"""
|
||||||
|
Tool to load model and predict for given image.
|
||||||
|
"""
|
||||||
|
|
||||||
import sys
|
import sys
|
||||||
import os
|
import os
|
||||||
from typing import Tuple
|
from typing import Tuple
|
||||||
import warnings
|
import warnings
|
||||||
import json
|
import json
|
||||||
|
|
||||||
import numpy as np
|
|
||||||
import cv2
|
|
||||||
from numpy._typing import NDArray
|
|
||||||
import tensorflow as tf
|
|
||||||
from keras.models import Model, load_model
|
|
||||||
from keras import backend as K
|
|
||||||
import click
|
import click
|
||||||
from tensorflow.python.keras import backend as tensorflow_backend
|
import numpy as np
|
||||||
|
from numpy._typing import NDArray
|
||||||
|
import cv2
|
||||||
import xml.etree.ElementTree as ET
|
import xml.etree.ElementTree as ET
|
||||||
|
|
||||||
|
os.environ['TF_USE_LEGACY_KERAS'] = '1' # avoid Keras 3 after TF 2.15
|
||||||
|
import tensorflow as tf
|
||||||
|
from tensorflow.keras.models import Model, load_model
|
||||||
|
from tensorflow.keras.layers import StringLookup
|
||||||
|
|
||||||
from .gt_gen_utils import (
|
from .gt_gen_utils import (
|
||||||
filter_contours_area_of_image,
|
filter_contours_area_of_image,
|
||||||
find_new_features_of_contours,
|
find_new_features_of_contours,
|
||||||
|
|
@ -21,24 +26,37 @@ from .gt_gen_utils import (
|
||||||
resize_image,
|
resize_image,
|
||||||
update_list_and_return_first_with_length_bigger_than_one
|
update_list_and_return_first_with_length_bigger_than_one
|
||||||
)
|
)
|
||||||
from .models import (
|
from ..patch_encoder import (
|
||||||
PatchEncoder,
|
PatchEncoder,
|
||||||
Patches
|
Patches
|
||||||
)
|
)
|
||||||
|
from .metrics import (
|
||||||
|
soft_dice_loss,
|
||||||
|
weighted_categorical_crossentropy,
|
||||||
|
)
|
||||||
|
from.utils import scale_padd_image_for_ocr
|
||||||
|
from ..utils.utils_ocr import decode_batch_predictions
|
||||||
|
|
||||||
from.utils import (scale_padd_image_for_ocr)
|
|
||||||
from eynollah.utils.utils_ocr import (decode_batch_predictions)
|
|
||||||
|
|
||||||
with warnings.catch_warnings():
|
with warnings.catch_warnings():
|
||||||
warnings.simplefilter("ignore")
|
warnings.simplefilter("ignore")
|
||||||
|
|
||||||
__doc__=\
|
class SBBPredict:
|
||||||
"""
|
def __init__(self,
|
||||||
Tool to load model and predict for given image.
|
image,
|
||||||
"""
|
dir_in,
|
||||||
|
model,
|
||||||
class sbb_predict:
|
task,
|
||||||
def __init__(self,image, dir_in, model, task, config_params_model, patches, save, save_layout, ground_truth, xml_file, cpu, out, min_area):
|
config_params_model,
|
||||||
|
patches,
|
||||||
|
save,
|
||||||
|
save_layout,
|
||||||
|
ground_truth,
|
||||||
|
xml_file,
|
||||||
|
cpu,
|
||||||
|
out,
|
||||||
|
min_area,
|
||||||
|
):
|
||||||
self.image=image
|
self.image=image
|
||||||
self.dir_in=dir_in
|
self.dir_in=dir_in
|
||||||
self.patches=patches
|
self.patches=patches
|
||||||
|
|
@ -57,8 +75,9 @@ class sbb_predict:
|
||||||
self.min_area = 0
|
self.min_area = 0
|
||||||
|
|
||||||
def resize_image(self,img_in,input_height,input_width):
|
def resize_image(self,img_in,input_height,input_width):
|
||||||
return cv2.resize( img_in, ( input_width,input_height) ,interpolation=cv2.INTER_NEAREST)
|
return cv2.resize(img_in, (input_width,
|
||||||
|
input_height),
|
||||||
|
interpolation=cv2.INTER_NEAREST)
|
||||||
|
|
||||||
def color_images(self,seg):
|
def color_images(self,seg):
|
||||||
ann_u=range(self.n_classes)
|
ann_u=range(self.n_classes)
|
||||||
|
|
@ -74,68 +93,6 @@ class sbb_predict:
|
||||||
seg_img[:,:,2][seg==c]=c
|
seg_img[:,:,2][seg==c]=c
|
||||||
return seg_img
|
return seg_img
|
||||||
|
|
||||||
def otsu_copy_binary(self,img):
|
|
||||||
img_r=np.zeros((img.shape[0],img.shape[1],3))
|
|
||||||
img1=img[:,:,0]
|
|
||||||
|
|
||||||
#print(img.min())
|
|
||||||
#print(img[:,:,0].min())
|
|
||||||
#blur = cv2.GaussianBlur(img,(5,5))
|
|
||||||
#ret3,th3 = cv2.threshold(blur,0,255,cv2.THRESH_BINARY+cv2.THRESH_OTSU)
|
|
||||||
_, threshold1 = cv2.threshold(img1, 0, 255, cv2.THRESH_BINARY+cv2.THRESH_OTSU)
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
img_r[:,:,0]=threshold1
|
|
||||||
img_r[:,:,1]=threshold1
|
|
||||||
img_r[:,:,2]=threshold1
|
|
||||||
#img_r=img_r/float(np.max(img_r))*255
|
|
||||||
return img_r
|
|
||||||
|
|
||||||
def otsu_copy(self,img):
|
|
||||||
img_r=np.zeros((img.shape[0],img.shape[1],3))
|
|
||||||
#img1=img[:,:,0]
|
|
||||||
|
|
||||||
#print(img.min())
|
|
||||||
#print(img[:,:,0].min())
|
|
||||||
#blur = cv2.GaussianBlur(img,(5,5))
|
|
||||||
#ret3,th3 = cv2.threshold(blur,0,255,cv2.THRESH_BINARY+cv2.THRESH_OTSU)
|
|
||||||
_, threshold1 = cv2.threshold(img[:,:,0], 0, 255, cv2.THRESH_BINARY+cv2.THRESH_OTSU)
|
|
||||||
_, threshold2 = cv2.threshold(img[:,:,1], 0, 255, cv2.THRESH_BINARY+cv2.THRESH_OTSU)
|
|
||||||
_, threshold3 = cv2.threshold(img[:,:,2], 0, 255, cv2.THRESH_BINARY+cv2.THRESH_OTSU)
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
img_r[:,:,0]=threshold1
|
|
||||||
img_r[:,:,1]=threshold2
|
|
||||||
img_r[:,:,2]=threshold3
|
|
||||||
###img_r=img_r/float(np.max(img_r))*255
|
|
||||||
return img_r
|
|
||||||
|
|
||||||
def soft_dice_loss(self,y_true, y_pred, epsilon=1e-6):
|
|
||||||
|
|
||||||
axes = tuple(range(1, len(y_pred.shape)-1))
|
|
||||||
|
|
||||||
numerator = 2. * K.sum(y_pred * y_true, axes)
|
|
||||||
|
|
||||||
denominator = K.sum(K.square(y_pred) + K.square(y_true), axes)
|
|
||||||
return 1.00 - K.mean(numerator / (denominator + epsilon)) # average over classes and batch
|
|
||||||
|
|
||||||
# def weighted_categorical_crossentropy(self,weights=None):
|
|
||||||
#
|
|
||||||
# def loss(y_true, y_pred):
|
|
||||||
# labels_floats = tf.cast(y_true, tf.float32)
|
|
||||||
# per_pixel_loss = tf.nn.sigmoid_cross_entropy_with_logits(labels=labels_floats,logits=y_pred)
|
|
||||||
#
|
|
||||||
# if weights is not None:
|
|
||||||
# weight_mask = tf.maximum(tf.reduce_max(tf.constant(
|
|
||||||
# np.array(weights, dtype=np.float32)[None, None, None])
|
|
||||||
# * labels_floats, axis=-1), 1.0)
|
|
||||||
# per_pixel_loss = per_pixel_loss * weight_mask[:, :, :, None]
|
|
||||||
# return tf.reduce_mean(per_pixel_loss)
|
|
||||||
# return self.loss
|
|
||||||
|
|
||||||
|
|
||||||
def IoU(self,Yi,y_predi):
|
def IoU(self,Yi,y_predi):
|
||||||
## mean Intersection over Union
|
## mean Intersection over Union
|
||||||
## Mean IoU = TP/(FN + TP + FP)
|
## Mean IoU = TP/(FN + TP + FP)
|
||||||
|
|
@ -162,29 +119,33 @@ class sbb_predict:
|
||||||
return mIoU
|
return mIoU
|
||||||
|
|
||||||
def start_new_session_and_model(self):
|
def start_new_session_and_model(self):
|
||||||
if self.task == "cnn-rnn-ocr":
|
if self.cpu:
|
||||||
if self.cpu:
|
tf.config.set_visible_devices([], 'GPU')
|
||||||
os.environ['CUDA_VISIBLE_DEVICES']='-1'
|
|
||||||
self.model = load_model(self.model_dir)
|
|
||||||
self.model = tf.keras.models.Model(
|
|
||||||
self.model.get_layer(name = "image").input,
|
|
||||||
self.model.get_layer(name = "dense2").output)
|
|
||||||
else:
|
else:
|
||||||
config = tf.compat.v1.ConfigProto()
|
try:
|
||||||
config.gpu_options.allow_growth = True
|
for device in tf.config.list_physical_devices('GPU'):
|
||||||
|
tf.config.experimental.set_memory_growth(device, True)
|
||||||
|
except:
|
||||||
|
print("no GPU device available", file=sys.stderr)
|
||||||
|
|
||||||
session = tf.compat.v1.Session(config=config) # tf.InteractiveSession()
|
if self.task == "cnn-rnn-ocr":
|
||||||
tensorflow_backend.set_session(session)
|
self.model = Model(
|
||||||
|
self.model.get_layer(name = "image").input,
|
||||||
|
self.model.get_layer(name = "dense2").output)
|
||||||
|
else:
|
||||||
|
self.model = load_model(self.model_dir, compile=False,
|
||||||
|
custom_objects={"PatchEncoder": PatchEncoder,
|
||||||
|
"Patches": Patches})
|
||||||
|
|
||||||
|
|
||||||
##if self.weights_dir!=None:
|
##if self.weights_dir!=None:
|
||||||
##self.model.load_weights(self.weights_dir)
|
##self.model.load_weights(self.weights_dir)
|
||||||
|
|
||||||
assert isinstance(self.model, Model)
|
assert isinstance(self.model, Model)
|
||||||
if self.task != 'classification' and self.task != 'reading_order':
|
if self.task != 'classification' and self.task != 'reading_order':
|
||||||
self.img_height=self.model.layers[len(self.model.layers)-1].output_shape[1]
|
last = self.model.layers[-1]
|
||||||
self.img_width=self.model.layers[len(self.model.layers)-1].output_shape[2]
|
self.img_height = last.output_shape[1]
|
||||||
self.n_classes=self.model.layers[len(self.model.layers)-1].output_shape[3]
|
self.img_width = last.output_shape[2]
|
||||||
|
self.n_classes = last.output_shape[3]
|
||||||
|
|
||||||
def visualize_model_output(self, prediction, img, task) -> Tuple[NDArray, NDArray]:
|
def visualize_model_output(self, prediction, img, task) -> Tuple[NDArray, NDArray]:
|
||||||
if task == "binarization":
|
if task == "binarization":
|
||||||
|
|
@ -212,21 +173,16 @@ class sbb_predict:
|
||||||
'15' : [255, 0, 255]}
|
'15' : [255, 0, 255]}
|
||||||
|
|
||||||
layout_only = np.zeros(prediction.shape)
|
layout_only = np.zeros(prediction.shape)
|
||||||
|
|
||||||
for unq_class in unique_classes:
|
for unq_class in unique_classes:
|
||||||
|
where = prediction[:,:,0]==unq_class
|
||||||
rgb_class_unique = rgb_colors[str(int(unq_class))]
|
rgb_class_unique = rgb_colors[str(int(unq_class))]
|
||||||
layout_only[:,:,0][prediction[:,:,0]==unq_class] = rgb_class_unique[0]
|
layout_only[:,:,0][where] = rgb_class_unique[0]
|
||||||
layout_only[:,:,1][prediction[:,:,0]==unq_class] = rgb_class_unique[1]
|
layout_only[:,:,1][where] = rgb_class_unique[1]
|
||||||
layout_only[:,:,2][prediction[:,:,0]==unq_class] = rgb_class_unique[2]
|
layout_only[:,:,2][where] = rgb_class_unique[2]
|
||||||
|
layout_only = layout_only.astype(np.int32)
|
||||||
|
|
||||||
|
|
||||||
img = self.resize_image(img, layout_only.shape[0], layout_only.shape[1])
|
img = self.resize_image(img, layout_only.shape[0], layout_only.shape[1])
|
||||||
|
|
||||||
layout_only = layout_only.astype(np.int32)
|
|
||||||
img = img.astype(np.int32)
|
img = img.astype(np.int32)
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
added_image = cv2.addWeighted(img,0.5,layout_only,0.1,0)
|
added_image = cv2.addWeighted(img,0.5,layout_only,0.1,0)
|
||||||
|
|
||||||
|
|
@ -238,10 +194,10 @@ class sbb_predict:
|
||||||
assert isinstance(self.model, Model)
|
assert isinstance(self.model, Model)
|
||||||
if self.task == 'classification':
|
if self.task == 'classification':
|
||||||
classes_names = self.config_params_model['classification_classes_name']
|
classes_names = self.config_params_model['classification_classes_name']
|
||||||
img_1ch = img=cv2.imread(image_dir, 0)
|
img_1ch = cv2.imread(image_dir, 0) / 255.0
|
||||||
|
img_1ch = cv2.resize(img_1ch, (self.config_params_model['input_height'],
|
||||||
img_1ch = img_1ch / 255.0
|
self.config_params_model['input_width']),
|
||||||
img_1ch = cv2.resize(img_1ch, (self.config_params_model['input_height'], self.config_params_model['input_width']), interpolation=cv2.INTER_NEAREST)
|
interpolation=cv2.INTER_NEAREST)
|
||||||
img_in = np.zeros((1, img_1ch.shape[0], img_1ch.shape[1], 3))
|
img_in = np.zeros((1, img_1ch.shape[0], img_1ch.shape[1], 3))
|
||||||
img_in[0, :, :, 0] = img_1ch[:, :]
|
img_in[0, :, :, 0] = img_1ch[:, :]
|
||||||
img_in[0, :, :, 1] = img_1ch[:, :]
|
img_in[0, :, :, 1] = img_1ch[:, :]
|
||||||
|
|
@ -251,6 +207,7 @@ class sbb_predict:
|
||||||
index_class = np.argmax(label_p_pred[0])
|
index_class = np.argmax(label_p_pred[0])
|
||||||
|
|
||||||
print("Predicted Class: {}".format(classes_names[str(int(index_class))]))
|
print("Predicted Class: {}".format(classes_names[str(int(index_class))]))
|
||||||
|
|
||||||
elif self.task == "cnn-rnn-ocr":
|
elif self.task == "cnn-rnn-ocr":
|
||||||
img=cv2.imread(image_dir)
|
img=cv2.imread(image_dir)
|
||||||
img = scale_padd_image_for_ocr(img, self.config_params_model['input_height'], self.config_params_model['input_width'])
|
img = scale_padd_image_for_ocr(img, self.config_params_model['input_height'], self.config_params_model['input_width'])
|
||||||
|
|
@ -279,19 +236,22 @@ class sbb_predict:
|
||||||
img_height = self.config_params_model['input_height']
|
img_height = self.config_params_model['input_height']
|
||||||
img_width = self.config_params_model['input_width']
|
img_width = self.config_params_model['input_width']
|
||||||
|
|
||||||
tree_xml, root_xml, bb_coord_printspace, file_name, id_paragraph, id_header, co_text_paragraph, co_text_header, tot_region_ref, x_len, y_len, index_tot_regions, img_poly = read_xml(self.xml_file)
|
tree_xml, root_xml, ps_bbox, file_name, \
|
||||||
_, cy_main, x_min_main, x_max_main, y_min_main, y_max_main, _ = find_new_features_of_contours(co_text_header)
|
id_paragraph, id_header, \
|
||||||
|
co_text_paragraph, co_text_header, \
|
||||||
|
tot_region_ref, x_len, y_len, index_tot_regions, \
|
||||||
|
img_poly = read_xml(self.xml_file)
|
||||||
|
_, cy_main, x_min_main, x_max_main, y_min_main, y_max_main, _ = \
|
||||||
|
find_new_features_of_contours(co_text_header)
|
||||||
|
|
||||||
img_header_and_sep = np.zeros((y_len,x_len), dtype='uint8')
|
img_header_and_sep = np.zeros((y_len,x_len), dtype='uint8')
|
||||||
|
|
||||||
|
|
||||||
for j in range(len(cy_main)):
|
for j in range(len(cy_main)):
|
||||||
img_header_and_sep[int(y_max_main[j]):int(y_max_main[j])+12,int(x_min_main[j]):int(x_max_main[j]) ] = 1
|
img_header_and_sep[int(y_max_main[j]): int(y_max_main[j]) + 12,
|
||||||
|
int(x_min_main[j]): int(x_max_main[j])] = 1
|
||||||
|
|
||||||
co_text_all = co_text_paragraph + co_text_header
|
co_text_all = co_text_paragraph + co_text_header
|
||||||
id_all_text = id_paragraph + id_header
|
id_all_text = id_paragraph + id_header
|
||||||
|
|
||||||
|
|
||||||
##texts_corr_order_index = [index_tot_regions[tot_region_ref.index(i)] for i in id_all_text ]
|
##texts_corr_order_index = [index_tot_regions[tot_region_ref.index(i)] for i in id_all_text ]
|
||||||
##texts_corr_order_index_int = [int(x) for x in texts_corr_order_index]
|
##texts_corr_order_index_int = [int(x) for x in texts_corr_order_index]
|
||||||
texts_corr_order_index_int = list(np.array(range(len(co_text_all))))
|
texts_corr_order_index_int = list(np.array(range(len(co_text_all))))
|
||||||
|
|
@ -302,7 +262,8 @@ class sbb_predict:
|
||||||
#print(np.shape(co_text_all[0]), len( np.shape(co_text_all[0]) ),'co_text_all')
|
#print(np.shape(co_text_all[0]), len( np.shape(co_text_all[0]) ),'co_text_all')
|
||||||
#co_text_all = filter_contours_area_of_image_tables(img_poly, co_text_all, _, max_area, min_area)
|
#co_text_all = filter_contours_area_of_image_tables(img_poly, co_text_all, _, max_area, min_area)
|
||||||
#print(co_text_all,'co_text_all')
|
#print(co_text_all,'co_text_all')
|
||||||
co_text_all, texts_corr_order_index_int, _ = filter_contours_area_of_image(img_poly, co_text_all, texts_corr_order_index_int, max_area, self.min_area)
|
co_text_all, texts_corr_order_index_int, _ = filter_contours_area_of_image(
|
||||||
|
img_poly, co_text_all, texts_corr_order_index_int, max_area, self.min_area)
|
||||||
|
|
||||||
#print(texts_corr_order_index_int)
|
#print(texts_corr_order_index_int)
|
||||||
|
|
||||||
|
|
@ -315,15 +276,13 @@ class sbb_predict:
|
||||||
img_label=cv2.fillPoly(img_label, pts =[co_text_all[i]], color=(1,1,1))
|
img_label=cv2.fillPoly(img_label, pts =[co_text_all[i]], color=(1,1,1))
|
||||||
labels_con[:,:,i] = img_label[:,:,0]
|
labels_con[:,:,i] = img_label[:,:,0]
|
||||||
|
|
||||||
if bb_coord_printspace:
|
if ps_bbox:
|
||||||
#bb_coord_printspace[x,y,w,h,_,_]
|
labels_con = labels_con[ps_bbox[1]:ps_bbox[3],
|
||||||
x = bb_coord_printspace[0]
|
ps_bbox[0]:ps_bbox[2], :]
|
||||||
y = bb_coord_printspace[1]
|
img_poly = img_poly[ps_bbox[1]:ps_bbox[3],
|
||||||
w = bb_coord_printspace[2]
|
ps_bbox[0]:ps_bbox[2], :]
|
||||||
h = bb_coord_printspace[3]
|
img_header_and_sep = img_header_and_sep[ps_bbox[1]:ps_bbox[3],
|
||||||
labels_con = labels_con[y:y+h, x:x+w, :]
|
ps_bbox[0]:ps_bbox[2]]
|
||||||
img_poly = img_poly[y:y+h, x:x+w, :]
|
|
||||||
img_header_and_sep = img_header_and_sep[y:y+h, x:x+w]
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
@ -709,17 +668,15 @@ class sbb_predict:
|
||||||
help="min area size of regions considered for reading order detection. The default value is zero and means that all text regions are considered for reading order.",
|
help="min area size of regions considered for reading order detection. The default value is zero and means that all text regions are considered for reading order.",
|
||||||
)
|
)
|
||||||
def main(image, dir_in, model, patches, save, save_layout, ground_truth, xml_file, cpu, out, min_area):
|
def main(image, dir_in, model, patches, save, save_layout, ground_truth, xml_file, cpu, out, min_area):
|
||||||
assert image or dir_in, "Either a single image -i or a dir_in -di is required"
|
assert image or dir_in, "Either a single image -i or a dir_in -di input is required"
|
||||||
with open(os.path.join(model,'config.json')) as f:
|
with open(os.path.join(model,'config.json')) as f:
|
||||||
config_params_model = json.load(f)
|
config_params_model = json.load(f)
|
||||||
task = config_params_model['task']
|
task = config_params_model['task']
|
||||||
if task != 'classification' and task != 'reading_order' and task != "cnn-rnn-ocr":
|
if task not in ['classification', 'reading_order', "cnn-rnn-ocr"]:
|
||||||
if image and not save:
|
assert not image or save, "For segmentation or binarization, an input single image -i also requires an output filename -s"
|
||||||
print("Error: You used one of segmentation or binarization task with image input but not set -s, you need a filename to save visualized output with -s")
|
assert not dir_in or out, "For segmentation or binarization, an input directory -di also requires an output directory -o"
|
||||||
sys.exit(1)
|
x = SBBPredict(image, dir_in, model, task, config_params_model,
|
||||||
if dir_in and not out:
|
patches, save, save_layout, ground_truth, xml_file,
|
||||||
print("Error: You used one of segmentation or binarization task with dir_in but not set -out")
|
cpu, out, min_area)
|
||||||
sys.exit(1)
|
|
||||||
x=sbb_predict(image, dir_in, model, task, config_params_model, patches, save, save_layout, ground_truth, xml_file, cpu, out, min_area)
|
|
||||||
x.run()
|
x.run()
|
||||||
|
|
||||||
|
|
|
||||||
|
|
@ -1,9 +1,14 @@
|
||||||
from tensorflow import keras
|
import os
|
||||||
from keras.layers import (
|
|
||||||
|
os.environ['TF_USE_LEGACY_KERAS'] = '1' # avoid Keras 3 after TF 2.15
|
||||||
|
import tensorflow as tf
|
||||||
|
from tensorflow.keras.layers import (
|
||||||
Activation,
|
Activation,
|
||||||
Add,
|
Add,
|
||||||
AveragePooling2D,
|
AveragePooling2D,
|
||||||
BatchNormalization,
|
BatchNormalization,
|
||||||
|
Bidirectional,
|
||||||
|
Conv1D,
|
||||||
Conv2D,
|
Conv2D,
|
||||||
Dense,
|
Dense,
|
||||||
Dropout,
|
Dropout,
|
||||||
|
|
@ -13,30 +18,33 @@ from keras.layers import (
|
||||||
Lambda,
|
Lambda,
|
||||||
Layer,
|
Layer,
|
||||||
LayerNormalization,
|
LayerNormalization,
|
||||||
|
LSTM,
|
||||||
MaxPooling2D,
|
MaxPooling2D,
|
||||||
MultiHeadAttention,
|
MultiHeadAttention,
|
||||||
|
Reshape,
|
||||||
UpSampling2D,
|
UpSampling2D,
|
||||||
ZeroPadding2D,
|
ZeroPadding2D,
|
||||||
add,
|
add,
|
||||||
concatenate
|
concatenate
|
||||||
)
|
)
|
||||||
from keras.models import Model
|
from tensorflow.keras.models import Model
|
||||||
import tensorflow as tf
|
from tensorflow.keras.regularizers import l2
|
||||||
# from keras import layers, models
|
|
||||||
from keras.regularizers import l2
|
|
||||||
|
|
||||||
from eynollah.patch_encoder import Patches, PatchEncoder
|
from ..patch_encoder import Patches, PatchEncoder
|
||||||
|
|
||||||
##mlp_head_units = [512, 256]#[2048, 1024]
|
##mlp_head_units = [512, 256]#[2048, 1024]
|
||||||
###projection_dim = 64
|
###projection_dim = 64
|
||||||
##transformer_layers = 2#8
|
##transformer_layers = 2#8
|
||||||
##num_heads = 1#4
|
##num_heads = 1#4
|
||||||
resnet50_Weights_path = './pretrained_model/resnet50_weights_tf_dim_ordering_tf_kernels_notop.h5'
|
RESNET50_WEIGHTS_PATH = './pretrained_model/resnet50_weights_tf_dim_ordering_tf_kernels_notop.h5'
|
||||||
|
RESNET50_WEIGHTS_URL = ('https://github.com/fchollet/deep-learning-models/releases/download/v0.2/'
|
||||||
|
'resnet50_weights_tf_dim_ordering_tf_kernels_notop.h5')
|
||||||
|
|
||||||
IMAGE_ORDERING = 'channels_last'
|
IMAGE_ORDERING = 'channels_last'
|
||||||
MERGE_AXIS = -1
|
MERGE_AXIS = -1
|
||||||
|
|
||||||
|
|
||||||
class CTCLayer(tf.keras.layers.Layer):
|
class CTCLayer(Layer):
|
||||||
def __init__(self, name=None):
|
def __init__(self, name=None):
|
||||||
super().__init__(name=name)
|
super().__init__(name=name)
|
||||||
self.loss_fn = tf.keras.backend.ctc_batch_cost
|
self.loss_fn = tf.keras.backend.ctc_batch_cost
|
||||||
|
|
@ -61,14 +69,9 @@ def mlp(x, hidden_units, dropout_rate):
|
||||||
return x
|
return x
|
||||||
|
|
||||||
def one_side_pad(x):
|
def one_side_pad(x):
|
||||||
x = ZeroPadding2D((1, 1), data_format=IMAGE_ORDERING)(x)
|
x = ZeroPadding2D(((1, 0), (1, 0)), data_format=IMAGE_ORDERING)(x)
|
||||||
if IMAGE_ORDERING == 'channels_first':
|
|
||||||
x = Lambda(lambda x: x[:, :, :-1, :-1])(x)
|
|
||||||
elif IMAGE_ORDERING == 'channels_last':
|
|
||||||
x = Lambda(lambda x: x[:, :-1, :-1, :])(x)
|
|
||||||
return x
|
return x
|
||||||
|
|
||||||
|
|
||||||
def identity_block(input_tensor, kernel_size, filters, stage, block):
|
def identity_block(input_tensor, kernel_size, filters, stage, block):
|
||||||
"""The identity block is the block that has no conv layer at shortcut.
|
"""The identity block is the block that has no conv layer at shortcut.
|
||||||
# Arguments
|
# Arguments
|
||||||
|
|
@ -151,19 +154,13 @@ def conv_block(input_tensor, kernel_size, filters, stage, block, strides=(2, 2))
|
||||||
x = Activation('relu')(x)
|
x = Activation('relu')(x)
|
||||||
return x
|
return x
|
||||||
|
|
||||||
|
def resnet50(inputs, weight_decay=1e-6, pretraining=False):
|
||||||
def resnet50_unet_light(n_classes, input_height=224, input_width=224, task="segmentation", weight_decay=1e-6, pretraining=False):
|
|
||||||
assert input_height % 32 == 0
|
|
||||||
assert input_width % 32 == 0
|
|
||||||
|
|
||||||
img_input = Input(shape=(input_height, input_width, 3))
|
|
||||||
|
|
||||||
if IMAGE_ORDERING == 'channels_last':
|
if IMAGE_ORDERING == 'channels_last':
|
||||||
bn_axis = 3
|
bn_axis = 3
|
||||||
else:
|
else:
|
||||||
bn_axis = 1
|
bn_axis = 1
|
||||||
|
|
||||||
x = ZeroPadding2D((3, 3), data_format=IMAGE_ORDERING)(img_input)
|
x = ZeroPadding2D((3, 3), data_format=IMAGE_ORDERING)(inputs)
|
||||||
x = Conv2D(64, (7, 7), data_format=IMAGE_ORDERING, strides=(2, 2), kernel_regularizer=l2(weight_decay),
|
x = Conv2D(64, (7, 7), data_format=IMAGE_ORDERING, strides=(2, 2), kernel_regularizer=l2(weight_decay),
|
||||||
name='conv1')(x)
|
name='conv1')(x)
|
||||||
f1 = x
|
f1 = x
|
||||||
|
|
@ -197,61 +194,86 @@ def resnet50_unet_light(n_classes, input_height=224, input_width=224, task="segm
|
||||||
f5 = x
|
f5 = x
|
||||||
|
|
||||||
if pretraining:
|
if pretraining:
|
||||||
model = Model(img_input, x).load_weights(resnet50_Weights_path)
|
model = Model(inputs, x).load_weights(RESNET50_WEIGHTS_PATH)
|
||||||
|
|
||||||
v512_2048 = Conv2D(512, (1, 1), padding='same', data_format=IMAGE_ORDERING, kernel_regularizer=l2(weight_decay))(f5)
|
return f1, f2, f3, f4, f5
|
||||||
v512_2048 = (BatchNormalization(axis=bn_axis))(v512_2048)
|
|
||||||
v512_2048 = Activation('relu')(v512_2048)
|
|
||||||
|
|
||||||
v512_1024 = Conv2D(512, (1, 1), padding='same', data_format=IMAGE_ORDERING, kernel_regularizer=l2(weight_decay))(f4)
|
def unet_decoder(img, f1, f2, f3, f4, f5, n_classes, light=False, task="segmentation", weight_decay=1e-6):
|
||||||
v512_1024 = (BatchNormalization(axis=bn_axis))(v512_1024)
|
if IMAGE_ORDERING == 'channels_last':
|
||||||
v512_1024 = Activation('relu')(v512_1024)
|
bn_axis = 3
|
||||||
|
|
||||||
o = (UpSampling2D((2, 2), data_format=IMAGE_ORDERING))(v512_2048)
|
|
||||||
o = (concatenate([o, v512_1024], axis=MERGE_AXIS))
|
|
||||||
o = (ZeroPadding2D((1, 1), data_format=IMAGE_ORDERING))(o)
|
|
||||||
o = (Conv2D(512, (3, 3), padding='valid', data_format=IMAGE_ORDERING, kernel_regularizer=l2(weight_decay)))(o)
|
|
||||||
o = (BatchNormalization(axis=bn_axis))(o)
|
|
||||||
o = Activation('relu')(o)
|
|
||||||
|
|
||||||
o = (UpSampling2D((2, 2), data_format=IMAGE_ORDERING))(o)
|
|
||||||
o = (concatenate([o, f3], axis=MERGE_AXIS))
|
|
||||||
o = (ZeroPadding2D((1, 1), data_format=IMAGE_ORDERING))(o)
|
|
||||||
o = (Conv2D(256, (3, 3), padding='valid', data_format=IMAGE_ORDERING, kernel_regularizer=l2(weight_decay)))(o)
|
|
||||||
o = (BatchNormalization(axis=bn_axis))(o)
|
|
||||||
o = Activation('relu')(o)
|
|
||||||
|
|
||||||
o = (UpSampling2D((2, 2), data_format=IMAGE_ORDERING))(o)
|
|
||||||
o = (concatenate([o, f2], axis=MERGE_AXIS))
|
|
||||||
o = (ZeroPadding2D((1, 1), data_format=IMAGE_ORDERING))(o)
|
|
||||||
o = (Conv2D(128, (3, 3), padding='valid', data_format=IMAGE_ORDERING, kernel_regularizer=l2(weight_decay)))(o)
|
|
||||||
o = (BatchNormalization(axis=bn_axis))(o)
|
|
||||||
o = Activation('relu')(o)
|
|
||||||
|
|
||||||
o = (UpSampling2D((2, 2), data_format=IMAGE_ORDERING))(o)
|
|
||||||
o = (concatenate([o, f1], axis=MERGE_AXIS))
|
|
||||||
o = (ZeroPadding2D((1, 1), data_format=IMAGE_ORDERING))(o)
|
|
||||||
o = (Conv2D(64, (3, 3), padding='valid', data_format=IMAGE_ORDERING, kernel_regularizer=l2(weight_decay)))(o)
|
|
||||||
o = (BatchNormalization(axis=bn_axis))(o)
|
|
||||||
o = Activation('relu')(o)
|
|
||||||
|
|
||||||
o = (UpSampling2D((2, 2), data_format=IMAGE_ORDERING))(o)
|
|
||||||
o = (concatenate([o, img_input], axis=MERGE_AXIS))
|
|
||||||
o = (ZeroPadding2D((1, 1), data_format=IMAGE_ORDERING))(o)
|
|
||||||
o = (Conv2D(32, (3, 3), padding='valid', data_format=IMAGE_ORDERING, kernel_regularizer=l2(weight_decay)))(o)
|
|
||||||
o = (BatchNormalization(axis=bn_axis))(o)
|
|
||||||
o = Activation('relu')(o)
|
|
||||||
|
|
||||||
o = Conv2D(n_classes, (1, 1), padding='same', data_format=IMAGE_ORDERING, kernel_regularizer=l2(weight_decay))(o)
|
|
||||||
if task == "segmentation":
|
|
||||||
o = (BatchNormalization(axis=bn_axis))(o)
|
|
||||||
o = (Activation('softmax'))(o)
|
|
||||||
else:
|
else:
|
||||||
o = (Activation('sigmoid'))(o)
|
bn_axis = 1
|
||||||
|
|
||||||
model = Model(img_input, o)
|
o = Conv2D(512 if light else 1024, (1, 1), padding='same',
|
||||||
return model
|
data_format=IMAGE_ORDERING, kernel_regularizer=l2(weight_decay))(f5)
|
||||||
|
o = BatchNormalization(axis=bn_axis)(o)
|
||||||
|
o = Activation('relu')(o)
|
||||||
|
|
||||||
|
if light:
|
||||||
|
f4 = Conv2D(512, (1, 1), padding='same',
|
||||||
|
data_format=IMAGE_ORDERING, kernel_regularizer=l2(weight_decay))(f4)
|
||||||
|
f4 = BatchNormalization(axis=bn_axis)(f4)
|
||||||
|
f4 = Activation('relu')(f4)
|
||||||
|
|
||||||
|
o = UpSampling2D((2, 2), data_format=IMAGE_ORDERING)(o)
|
||||||
|
o = concatenate([o, f4], axis=MERGE_AXIS)
|
||||||
|
o = ZeroPadding2D((1, 1), data_format=IMAGE_ORDERING)(o)
|
||||||
|
o = Conv2D(512, (3, 3), padding='valid',
|
||||||
|
data_format=IMAGE_ORDERING, kernel_regularizer=l2(weight_decay))(o)
|
||||||
|
o = BatchNormalization(axis=bn_axis)(o)
|
||||||
|
o = Activation('relu')(o)
|
||||||
|
|
||||||
|
o = UpSampling2D((2, 2), data_format=IMAGE_ORDERING)(o)
|
||||||
|
o = concatenate([o, f3], axis=MERGE_AXIS)
|
||||||
|
o = ZeroPadding2D((1, 1), data_format=IMAGE_ORDERING)(o)
|
||||||
|
o = Conv2D(256, (3, 3), padding='valid',
|
||||||
|
data_format=IMAGE_ORDERING, kernel_regularizer=l2(weight_decay))(o)
|
||||||
|
o = BatchNormalization(axis=bn_axis)(o)
|
||||||
|
o = Activation('relu')(o)
|
||||||
|
|
||||||
|
o = UpSampling2D((2, 2), data_format=IMAGE_ORDERING)(o)
|
||||||
|
o = concatenate([o, f2], axis=MERGE_AXIS)
|
||||||
|
o = ZeroPadding2D((1, 1), data_format=IMAGE_ORDERING)(o)
|
||||||
|
o = Conv2D(128, (3, 3), padding='valid',
|
||||||
|
data_format=IMAGE_ORDERING, kernel_regularizer=l2(weight_decay))(o)
|
||||||
|
o = BatchNormalization(axis=bn_axis)(o)
|
||||||
|
o = Activation('relu')(o)
|
||||||
|
|
||||||
|
o = UpSampling2D((2, 2), data_format=IMAGE_ORDERING)(o)
|
||||||
|
o = concatenate([o, f1], axis=MERGE_AXIS)
|
||||||
|
o = ZeroPadding2D((1, 1), data_format=IMAGE_ORDERING)(o)
|
||||||
|
o = Conv2D(64, (3, 3), padding='valid',
|
||||||
|
data_format=IMAGE_ORDERING, kernel_regularizer=l2(weight_decay))(o)
|
||||||
|
o = BatchNormalization(axis=bn_axis)(o)
|
||||||
|
o = Activation('relu')(o)
|
||||||
|
|
||||||
|
o = UpSampling2D((2, 2), data_format=IMAGE_ORDERING)(o)
|
||||||
|
o = concatenate([o, img], axis=MERGE_AXIS)
|
||||||
|
o = ZeroPadding2D((1, 1), data_format=IMAGE_ORDERING)(o)
|
||||||
|
o = Conv2D(32, (3, 3), padding='valid',
|
||||||
|
data_format=IMAGE_ORDERING, kernel_regularizer=l2(weight_decay))(o)
|
||||||
|
o = BatchNormalization(axis=bn_axis)(o)
|
||||||
|
o = Activation('relu')(o)
|
||||||
|
|
||||||
|
o = Conv2D(n_classes, (1, 1), padding='same',
|
||||||
|
data_format=IMAGE_ORDERING, kernel_regularizer=l2(weight_decay))(o)
|
||||||
|
if task == "segmentation":
|
||||||
|
o = BatchNormalization(axis=bn_axis)(o)
|
||||||
|
o = Activation('softmax')(o)
|
||||||
|
else:
|
||||||
|
o = Activation('sigmoid')(o)
|
||||||
|
|
||||||
|
return Model(img, o)
|
||||||
|
|
||||||
|
def resnet50_unet_light(n_classes, input_height=224, input_width=224, task="segmentation", weight_decay=1e-6, pretraining=False):
|
||||||
|
assert input_height % 32 == 0
|
||||||
|
assert input_width % 32 == 0
|
||||||
|
|
||||||
|
img_input = Input(shape=(input_height, input_width, 3))
|
||||||
|
|
||||||
|
features = resnet50(img_input, weight_decay=weight_decay, pretraining=pretraining)
|
||||||
|
|
||||||
|
return unet_decoder(img_input, *features, n_classes, light=True, task=task, weight_decay=weight_decay)
|
||||||
|
|
||||||
def resnet50_unet(n_classes, input_height=224, input_width=224, task="segmentation", weight_decay=1e-6, pretraining=False):
|
def resnet50_unet(n_classes, input_height=224, input_width=224, task="segmentation", weight_decay=1e-6, pretraining=False):
|
||||||
assert input_height % 32 == 0
|
assert input_height % 32 == 0
|
||||||
|
|
@ -259,162 +281,29 @@ def resnet50_unet(n_classes, input_height=224, input_width=224, task="segmentati
|
||||||
|
|
||||||
img_input = Input(shape=(input_height, input_width, 3))
|
img_input = Input(shape=(input_height, input_width, 3))
|
||||||
|
|
||||||
if IMAGE_ORDERING == 'channels_last':
|
features = resnet50(img_input, weight_decay=weight_decay, pretraining=pretraining)
|
||||||
bn_axis = 3
|
|
||||||
else:
|
|
||||||
bn_axis = 1
|
|
||||||
|
|
||||||
x = ZeroPadding2D((3, 3), data_format=IMAGE_ORDERING)(img_input)
|
return unet_decoder(img_input, *features, n_classes, light=False, task=task, weight_decay=weight_decay)
|
||||||
x = Conv2D(64, (7, 7), data_format=IMAGE_ORDERING, strides=(2, 2), kernel_regularizer=l2(weight_decay),
|
|
||||||
name='conv1')(x)
|
|
||||||
f1 = x
|
|
||||||
|
|
||||||
x = BatchNormalization(axis=bn_axis, name='bn_conv1')(x)
|
def transformer_block(img,
|
||||||
x = Activation('relu')(x)
|
num_patches,
|
||||||
x = MaxPooling2D((3, 3), data_format=IMAGE_ORDERING, strides=(2, 2))(x)
|
patchsize_x,
|
||||||
|
patchsize_y,
|
||||||
x = conv_block(x, 3, [64, 64, 256], stage=2, block='a', strides=(1, 1))
|
mlp_head_units,
|
||||||
x = identity_block(x, 3, [64, 64, 256], stage=2, block='b')
|
n_layers,
|
||||||
x = identity_block(x, 3, [64, 64, 256], stage=2, block='c')
|
num_heads,
|
||||||
f2 = one_side_pad(x)
|
projection_dim):
|
||||||
|
patches = Patches(patchsize_x, patchsize_y)(img)
|
||||||
x = conv_block(x, 3, [128, 128, 512], stage=3, block='a')
|
|
||||||
x = identity_block(x, 3, [128, 128, 512], stage=3, block='b')
|
|
||||||
x = identity_block(x, 3, [128, 128, 512], stage=3, block='c')
|
|
||||||
x = identity_block(x, 3, [128, 128, 512], stage=3, block='d')
|
|
||||||
f3 = x
|
|
||||||
|
|
||||||
x = conv_block(x, 3, [256, 256, 1024], stage=4, block='a')
|
|
||||||
x = identity_block(x, 3, [256, 256, 1024], stage=4, block='b')
|
|
||||||
x = identity_block(x, 3, [256, 256, 1024], stage=4, block='c')
|
|
||||||
x = identity_block(x, 3, [256, 256, 1024], stage=4, block='d')
|
|
||||||
x = identity_block(x, 3, [256, 256, 1024], stage=4, block='e')
|
|
||||||
x = identity_block(x, 3, [256, 256, 1024], stage=4, block='f')
|
|
||||||
f4 = x
|
|
||||||
|
|
||||||
x = conv_block(x, 3, [512, 512, 2048], stage=5, block='a')
|
|
||||||
x = identity_block(x, 3, [512, 512, 2048], stage=5, block='b')
|
|
||||||
x = identity_block(x, 3, [512, 512, 2048], stage=5, block='c')
|
|
||||||
f5 = x
|
|
||||||
|
|
||||||
if pretraining:
|
|
||||||
Model(img_input, x).load_weights(resnet50_Weights_path)
|
|
||||||
|
|
||||||
v1024_2048 = Conv2D(1024, (1, 1), padding='same', data_format=IMAGE_ORDERING, kernel_regularizer=l2(weight_decay))(
|
|
||||||
f5)
|
|
||||||
v1024_2048 = (BatchNormalization(axis=bn_axis))(v1024_2048)
|
|
||||||
v1024_2048 = Activation('relu')(v1024_2048)
|
|
||||||
|
|
||||||
o = (UpSampling2D((2, 2), data_format=IMAGE_ORDERING))(v1024_2048)
|
|
||||||
o = (concatenate([o, f4], axis=MERGE_AXIS))
|
|
||||||
o = (ZeroPadding2D((1, 1), data_format=IMAGE_ORDERING))(o)
|
|
||||||
o = (Conv2D(512, (3, 3), padding='valid', data_format=IMAGE_ORDERING, kernel_regularizer=l2(weight_decay)))(o)
|
|
||||||
o = (BatchNormalization(axis=bn_axis))(o)
|
|
||||||
o = Activation('relu')(o)
|
|
||||||
|
|
||||||
o = (UpSampling2D((2, 2), data_format=IMAGE_ORDERING))(o)
|
|
||||||
o = (concatenate([o, f3], axis=MERGE_AXIS))
|
|
||||||
o = (ZeroPadding2D((1, 1), data_format=IMAGE_ORDERING))(o)
|
|
||||||
o = (Conv2D(256, (3, 3), padding='valid', data_format=IMAGE_ORDERING, kernel_regularizer=l2(weight_decay)))(o)
|
|
||||||
o = (BatchNormalization(axis=bn_axis))(o)
|
|
||||||
o = Activation('relu')(o)
|
|
||||||
|
|
||||||
o = (UpSampling2D((2, 2), data_format=IMAGE_ORDERING))(o)
|
|
||||||
o = (concatenate([o, f2], axis=MERGE_AXIS))
|
|
||||||
o = (ZeroPadding2D((1, 1), data_format=IMAGE_ORDERING))(o)
|
|
||||||
o = (Conv2D(128, (3, 3), padding='valid', data_format=IMAGE_ORDERING, kernel_regularizer=l2(weight_decay)))(o)
|
|
||||||
o = (BatchNormalization(axis=bn_axis))(o)
|
|
||||||
o = Activation('relu')(o)
|
|
||||||
|
|
||||||
o = (UpSampling2D((2, 2), data_format=IMAGE_ORDERING))(o)
|
|
||||||
o = (concatenate([o, f1], axis=MERGE_AXIS))
|
|
||||||
o = (ZeroPadding2D((1, 1), data_format=IMAGE_ORDERING))(o)
|
|
||||||
o = (Conv2D(64, (3, 3), padding='valid', data_format=IMAGE_ORDERING, kernel_regularizer=l2(weight_decay)))(o)
|
|
||||||
o = (BatchNormalization(axis=bn_axis))(o)
|
|
||||||
o = Activation('relu')(o)
|
|
||||||
|
|
||||||
o = (UpSampling2D((2, 2), data_format=IMAGE_ORDERING))(o)
|
|
||||||
o = (concatenate([o, img_input], axis=MERGE_AXIS))
|
|
||||||
o = (ZeroPadding2D((1, 1), data_format=IMAGE_ORDERING))(o)
|
|
||||||
o = (Conv2D(32, (3, 3), padding='valid', data_format=IMAGE_ORDERING, kernel_regularizer=l2(weight_decay)))(o)
|
|
||||||
o = (BatchNormalization(axis=bn_axis))(o)
|
|
||||||
o = Activation('relu')(o)
|
|
||||||
|
|
||||||
o = Conv2D(n_classes, (1, 1), padding='same', data_format=IMAGE_ORDERING, kernel_regularizer=l2(weight_decay))(o)
|
|
||||||
if task == "segmentation":
|
|
||||||
o = (BatchNormalization(axis=bn_axis))(o)
|
|
||||||
o = (Activation('softmax'))(o)
|
|
||||||
else:
|
|
||||||
o = (Activation('sigmoid'))(o)
|
|
||||||
|
|
||||||
model = Model(img_input, o)
|
|
||||||
|
|
||||||
return model
|
|
||||||
|
|
||||||
|
|
||||||
def vit_resnet50_unet(n_classes, patch_size_x, patch_size_y, num_patches, mlp_head_units=None, transformer_layers=8, num_heads =4, projection_dim = 64, input_height=224, input_width=224, task="segmentation", weight_decay=1e-6, pretraining=False):
|
|
||||||
if mlp_head_units is None:
|
|
||||||
mlp_head_units = [128, 64]
|
|
||||||
inputs = Input(shape=(input_height, input_width, 3))
|
|
||||||
|
|
||||||
#transformer_units = [
|
|
||||||
#projection_dim * 2,
|
|
||||||
#projection_dim,
|
|
||||||
#] # Size of the transformer layers
|
|
||||||
IMAGE_ORDERING = 'channels_last'
|
|
||||||
bn_axis=3
|
|
||||||
|
|
||||||
x = ZeroPadding2D((3, 3), data_format=IMAGE_ORDERING)(inputs)
|
|
||||||
x = Conv2D(64, (7, 7), data_format=IMAGE_ORDERING, strides=(2, 2),kernel_regularizer=l2(weight_decay), name='conv1')(x)
|
|
||||||
f1 = x
|
|
||||||
|
|
||||||
x = BatchNormalization(axis=bn_axis, name='bn_conv1')(x)
|
|
||||||
x = Activation('relu')(x)
|
|
||||||
x = MaxPooling2D((3, 3), data_format=IMAGE_ORDERING, strides=(2, 2))(x)
|
|
||||||
|
|
||||||
x = conv_block(x, 3, [64, 64, 256], stage=2, block='a', strides=(1, 1))
|
|
||||||
x = identity_block(x, 3, [64, 64, 256], stage=2, block='b')
|
|
||||||
x = identity_block(x, 3, [64, 64, 256], stage=2, block='c')
|
|
||||||
f2 = one_side_pad(x)
|
|
||||||
|
|
||||||
x = conv_block(x, 3, [128, 128, 512], stage=3, block='a')
|
|
||||||
x = identity_block(x, 3, [128, 128, 512], stage=3, block='b')
|
|
||||||
x = identity_block(x, 3, [128, 128, 512], stage=3, block='c')
|
|
||||||
x = identity_block(x, 3, [128, 128, 512], stage=3, block='d')
|
|
||||||
f3 = x
|
|
||||||
|
|
||||||
x = conv_block(x, 3, [256, 256, 1024], stage=4, block='a')
|
|
||||||
x = identity_block(x, 3, [256, 256, 1024], stage=4, block='b')
|
|
||||||
x = identity_block(x, 3, [256, 256, 1024], stage=4, block='c')
|
|
||||||
x = identity_block(x, 3, [256, 256, 1024], stage=4, block='d')
|
|
||||||
x = identity_block(x, 3, [256, 256, 1024], stage=4, block='e')
|
|
||||||
x = identity_block(x, 3, [256, 256, 1024], stage=4, block='f')
|
|
||||||
f4 = x
|
|
||||||
|
|
||||||
x = conv_block(x, 3, [512, 512, 2048], stage=5, block='a')
|
|
||||||
x = identity_block(x, 3, [512, 512, 2048], stage=5, block='b')
|
|
||||||
x = identity_block(x, 3, [512, 512, 2048], stage=5, block='c')
|
|
||||||
f5 = x
|
|
||||||
|
|
||||||
if pretraining:
|
|
||||||
model = Model(inputs, x).load_weights(resnet50_Weights_path)
|
|
||||||
|
|
||||||
#num_patches = x.shape[1]*x.shape[2]
|
|
||||||
|
|
||||||
#patch_size_y = input_height / x.shape[1]
|
|
||||||
#patch_size_x = input_width / x.shape[2]
|
|
||||||
#patch_size = patch_size_x * patch_size_y
|
|
||||||
patches = Patches(patch_size_x, patch_size_y)(x)
|
|
||||||
# Encode patches.
|
# Encode patches.
|
||||||
encoded_patches = PatchEncoder(num_patches, projection_dim)(patches)
|
encoded_patches = PatchEncoder(num_patches, projection_dim)(patches)
|
||||||
|
|
||||||
for _ in range(transformer_layers):
|
for _ in range(n_layers):
|
||||||
# Layer normalization 1.
|
# Layer normalization 1.
|
||||||
x1 = LayerNormalization(epsilon=1e-6)(encoded_patches)
|
x1 = LayerNormalization(epsilon=1e-6)(encoded_patches)
|
||||||
# Create a multi-head attention layer.
|
# Create a multi-head attention layer.
|
||||||
attention_output = MultiHeadAttention(
|
attention_output = MultiHeadAttention(num_heads=num_heads,
|
||||||
num_heads=num_heads, key_dim=projection_dim, dropout=0.1
|
key_dim=projection_dim,
|
||||||
)(x1, x1)
|
dropout=0.1)(x1, x1)
|
||||||
# Skip connection 1.
|
# Skip connection 1.
|
||||||
x2 = Add()([attention_output, encoded_patches])
|
x2 = Add()([attention_output, encoded_patches])
|
||||||
# Layer normalization 2.
|
# Layer normalization 2.
|
||||||
|
|
@ -423,180 +312,80 @@ def vit_resnet50_unet(n_classes, patch_size_x, patch_size_y, num_patches, mlp_he
|
||||||
x3 = mlp(x3, hidden_units=mlp_head_units, dropout_rate=0.1)
|
x3 = mlp(x3, hidden_units=mlp_head_units, dropout_rate=0.1)
|
||||||
# Skip connection 2.
|
# Skip connection 2.
|
||||||
encoded_patches = Add()([x3, x2])
|
encoded_patches = Add()([x3, x2])
|
||||||
|
|
||||||
assert isinstance(x, Layer)
|
|
||||||
encoded_patches = tf.reshape(encoded_patches, [-1, x.shape[1], x.shape[2] , int( projection_dim / (patch_size_x * patch_size_y) )])
|
|
||||||
|
|
||||||
v1024_2048 = Conv2D( 1024 , (1, 1), padding='same', data_format=IMAGE_ORDERING,kernel_regularizer=l2(weight_decay))(encoded_patches)
|
encoded_patches = tf.reshape(encoded_patches,
|
||||||
v1024_2048 = (BatchNormalization(axis=bn_axis))(v1024_2048)
|
[-1,
|
||||||
v1024_2048 = Activation('relu')(v1024_2048)
|
img.shape[1],
|
||||||
|
img.shape[2],
|
||||||
o = (UpSampling2D( (2, 2), data_format=IMAGE_ORDERING))(v1024_2048)
|
projection_dim // (patchsize_x * patchsize_y)])
|
||||||
o = (concatenate([o, f4],axis=MERGE_AXIS))
|
return encoded_patches
|
||||||
o = (ZeroPadding2D((1, 1), data_format=IMAGE_ORDERING))(o)
|
|
||||||
o = (Conv2D(512, (3, 3), padding='valid', data_format=IMAGE_ORDERING,kernel_regularizer=l2(weight_decay)))(o)
|
|
||||||
o = (BatchNormalization(axis=bn_axis))(o)
|
|
||||||
o = Activation('relu')(o)
|
|
||||||
|
|
||||||
o = (UpSampling2D((2, 2), data_format=IMAGE_ORDERING))(o)
|
|
||||||
o = (concatenate([o ,f3], axis=MERGE_AXIS))
|
|
||||||
o = (ZeroPadding2D((1, 1), data_format=IMAGE_ORDERING))(o)
|
|
||||||
o = (Conv2D(256, (3, 3), padding='valid', data_format=IMAGE_ORDERING,kernel_regularizer=l2(weight_decay)))(o)
|
|
||||||
o = (BatchNormalization(axis=bn_axis))(o)
|
|
||||||
o = Activation('relu')(o)
|
|
||||||
|
|
||||||
o = (UpSampling2D((2, 2), data_format=IMAGE_ORDERING))(o)
|
|
||||||
o = (concatenate([o, f2], axis=MERGE_AXIS))
|
|
||||||
o = (ZeroPadding2D((1, 1), data_format=IMAGE_ORDERING))(o)
|
|
||||||
o = (Conv2D(128, (3, 3), padding='valid', data_format=IMAGE_ORDERING,kernel_regularizer=l2(weight_decay)))(o)
|
|
||||||
o = (BatchNormalization(axis=bn_axis))(o)
|
|
||||||
o = Activation('relu')(o)
|
|
||||||
|
|
||||||
o = (UpSampling2D((2, 2), data_format=IMAGE_ORDERING))(o)
|
|
||||||
o = (concatenate([o, f1], axis=MERGE_AXIS))
|
|
||||||
o = (ZeroPadding2D((1, 1), data_format=IMAGE_ORDERING))(o)
|
|
||||||
o = (Conv2D(64, (3, 3), padding='valid', data_format=IMAGE_ORDERING,kernel_regularizer=l2(weight_decay)))(o)
|
|
||||||
o = (BatchNormalization(axis=bn_axis))(o)
|
|
||||||
o = Activation('relu')(o)
|
|
||||||
|
|
||||||
o = (UpSampling2D((2, 2), data_format=IMAGE_ORDERING))(o)
|
|
||||||
o = (concatenate([o, inputs],axis=MERGE_AXIS))
|
|
||||||
o = (ZeroPadding2D((1, 1), data_format=IMAGE_ORDERING))(o)
|
|
||||||
o = (Conv2D(32, (3, 3), padding='valid', data_format=IMAGE_ORDERING,kernel_regularizer=l2(weight_decay)))(o)
|
|
||||||
o = (BatchNormalization(axis=bn_axis))(o)
|
|
||||||
o = Activation('relu')(o)
|
|
||||||
|
|
||||||
o = Conv2D(n_classes, (1, 1), padding='same', data_format=IMAGE_ORDERING,kernel_regularizer=l2(weight_decay))(o)
|
|
||||||
if task == "segmentation":
|
|
||||||
o = (BatchNormalization(axis=bn_axis))(o)
|
|
||||||
o = (Activation('softmax'))(o)
|
|
||||||
else:
|
|
||||||
o = (Activation('sigmoid'))(o)
|
|
||||||
|
|
||||||
model = Model(inputs=inputs, outputs=o)
|
def vit_resnet50_unet(num_patches,
|
||||||
|
n_classes,
|
||||||
return model
|
transformer_patchsize_x,
|
||||||
|
transformer_patchsize_y,
|
||||||
def vit_resnet50_unet_transformer_before_cnn(n_classes, patch_size_x, patch_size_y, num_patches, mlp_head_units=None, transformer_layers=8, num_heads =4, projection_dim = 64, input_height=224, input_width=224, task="segmentation", weight_decay=1e-6, pretraining=False):
|
transformer_mlp_head_units=None,
|
||||||
if mlp_head_units is None:
|
transformer_layers=8,
|
||||||
mlp_head_units = [128, 64]
|
transformer_num_heads=4,
|
||||||
|
transformer_projection_dim=64,
|
||||||
|
input_height=224,
|
||||||
|
input_width=224,
|
||||||
|
task="segmentation",
|
||||||
|
weight_decay=1e-6,
|
||||||
|
pretraining=False):
|
||||||
|
if transformer_mlp_head_units is None:
|
||||||
|
transformer_mlp_head_units = [128, 64]
|
||||||
inputs = Input(shape=(input_height, input_width, 3))
|
inputs = Input(shape=(input_height, input_width, 3))
|
||||||
|
|
||||||
##transformer_units = [
|
features = resnet50(inputs, weight_decay=weight_decay, pretraining=pretraining)
|
||||||
##projection_dim * 2,
|
|
||||||
##projection_dim,
|
|
||||||
##] # Size of the transformer layers
|
|
||||||
IMAGE_ORDERING = 'channels_last'
|
|
||||||
bn_axis=3
|
|
||||||
|
|
||||||
patches = Patches(patch_size_x, patch_size_y)(inputs)
|
|
||||||
# Encode patches.
|
|
||||||
encoded_patches = PatchEncoder(num_patches, projection_dim)(patches)
|
|
||||||
|
|
||||||
for _ in range(transformer_layers):
|
|
||||||
# Layer normalization 1.
|
|
||||||
x1 = LayerNormalization(epsilon=1e-6)(encoded_patches)
|
|
||||||
# Create a multi-head attention layer.
|
|
||||||
attention_output = MultiHeadAttention(
|
|
||||||
num_heads=num_heads, key_dim=projection_dim, dropout=0.1
|
|
||||||
)(x1, x1)
|
|
||||||
# Skip connection 1.
|
|
||||||
x2 = Add()([attention_output, encoded_patches])
|
|
||||||
# Layer normalization 2.
|
|
||||||
x3 = LayerNormalization(epsilon=1e-6)(x2)
|
|
||||||
# MLP.
|
|
||||||
x3 = mlp(x3, hidden_units=mlp_head_units, dropout_rate=0.1)
|
|
||||||
# Skip connection 2.
|
|
||||||
encoded_patches = Add()([x3, x2])
|
|
||||||
|
|
||||||
encoded_patches = tf.reshape(encoded_patches, [-1, input_height, input_width , int( projection_dim / (patch_size_x * patch_size_y) )])
|
|
||||||
|
|
||||||
encoded_patches = Conv2D(3, (1, 1), padding='same', data_format=IMAGE_ORDERING, kernel_regularizer=l2(weight_decay), name='convinput')(encoded_patches)
|
|
||||||
|
|
||||||
x = ZeroPadding2D((3, 3), data_format=IMAGE_ORDERING)(encoded_patches)
|
|
||||||
x = Conv2D(64, (7, 7), data_format=IMAGE_ORDERING, strides=(2, 2),kernel_regularizer=l2(weight_decay), name='conv1')(x)
|
|
||||||
f1 = x
|
|
||||||
|
|
||||||
x = BatchNormalization(axis=bn_axis, name='bn_conv1')(x)
|
features[-1] = transformer_block(features[-1],
|
||||||
x = Activation('relu')(x)
|
num_patches,
|
||||||
x = MaxPooling2D((3, 3), data_format=IMAGE_ORDERING, strides=(2, 2))(x)
|
transformer_patchsize_x,
|
||||||
|
transformer_patchsize_y,
|
||||||
x = conv_block(x, 3, [64, 64, 256], stage=2, block='a', strides=(1, 1))
|
transformer_mlp_head_units,
|
||||||
x = identity_block(x, 3, [64, 64, 256], stage=2, block='b')
|
transformer_layers,
|
||||||
x = identity_block(x, 3, [64, 64, 256], stage=2, block='c')
|
transformer_num_heads,
|
||||||
f2 = one_side_pad(x)
|
transformer_projection_dim)
|
||||||
|
|
||||||
x = conv_block(x, 3, [128, 128, 512], stage=3, block='a')
|
o = unet_decoder(inputs, *features, n_classes, task=task, weight_decay=weight_decay)
|
||||||
x = identity_block(x, 3, [128, 128, 512], stage=3, block='b')
|
|
||||||
x = identity_block(x, 3, [128, 128, 512], stage=3, block='c')
|
|
||||||
x = identity_block(x, 3, [128, 128, 512], stage=3, block='d')
|
|
||||||
f3 = x
|
|
||||||
|
|
||||||
x = conv_block(x, 3, [256, 256, 1024], stage=4, block='a')
|
return Model(inputs, o)
|
||||||
x = identity_block(x, 3, [256, 256, 1024], stage=4, block='b')
|
|
||||||
x = identity_block(x, 3, [256, 256, 1024], stage=4, block='c')
|
|
||||||
x = identity_block(x, 3, [256, 256, 1024], stage=4, block='d')
|
|
||||||
x = identity_block(x, 3, [256, 256, 1024], stage=4, block='e')
|
|
||||||
x = identity_block(x, 3, [256, 256, 1024], stage=4, block='f')
|
|
||||||
f4 = x
|
|
||||||
|
|
||||||
x = conv_block(x, 3, [512, 512, 2048], stage=5, block='a')
|
def vit_resnet50_unet_transformer_before_cnn(num_patches,
|
||||||
x = identity_block(x, 3, [512, 512, 2048], stage=5, block='b')
|
n_classes,
|
||||||
x = identity_block(x, 3, [512, 512, 2048], stage=5, block='c')
|
transformer_patchsize_x,
|
||||||
f5 = x
|
transformer_patchsize_y,
|
||||||
|
transformer_mlp_head_units=None,
|
||||||
if pretraining:
|
transformer_layers=8,
|
||||||
model = Model(encoded_patches, x).load_weights(resnet50_Weights_path)
|
transformer_num_heads=4,
|
||||||
|
transformer_projection_dim=64,
|
||||||
|
input_height=224,
|
||||||
|
input_width=224,
|
||||||
|
task="segmentation",
|
||||||
|
weight_decay=1e-6,
|
||||||
|
pretraining=False):
|
||||||
|
if transformer_mlp_head_units is None:
|
||||||
|
transformer_mlp_head_units = [128, 64]
|
||||||
|
inputs = Input(shape=(input_height, input_width, 3))
|
||||||
|
|
||||||
v1024_2048 = Conv2D( 1024 , (1, 1), padding='same', data_format=IMAGE_ORDERING,kernel_regularizer=l2(weight_decay))(x)
|
encoded_patches = transformer_block(inputs,
|
||||||
v1024_2048 = (BatchNormalization(axis=bn_axis))(v1024_2048)
|
num_patches,
|
||||||
v1024_2048 = Activation('relu')(v1024_2048)
|
transformer_patchsize_x,
|
||||||
|
transformer_patchsize_y,
|
||||||
o = (UpSampling2D( (2, 2), data_format=IMAGE_ORDERING))(v1024_2048)
|
transformer_mlp_head_units,
|
||||||
o = (concatenate([o, f4],axis=MERGE_AXIS))
|
transformer_layers,
|
||||||
o = (ZeroPadding2D((1, 1), data_format=IMAGE_ORDERING))(o)
|
transformer_num_heads,
|
||||||
o = (Conv2D(512, (3, 3), padding='valid', data_format=IMAGE_ORDERING,kernel_regularizer=l2(weight_decay)))(o)
|
transformer_projection_dim)
|
||||||
o = (BatchNormalization(axis=bn_axis))(o)
|
encoded_patches = Conv2D(3, (1, 1), padding='same',
|
||||||
o = Activation('relu')(o)
|
data_format=IMAGE_ORDERING, kernel_regularizer=l2(weight_decay),
|
||||||
|
name='convinput')(encoded_patches)
|
||||||
o = (UpSampling2D((2, 2), data_format=IMAGE_ORDERING))(o)
|
|
||||||
o = (concatenate([o ,f3], axis=MERGE_AXIS))
|
|
||||||
o = (ZeroPadding2D((1, 1), data_format=IMAGE_ORDERING))(o)
|
|
||||||
o = (Conv2D(256, (3, 3), padding='valid', data_format=IMAGE_ORDERING,kernel_regularizer=l2(weight_decay)))(o)
|
|
||||||
o = (BatchNormalization(axis=bn_axis))(o)
|
|
||||||
o = Activation('relu')(o)
|
|
||||||
|
|
||||||
o = (UpSampling2D((2, 2), data_format=IMAGE_ORDERING))(o)
|
|
||||||
o = (concatenate([o, f2], axis=MERGE_AXIS))
|
|
||||||
o = (ZeroPadding2D((1, 1), data_format=IMAGE_ORDERING))(o)
|
|
||||||
o = (Conv2D(128, (3, 3), padding='valid', data_format=IMAGE_ORDERING,kernel_regularizer=l2(weight_decay)))(o)
|
|
||||||
o = (BatchNormalization(axis=bn_axis))(o)
|
|
||||||
o = Activation('relu')(o)
|
|
||||||
|
|
||||||
o = (UpSampling2D((2, 2), data_format=IMAGE_ORDERING))(o)
|
|
||||||
o = (concatenate([o, f1], axis=MERGE_AXIS))
|
|
||||||
o = (ZeroPadding2D((1, 1), data_format=IMAGE_ORDERING))(o)
|
|
||||||
o = (Conv2D(64, (3, 3), padding='valid', data_format=IMAGE_ORDERING,kernel_regularizer=l2(weight_decay)))(o)
|
|
||||||
o = (BatchNormalization(axis=bn_axis))(o)
|
|
||||||
o = Activation('relu')(o)
|
|
||||||
|
|
||||||
o = (UpSampling2D((2, 2), data_format=IMAGE_ORDERING))(o)
|
|
||||||
o = (concatenate([o, inputs],axis=MERGE_AXIS))
|
|
||||||
o = (ZeroPadding2D((1, 1), data_format=IMAGE_ORDERING))(o)
|
|
||||||
o = (Conv2D(32, (3, 3), padding='valid', data_format=IMAGE_ORDERING,kernel_regularizer=l2(weight_decay)))(o)
|
|
||||||
o = (BatchNormalization(axis=bn_axis))(o)
|
|
||||||
o = Activation('relu')(o)
|
|
||||||
|
|
||||||
o = Conv2D(n_classes, (1, 1), padding='same', data_format=IMAGE_ORDERING,kernel_regularizer=l2(weight_decay))(o)
|
|
||||||
if task == "segmentation":
|
|
||||||
o = (BatchNormalization(axis=bn_axis))(o)
|
|
||||||
o = (Activation('softmax'))(o)
|
|
||||||
else:
|
|
||||||
o = (Activation('sigmoid'))(o)
|
|
||||||
|
|
||||||
model = Model(inputs=inputs, outputs=o)
|
features = resnet50(encoded_patches, weight_decay=weight_decay, pretraining=pretraining)
|
||||||
|
|
||||||
|
o = unet_decoder(inputs, *features, n_classes, task=task, weight_decay=weight_decay)
|
||||||
|
|
||||||
return model
|
return Model(inputs, o)
|
||||||
|
|
||||||
def resnet50_classifier(n_classes,input_height=224,input_width=224,weight_decay=1e-6,pretraining=False):
|
def resnet50_classifier(n_classes,input_height=224,input_width=224,weight_decay=1e-6,pretraining=False):
|
||||||
include_top=True
|
include_top=True
|
||||||
|
|
@ -606,47 +395,7 @@ def resnet50_classifier(n_classes,input_height=224,input_width=224,weight_decay=
|
||||||
|
|
||||||
img_input = Input(shape=(input_height,input_width , 3 ))
|
img_input = Input(shape=(input_height,input_width , 3 ))
|
||||||
|
|
||||||
if IMAGE_ORDERING == 'channels_last':
|
_, _, _, _, x = resnet50(img_input, weight_decay, pretraining)
|
||||||
bn_axis = 3
|
|
||||||
else:
|
|
||||||
bn_axis = 1
|
|
||||||
|
|
||||||
x = ZeroPadding2D((3, 3), data_format=IMAGE_ORDERING)(img_input)
|
|
||||||
x = Conv2D(64, (7, 7), data_format=IMAGE_ORDERING, strides=(2, 2),kernel_regularizer=l2(weight_decay), name='conv1')(x)
|
|
||||||
f1 = x
|
|
||||||
|
|
||||||
x = BatchNormalization(axis=bn_axis, name='bn_conv1')(x)
|
|
||||||
x = Activation('relu')(x)
|
|
||||||
x = MaxPooling2D((3, 3) , data_format=IMAGE_ORDERING , strides=(2, 2))(x)
|
|
||||||
|
|
||||||
|
|
||||||
x = conv_block(x, 3, [64, 64, 256], stage=2, block='a', strides=(1, 1))
|
|
||||||
x = identity_block(x, 3, [64, 64, 256], stage=2, block='b')
|
|
||||||
x = identity_block(x, 3, [64, 64, 256], stage=2, block='c')
|
|
||||||
f2 = one_side_pad(x )
|
|
||||||
|
|
||||||
|
|
||||||
x = conv_block(x, 3, [128, 128, 512], stage=3, block='a')
|
|
||||||
x = identity_block(x, 3, [128, 128, 512], stage=3, block='b')
|
|
||||||
x = identity_block(x, 3, [128, 128, 512], stage=3, block='c')
|
|
||||||
x = identity_block(x, 3, [128, 128, 512], stage=3, block='d')
|
|
||||||
f3 = x
|
|
||||||
|
|
||||||
x = conv_block(x, 3, [256, 256, 1024], stage=4, block='a')
|
|
||||||
x = identity_block(x, 3, [256, 256, 1024], stage=4, block='b')
|
|
||||||
x = identity_block(x, 3, [256, 256, 1024], stage=4, block='c')
|
|
||||||
x = identity_block(x, 3, [256, 256, 1024], stage=4, block='d')
|
|
||||||
x = identity_block(x, 3, [256, 256, 1024], stage=4, block='e')
|
|
||||||
x = identity_block(x, 3, [256, 256, 1024], stage=4, block='f')
|
|
||||||
f4 = x
|
|
||||||
|
|
||||||
x = conv_block(x, 3, [512, 512, 2048], stage=5, block='a')
|
|
||||||
x = identity_block(x, 3, [512, 512, 2048], stage=5, block='b')
|
|
||||||
x = identity_block(x, 3, [512, 512, 2048], stage=5, block='c')
|
|
||||||
f5 = x
|
|
||||||
|
|
||||||
if pretraining:
|
|
||||||
Model(img_input, x).load_weights(resnet50_Weights_path)
|
|
||||||
|
|
||||||
x = AveragePooling2D((7, 7), name='avg_pool')(x)
|
x = AveragePooling2D((7, 7), name='avg_pool')(x)
|
||||||
x = Flatten()(x)
|
x = Flatten()(x)
|
||||||
|
|
@ -658,9 +407,6 @@ def resnet50_classifier(n_classes,input_height=224,input_width=224,weight_decay=
|
||||||
x = Dense(n_classes, activation='softmax', name='fc1000')(x)
|
x = Dense(n_classes, activation='softmax', name='fc1000')(x)
|
||||||
model = Model(img_input, x)
|
model = Model(img_input, x)
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
return model
|
return model
|
||||||
|
|
||||||
def machine_based_reading_order_model(n_classes,input_height=224,input_width=224,weight_decay=1e-6,pretraining=False):
|
def machine_based_reading_order_model(n_classes,input_height=224,input_width=224,weight_decay=1e-6,pretraining=False):
|
||||||
|
|
@ -669,43 +415,10 @@ def machine_based_reading_order_model(n_classes,input_height=224,input_width=224
|
||||||
|
|
||||||
img_input = Input(shape=(input_height,input_width , 3 ))
|
img_input = Input(shape=(input_height,input_width , 3 ))
|
||||||
|
|
||||||
if IMAGE_ORDERING == 'channels_last':
|
_, _, _, _, x = resnet50(img_input, weight_decay, pretraining)
|
||||||
bn_axis = 3
|
|
||||||
else:
|
|
||||||
bn_axis = 1
|
|
||||||
|
|
||||||
x1 = ZeroPadding2D((3, 3), data_format=IMAGE_ORDERING)(img_input)
|
|
||||||
x1 = Conv2D(64, (7, 7), data_format=IMAGE_ORDERING, strides=(2, 2),kernel_regularizer=l2(weight_decay), name='conv1')(x1)
|
|
||||||
|
|
||||||
x1 = BatchNormalization(axis=bn_axis, name='bn_conv1')(x1)
|
|
||||||
x1 = Activation('relu')(x1)
|
|
||||||
x1 = MaxPooling2D((3, 3) , data_format=IMAGE_ORDERING , strides=(2, 2))(x1)
|
|
||||||
|
|
||||||
x1 = conv_block(x1, 3, [64, 64, 256], stage=2, block='a', strides=(1, 1))
|
x = AveragePooling2D((7, 7), name='avg_pool1')(x)
|
||||||
x1 = identity_block(x1, 3, [64, 64, 256], stage=2, block='b')
|
flattened = Flatten()(x)
|
||||||
x1 = identity_block(x1, 3, [64, 64, 256], stage=2, block='c')
|
|
||||||
|
|
||||||
x1 = conv_block(x1, 3, [128, 128, 512], stage=3, block='a')
|
|
||||||
x1 = identity_block(x1, 3, [128, 128, 512], stage=3, block='b')
|
|
||||||
x1 = identity_block(x1, 3, [128, 128, 512], stage=3, block='c')
|
|
||||||
x1 = identity_block(x1, 3, [128, 128, 512], stage=3, block='d')
|
|
||||||
|
|
||||||
x1 = conv_block(x1, 3, [256, 256, 1024], stage=4, block='a')
|
|
||||||
x1 = identity_block(x1, 3, [256, 256, 1024], stage=4, block='b')
|
|
||||||
x1 = identity_block(x1, 3, [256, 256, 1024], stage=4, block='c')
|
|
||||||
x1 = identity_block(x1, 3, [256, 256, 1024], stage=4, block='d')
|
|
||||||
x1 = identity_block(x1, 3, [256, 256, 1024], stage=4, block='e')
|
|
||||||
x1 = identity_block(x1, 3, [256, 256, 1024], stage=4, block='f')
|
|
||||||
|
|
||||||
x1 = conv_block(x1, 3, [512, 512, 2048], stage=5, block='a')
|
|
||||||
x1 = identity_block(x1, 3, [512, 512, 2048], stage=5, block='b')
|
|
||||||
x1 = identity_block(x1, 3, [512, 512, 2048], stage=5, block='c')
|
|
||||||
|
|
||||||
if pretraining:
|
|
||||||
Model(img_input , x1).load_weights(resnet50_Weights_path)
|
|
||||||
|
|
||||||
x1 = AveragePooling2D((7, 7), name='avg_pool1')(x1)
|
|
||||||
flattened = Flatten()(x1)
|
|
||||||
|
|
||||||
o = Dense(256, activation='relu', name='fc512')(flattened)
|
o = Dense(256, activation='relu', name='fc512')(flattened)
|
||||||
o=Dropout(0.2)(o)
|
o=Dropout(0.2)(o)
|
||||||
|
|
@ -719,83 +432,79 @@ def machine_based_reading_order_model(n_classes,input_height=224,input_width=224
|
||||||
return model
|
return model
|
||||||
|
|
||||||
def cnn_rnn_ocr_model(image_height=None, image_width=None, n_classes=None, max_seq=None):
|
def cnn_rnn_ocr_model(image_height=None, image_width=None, n_classes=None, max_seq=None):
|
||||||
input_img = tf.keras.Input(shape=(image_height, image_width, 3), name="image")
|
input_img = Input(shape=(image_height, image_width, 3), name="image")
|
||||||
labels = tf.keras.layers.Input(name="label", shape=(None,))
|
labels = Input(name="label", shape=(None,))
|
||||||
|
|
||||||
x = tf.keras.layers.Conv2D(64,kernel_size=(3,3),padding="same")(input_img)
|
x = Conv2D(64,kernel_size=(3,3),padding="same")(input_img)
|
||||||
x = tf.keras.layers.BatchNormalization(name="bn1")(x)
|
x = BatchNormalization(name="bn1")(x)
|
||||||
x = tf.keras.layers.Activation("relu", name="relu1")(x)
|
x = Activation("relu", name="relu1")(x)
|
||||||
x = tf.keras.layers.Conv2D(64,kernel_size=(3,3),padding="same")(x)
|
x = Conv2D(64,kernel_size=(3,3),padding="same")(x)
|
||||||
x = tf.keras.layers.BatchNormalization(name="bn2")(x)
|
x = BatchNormalization(name="bn2")(x)
|
||||||
x = tf.keras.layers.Activation("relu", name="relu2")(x)
|
x = Activation("relu", name="relu2")(x)
|
||||||
x = tf.keras.layers.MaxPool2D(pool_size=(1,2),strides=(1,2))(x)
|
x = MaxPooling2D(pool_size=(1,2),strides=(1,2))(x)
|
||||||
|
|
||||||
x = tf.keras.layers.Conv2D(128,kernel_size=(3,3),padding="same")(x)
|
x = Conv2D(128,kernel_size=(3,3),padding="same")(x)
|
||||||
x = tf.keras.layers.BatchNormalization(name="bn3")(x)
|
x = BatchNormalization(name="bn3")(x)
|
||||||
x = tf.keras.layers.Activation("relu", name="relu3")(x)
|
x = Activation("relu", name="relu3")(x)
|
||||||
x = tf.keras.layers.Conv2D(128,kernel_size=(3,3),padding="same")(x)
|
x = Conv2D(128,kernel_size=(3,3),padding="same")(x)
|
||||||
x = tf.keras.layers.BatchNormalization(name="bn4")(x)
|
x = BatchNormalization(name="bn4")(x)
|
||||||
x = tf.keras.layers.Activation("relu", name="relu4")(x)
|
x = Activation("relu", name="relu4")(x)
|
||||||
x = tf.keras.layers.MaxPool2D(pool_size=(1,2),strides=(1,2))(x)
|
x = MaxPooling2D(pool_size=(1,2),strides=(1,2))(x)
|
||||||
|
|
||||||
x = tf.keras.layers.Conv2D(256,kernel_size=(3,3),padding="same")(x)
|
x = Conv2D(256,kernel_size=(3,3),padding="same")(x)
|
||||||
x = tf.keras.layers.BatchNormalization(name="bn5")(x)
|
x = BatchNormalization(name="bn5")(x)
|
||||||
x = tf.keras.layers.Activation("relu", name="relu5")(x)
|
x = Activation("relu", name="relu5")(x)
|
||||||
x = tf.keras.layers.Conv2D(256,kernel_size=(3,3),padding="same")(x)
|
x = Conv2D(256,kernel_size=(3,3),padding="same")(x)
|
||||||
x = tf.keras.layers.BatchNormalization(name="bn6")(x)
|
x = BatchNormalization(name="bn6")(x)
|
||||||
x = tf.keras.layers.Activation("relu", name="relu6")(x)
|
x = Activation("relu", name="relu6")(x)
|
||||||
x = tf.keras.layers.MaxPool2D(pool_size=(2,2),strides=(2,2))(x)
|
x = MaxPooling2D(pool_size=(2,2),strides=(2,2))(x)
|
||||||
|
|
||||||
x = tf.keras.layers.Conv2D(image_width,kernel_size=(3,3),padding="same")(x)
|
x = Conv2D(image_width,kernel_size=(3,3),padding="same")(x)
|
||||||
x = tf.keras.layers.BatchNormalization(name="bn7")(x)
|
x = BatchNormalization(name="bn7")(x)
|
||||||
x = tf.keras.layers.Activation("relu", name="relu7")(x)
|
x = Activation("relu", name="relu7")(x)
|
||||||
x = tf.keras.layers.Conv2D(image_width,kernel_size=(16,1))(x)
|
x = Conv2D(image_width,kernel_size=(16,1))(x)
|
||||||
x = tf.keras.layers.BatchNormalization(name="bn8")(x)
|
x = BatchNormalization(name="bn8")(x)
|
||||||
x = tf.keras.layers.Activation("relu", name="relu8")(x)
|
x = Activation("relu", name="relu8")(x)
|
||||||
x2d = tf.keras.layers.MaxPool2D(pool_size=(1,2),strides=(1,2))(x)
|
x2d = MaxPooling2D(pool_size=(1,2),strides=(1,2))(x)
|
||||||
x4d = tf.keras.layers.MaxPool2D(pool_size=(1,2),strides=(1,2))(x2d)
|
x4d = MaxPooling2D(pool_size=(1,2),strides=(1,2))(x2d)
|
||||||
|
|
||||||
|
|
||||||
new_shape = (x.shape[1]*x.shape[2], x.shape[3])
|
new_shape = (x.shape[1]*x.shape[2], x.shape[3])
|
||||||
new_shape2 = (x2d.shape[1]*x2d.shape[2], x2d.shape[3])
|
new_shape2 = (x2d.shape[1]*x2d.shape[2], x2d.shape[3])
|
||||||
new_shape4 = (x4d.shape[1]*x4d.shape[2], x4d.shape[3])
|
new_shape4 = (x4d.shape[1]*x4d.shape[2], x4d.shape[3])
|
||||||
|
|
||||||
x = tf.keras.layers.Reshape(target_shape=new_shape, name="reshape")(x)
|
x = Reshape(target_shape=new_shape, name="reshape")(x)
|
||||||
x2d = tf.keras.layers.Reshape(target_shape=new_shape2, name="reshape2")(x2d)
|
x2d = Reshape(target_shape=new_shape2, name="reshape2")(x2d)
|
||||||
x4d = tf.keras.layers.Reshape(target_shape=new_shape4, name="reshape4")(x4d)
|
x4d = Reshape(target_shape=new_shape4, name="reshape4")(x4d)
|
||||||
|
|
||||||
|
xrnnorg = Bidirectional(LSTM(image_width, return_sequences=True, dropout=0.25))(x)
|
||||||
|
xrnn2d = Bidirectional(LSTM(image_width, return_sequences=True, dropout=0.25))(x2d)
|
||||||
|
xrnn4d = Bidirectional(LSTM(image_width, return_sequences=True, dropout=0.25))(x4d)
|
||||||
|
|
||||||
|
xrnn2d = Reshape(target_shape=(1, xrnn2d.shape[1], xrnn2d.shape[2]), name="reshape6")(xrnn2d)
|
||||||
|
xrnn4d = Reshape(target_shape=(1, xrnn4d.shape[1], xrnn4d.shape[2]), name="reshape8")(xrnn4d)
|
||||||
|
|
||||||
|
|
||||||
xrnnorg = tf.keras.layers.Bidirectional(tf.keras.layers.LSTM(image_width, return_sequences=True, dropout=0.25))(x)
|
xrnn2dup = UpSampling2D(size=(1, 2), interpolation="nearest")(xrnn2d)
|
||||||
xrnn2d = tf.keras.layers.Bidirectional(tf.keras.layers.LSTM(image_width, return_sequences=True, dropout=0.25))(x2d)
|
xrnn4dup = UpSampling2D(size=(1, 4), interpolation="nearest")(xrnn4d)
|
||||||
xrnn4d = tf.keras.layers.Bidirectional(tf.keras.layers.LSTM(image_width, return_sequences=True, dropout=0.25))(x4d)
|
|
||||||
|
|
||||||
xrnn2d = tf.keras.layers.Reshape(target_shape=(1, xrnn2d.shape[1], xrnn2d.shape[2]), name="reshape6")(xrnn2d)
|
|
||||||
xrnn4d = tf.keras.layers.Reshape(target_shape=(1, xrnn4d.shape[1], xrnn4d.shape[2]), name="reshape8")(xrnn4d)
|
|
||||||
|
|
||||||
|
xrnn2dup = Reshape(target_shape=(xrnn2dup.shape[2], xrnn2dup.shape[3]), name="reshape10")(xrnn2dup)
|
||||||
|
xrnn4dup = Reshape(target_shape=(xrnn4dup.shape[2], xrnn4dup.shape[3]), name="reshape12")(xrnn4dup)
|
||||||
|
|
||||||
xrnn2dup = tf.keras.layers.UpSampling2D(size=(1, 2), interpolation="nearest")(xrnn2d)
|
addition = Add()([xrnnorg, xrnn2dup, xrnn4dup])
|
||||||
xrnn4dup = tf.keras.layers.UpSampling2D(size=(1, 4), interpolation="nearest")(xrnn4d)
|
|
||||||
|
|
||||||
xrnn2dup = tf.keras.layers.Reshape(target_shape=(xrnn2dup.shape[2], xrnn2dup.shape[3]), name="reshape10")(xrnn2dup)
|
addition_rnn = Bidirectional(LSTM(image_width, return_sequences=True, dropout=0.25))(addition)
|
||||||
xrnn4dup = tf.keras.layers.Reshape(target_shape=(xrnn4dup.shape[2], xrnn4dup.shape[3]), name="reshape12")(xrnn4dup)
|
|
||||||
|
out = Conv1D(max_seq, 1, data_format="channels_first")(addition_rnn)
|
||||||
|
out = BatchNormalization(name="bn9")(out)
|
||||||
|
out = Activation("relu", name="relu9")(out)
|
||||||
|
#out = Conv1D(n_classes, 1, activation='relu', data_format="channels_last")(out)
|
||||||
|
|
||||||
addition = tf.keras.layers.Add()([xrnnorg, xrnn2dup, xrnn4dup])
|
out = Dense(n_classes, activation="softmax", name="dense2")(out)
|
||||||
|
|
||||||
addition_rnn = tf.keras.layers.Bidirectional(tf.keras.layers.LSTM(image_width, return_sequences=True, dropout=0.25))(addition)
|
|
||||||
|
|
||||||
out = tf.keras.layers.Conv1D(max_seq, 1, data_format="channels_first")(addition_rnn)
|
|
||||||
out = tf.keras.layers.BatchNormalization(name="bn9")(out)
|
|
||||||
out = tf.keras.layers.Activation("relu", name="relu9")(out)
|
|
||||||
#out = tf.keras.layers.Conv1D(n_classes, 1, activation='relu', data_format="channels_last")(out)
|
|
||||||
|
|
||||||
out = tf.keras.layers.Dense(
|
|
||||||
n_classes, activation="softmax", name="dense2"
|
|
||||||
)(out)
|
|
||||||
|
|
||||||
# Add CTC layer for calculating CTC loss at each step.
|
# Add CTC layer for calculating CTC loss at each step.
|
||||||
output = CTCLayer(name="ctc_loss")(labels, out)
|
output = CTCLayer(name="ctc_loss")(labels, out)
|
||||||
|
|
||||||
model = tf.keras.models.Model(inputs=[input_img, labels], outputs=output, name="handwriting_recognizer")
|
model = Model(inputs=[input_img, labels], outputs=output, name="handwriting_recognizer")
|
||||||
|
|
||||||
return model
|
return model
|
||||||
|
|
||||||
|
|
|
||||||
File diff suppressed because it is too large
Load diff
File diff suppressed because it is too large
Load diff
|
|
@ -1,136 +1,66 @@
|
||||||
import sys
|
|
||||||
from glob import glob
|
|
||||||
from os import environ, devnull
|
|
||||||
from os.path import join
|
|
||||||
from warnings import catch_warnings, simplefilter
|
|
||||||
import os
|
import os
|
||||||
|
from warnings import catch_warnings, simplefilter
|
||||||
|
|
||||||
|
import click
|
||||||
import numpy as np
|
import numpy as np
|
||||||
from PIL import Image
|
|
||||||
import cv2
|
os.environ['TF_USE_LEGACY_KERAS'] = '1' # avoid Keras 3 after TF 2.15
|
||||||
environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
|
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
|
||||||
stderr = sys.stderr
|
|
||||||
sys.stderr = open(devnull, 'w')
|
from ocrd_utils import tf_disable_interactive_logs
|
||||||
|
tf_disable_interactive_logs()
|
||||||
import tensorflow as tf
|
import tensorflow as tf
|
||||||
from tensorflow.keras.models import load_model
|
from tensorflow.keras.models import load_model
|
||||||
from tensorflow.python.keras import backend as tensorflow_backend
|
|
||||||
sys.stderr = stderr
|
|
||||||
from tensorflow.keras import layers
|
|
||||||
import tensorflow.keras.losses
|
|
||||||
from tensorflow.keras.layers import *
|
|
||||||
import click
|
|
||||||
import logging
|
|
||||||
|
|
||||||
|
from ..patch_encoder import (
|
||||||
class Patches(layers.Layer):
|
PatchEncoder,
|
||||||
def __init__(self, patch_size_x, patch_size_y):
|
Patches,
|
||||||
super(Patches, self).__init__()
|
)
|
||||||
self.patch_size_x = patch_size_x
|
|
||||||
self.patch_size_y = patch_size_y
|
|
||||||
|
|
||||||
def call(self, images):
|
|
||||||
#print(tf.shape(images)[1],'images')
|
|
||||||
#print(self.patch_size,'self.patch_size')
|
|
||||||
batch_size = tf.shape(images)[0]
|
|
||||||
patches = tf.image.extract_patches(
|
|
||||||
images=images,
|
|
||||||
sizes=[1, self.patch_size_y, self.patch_size_x, 1],
|
|
||||||
strides=[1, self.patch_size_y, self.patch_size_x, 1],
|
|
||||||
rates=[1, 1, 1, 1],
|
|
||||||
padding="VALID",
|
|
||||||
)
|
|
||||||
#patch_dims = patches.shape[-1]
|
|
||||||
patch_dims = tf.shape(patches)[-1]
|
|
||||||
patches = tf.reshape(patches, [batch_size, -1, patch_dims])
|
|
||||||
return patches
|
|
||||||
def get_config(self):
|
|
||||||
|
|
||||||
config = super().get_config().copy()
|
|
||||||
config.update({
|
|
||||||
'patch_size_x': self.patch_size_x,
|
|
||||||
'patch_size_y': self.patch_size_y,
|
|
||||||
})
|
|
||||||
return config
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
class PatchEncoder(layers.Layer):
|
|
||||||
def __init__(self, **kwargs):
|
|
||||||
super(PatchEncoder, self).__init__()
|
|
||||||
self.num_patches = num_patches
|
|
||||||
self.projection = layers.Dense(units=projection_dim)
|
|
||||||
self.position_embedding = layers.Embedding(
|
|
||||||
input_dim=num_patches, output_dim=projection_dim
|
|
||||||
)
|
|
||||||
|
|
||||||
def call(self, patch):
|
|
||||||
positions = tf.range(start=0, limit=self.num_patches, delta=1)
|
|
||||||
encoded = self.projection(patch) + self.position_embedding(positions)
|
|
||||||
return encoded
|
|
||||||
def get_config(self):
|
|
||||||
|
|
||||||
config = super().get_config().copy()
|
|
||||||
config.update({
|
|
||||||
'num_patches': self.num_patches,
|
|
||||||
'projection': self.projection,
|
|
||||||
'position_embedding': self.position_embedding,
|
|
||||||
})
|
|
||||||
return config
|
|
||||||
|
|
||||||
|
def run_ensembling(model_dirs, out_dir):
|
||||||
def start_new_session():
|
all_weights = []
|
||||||
###config = tf.compat.v1.ConfigProto()
|
|
||||||
###config.gpu_options.allow_growth = True
|
|
||||||
|
|
||||||
###self.session = tf.compat.v1.Session(config=config) # tf.InteractiveSession()
|
for model_dir in model_dirs:
|
||||||
###tensorflow_backend.set_session(self.session)
|
assert os.path.isdir(model_dir), model_dir
|
||||||
|
model = load_model(model_dir, compile=False,
|
||||||
config = tf.compat.v1.ConfigProto()
|
custom_objects=dict(PatchEncoder=PatchEncoder,
|
||||||
config.gpu_options.allow_growth = True
|
Patches=Patches))
|
||||||
|
all_weights.append(model.get_weights())
|
||||||
session = tf.compat.v1.Session(config=config) # tf.InteractiveSession()
|
|
||||||
tensorflow_backend.set_session(session)
|
|
||||||
return session
|
|
||||||
|
|
||||||
def run_ensembling(dir_models, out):
|
|
||||||
ls_models = os.listdir(dir_models)
|
|
||||||
|
|
||||||
|
|
||||||
weights=[]
|
|
||||||
|
|
||||||
for model_name in ls_models:
|
|
||||||
model = load_model(os.path.join(dir_models,model_name) , compile=False, custom_objects={'PatchEncoder':PatchEncoder, 'Patches': Patches})
|
|
||||||
weights.append(model.get_weights())
|
|
||||||
|
|
||||||
new_weights = list()
|
new_weights = []
|
||||||
|
for layer_weights in zip(*all_weights):
|
||||||
|
layer_weights = np.array([np.array(weights).mean(axis=0)
|
||||||
|
for weights in zip(*layer_weights)])
|
||||||
|
new_weights.append(layer_weights)
|
||||||
|
|
||||||
for weights_list_tuple in zip(*weights):
|
#model = tf.keras.models.clone_model(model)
|
||||||
new_weights.append(
|
|
||||||
[np.array(weights_).mean(axis=0)\
|
|
||||||
for weights_ in zip(*weights_list_tuple)])
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
new_weights = [np.array(x) for x in new_weights]
|
|
||||||
|
|
||||||
model.set_weights(new_weights)
|
model.set_weights(new_weights)
|
||||||
model.save(out)
|
|
||||||
os.system('cp '+os.path.join(os.path.join(dir_models,model_name) , "config.json ")+out)
|
model.save(out_dir)
|
||||||
|
os.system('cp ' + os.path.join(model_dirs[0], "config.json ") + out_dir + "/")
|
||||||
|
|
||||||
@click.command()
|
@click.command()
|
||||||
@click.option(
|
@click.option(
|
||||||
"--dir_models",
|
"--in",
|
||||||
"-dm",
|
"-i",
|
||||||
help="directory of models",
|
help="input directory of checkpoint models to be read",
|
||||||
|
multiple=True,
|
||||||
|
required=True,
|
||||||
type=click.Path(exists=True, file_okay=False),
|
type=click.Path(exists=True, file_okay=False),
|
||||||
)
|
)
|
||||||
@click.option(
|
@click.option(
|
||||||
"--out",
|
"--out",
|
||||||
"-o",
|
"-o",
|
||||||
help="output directory where ensembled model will be written.",
|
help="output directory where ensembled model will be written.",
|
||||||
|
required=True,
|
||||||
type=click.Path(exists=False, file_okay=False),
|
type=click.Path(exists=False, file_okay=False),
|
||||||
)
|
)
|
||||||
|
def ensemble_cli(in_, out):
|
||||||
|
"""
|
||||||
|
mix multiple model weights
|
||||||
|
|
||||||
|
Load a sequence of models and mix them into a single ensemble model
|
||||||
|
by averaging their weights. Write the resulting model.
|
||||||
|
"""
|
||||||
|
run_ensembling(in_, out)
|
||||||
|
|
||||||
def main(dir_models, out):
|
|
||||||
run_ensembling(dir_models, out)
|
|
||||||
|
|
||||||
|
|
|
||||||
File diff suppressed because it is too large
Load diff
|
|
@ -14,21 +14,16 @@ from shapely.ops import unary_union, nearest_points
|
||||||
from .rotate import rotate_image, rotation_image_new
|
from .rotate import rotate_image, rotation_image_new
|
||||||
|
|
||||||
def contours_in_same_horizon(cy_main_hor):
|
def contours_in_same_horizon(cy_main_hor):
|
||||||
X1 = np.zeros((len(cy_main_hor), len(cy_main_hor)))
|
"""
|
||||||
X2 = np.zeros((len(cy_main_hor), len(cy_main_hor)))
|
Takes an array of y coords, identifies all pairs among them
|
||||||
|
which are close to each other, and returns all such pairs
|
||||||
X1[0::1, :] = cy_main_hor[:]
|
by index into the array.
|
||||||
X2 = X1.T
|
"""
|
||||||
|
sort = np.argsort(cy_main_hor)
|
||||||
X_dif = np.abs(X2 - X1)
|
same = np.diff(cy_main_hor[sort]) <= 20
|
||||||
args_help = np.array(range(len(cy_main_hor)))
|
# groups = np.split(sort, np.arange(len(cy_main_hor) - 1)[~same] + 1)
|
||||||
all_args = []
|
same = np.flatnonzero(same)
|
||||||
for i in range(len(cy_main_hor)):
|
return np.stack((sort[:-1][same], sort[1:][same])).T
|
||||||
list_h = list(args_help[X_dif[i, :] <= 20])
|
|
||||||
list_h.append(i)
|
|
||||||
if len(list_h) > 1:
|
|
||||||
all_args.append(list(set(list_h)))
|
|
||||||
return np.unique(np.array(all_args, dtype=object))
|
|
||||||
|
|
||||||
def find_contours_mean_y_diff(contours_main):
|
def find_contours_mean_y_diff(contours_main):
|
||||||
M_main = [cv2.moments(contours_main[j]) for j in range(len(contours_main))]
|
M_main = [cv2.moments(contours_main[j]) for j in range(len(contours_main))]
|
||||||
|
|
@ -253,13 +248,17 @@ def return_contours_of_image(image):
|
||||||
return contours, hierarchy
|
return contours, hierarchy
|
||||||
|
|
||||||
def dilate_textline_contours(all_found_textline_polygons):
|
def dilate_textline_contours(all_found_textline_polygons):
|
||||||
return [[polygon2contour(contour2polygon(contour, dilate=6))
|
from . import ensure_array
|
||||||
for contour in region]
|
return [ensure_array(
|
||||||
|
[polygon2contour(contour2polygon(contour, dilate=6))
|
||||||
|
for contour in region])
|
||||||
for region in all_found_textline_polygons]
|
for region in all_found_textline_polygons]
|
||||||
|
|
||||||
def dilate_textregion_contours(all_found_textline_polygons):
|
def dilate_textregion_contours(all_found_textregion_polygons):
|
||||||
return [polygon2contour(contour2polygon(contour, dilate=6))
|
from . import ensure_array
|
||||||
for contour in all_found_textline_polygons]
|
return ensure_array(
|
||||||
|
[polygon2contour(contour2polygon(contour, dilate=6))
|
||||||
|
for contour in all_found_textregion_polygons])
|
||||||
|
|
||||||
def contour2polygon(contour: Union[np.ndarray, Sequence[Sequence[Sequence[Number]]]], dilate=0):
|
def contour2polygon(contour: Union[np.ndarray, Sequence[Sequence[Sequence[Number]]]], dilate=0):
|
||||||
polygon = Polygon([point[0] for point in contour])
|
polygon = Polygon([point[0] for point in contour])
|
||||||
|
|
|
||||||
|
|
@ -399,14 +399,14 @@ def separate_lines(img_patch, contour_text_interest, thetha, x_help, y_help):
|
||||||
point_down_rot3=point_down_rot3-y_help
|
point_down_rot3=point_down_rot3-y_help
|
||||||
point_down_rot4=point_down_rot4-y_help
|
point_down_rot4=point_down_rot4-y_help
|
||||||
|
|
||||||
textline_boxes_rot.append(np.array([[int(x_min_rot1), int(point_up_rot1)],
|
textline_boxes_rot.append(np.array([[[int(x_min_rot1), int(point_up_rot1)]],
|
||||||
[int(x_max_rot2), int(point_up_rot2)],
|
[[int(x_max_rot2), int(point_up_rot2)]],
|
||||||
[int(x_max_rot3), int(point_down_rot3)],
|
[[int(x_max_rot3), int(point_down_rot3)]],
|
||||||
[int(x_min_rot4), int(point_down_rot4)]]))
|
[[int(x_min_rot4), int(point_down_rot4)]]]))
|
||||||
textline_boxes.append(np.array([[int(x_min), int(point_up)],
|
textline_boxes.append(np.array([[[int(x_min), int(point_up)]],
|
||||||
[int(x_max), int(point_up)],
|
[[int(x_max), int(point_up)]],
|
||||||
[int(x_max), int(point_down)],
|
[[int(x_max), int(point_down)]],
|
||||||
[int(x_min), int(point_down)]]))
|
[[int(x_min), int(point_down)]]]))
|
||||||
elif len(peaks) < 1:
|
elif len(peaks) < 1:
|
||||||
pass
|
pass
|
||||||
|
|
||||||
|
|
@ -458,14 +458,14 @@ def separate_lines(img_patch, contour_text_interest, thetha, x_help, y_help):
|
||||||
point_down_rot3=point_down_rot3-y_help
|
point_down_rot3=point_down_rot3-y_help
|
||||||
point_down_rot4=point_down_rot4-y_help
|
point_down_rot4=point_down_rot4-y_help
|
||||||
|
|
||||||
textline_boxes_rot.append(np.array([[int(x_min_rot1), int(point_up_rot1)],
|
textline_boxes_rot.append(np.array([[[int(x_min_rot1), int(point_up_rot1)]],
|
||||||
[int(x_max_rot2), int(point_up_rot2)],
|
[[int(x_max_rot2), int(point_up_rot2)]],
|
||||||
[int(x_max_rot3), int(point_down_rot3)],
|
[[int(x_max_rot3), int(point_down_rot3)]],
|
||||||
[int(x_min_rot4), int(point_down_rot4)]]))
|
[[int(x_min_rot4), int(point_down_rot4)]]]))
|
||||||
textline_boxes.append(np.array([[int(x_min), int(y_min)],
|
textline_boxes.append(np.array([[[int(x_min), int(y_min)]],
|
||||||
[int(x_max), int(y_min)],
|
[[int(x_max), int(y_min)]],
|
||||||
[int(x_max), int(y_max)],
|
[[int(x_max), int(y_max)]],
|
||||||
[int(x_min), int(y_max)]]))
|
[[int(x_min), int(y_max)]]]))
|
||||||
elif len(peaks) == 2:
|
elif len(peaks) == 2:
|
||||||
dis_to_next = np.abs(peaks[1] - peaks[0])
|
dis_to_next = np.abs(peaks[1] - peaks[0])
|
||||||
for jj in range(len(peaks)):
|
for jj in range(len(peaks)):
|
||||||
|
|
@ -526,14 +526,14 @@ def separate_lines(img_patch, contour_text_interest, thetha, x_help, y_help):
|
||||||
point_down_rot3=point_down_rot3-y_help
|
point_down_rot3=point_down_rot3-y_help
|
||||||
point_down_rot4=point_down_rot4-y_help
|
point_down_rot4=point_down_rot4-y_help
|
||||||
|
|
||||||
textline_boxes_rot.append(np.array([[int(x_min_rot1), int(point_up_rot1)],
|
textline_boxes_rot.append(np.array([[[int(x_min_rot1), int(point_up_rot1)]],
|
||||||
[int(x_max_rot2), int(point_up_rot2)],
|
[[int(x_max_rot2), int(point_up_rot2)]],
|
||||||
[int(x_max_rot3), int(point_down_rot3)],
|
[[int(x_max_rot3), int(point_down_rot3)]],
|
||||||
[int(x_min_rot4), int(point_down_rot4)]]))
|
[[int(x_min_rot4), int(point_down_rot4)]]]))
|
||||||
textline_boxes.append(np.array([[int(x_min), int(point_up)],
|
textline_boxes.append(np.array([[[int(x_min), int(point_up)]],
|
||||||
[int(x_max), int(point_up)],
|
[[int(x_max), int(point_up)]],
|
||||||
[int(x_max), int(point_down)],
|
[[int(x_max), int(point_down)]],
|
||||||
[int(x_min), int(point_down)]]))
|
[[int(x_min), int(point_down)]]]))
|
||||||
else:
|
else:
|
||||||
for jj in range(len(peaks)):
|
for jj in range(len(peaks)):
|
||||||
if jj == 0:
|
if jj == 0:
|
||||||
|
|
@ -602,14 +602,14 @@ def separate_lines(img_patch, contour_text_interest, thetha, x_help, y_help):
|
||||||
point_down_rot3=point_down_rot3-y_help
|
point_down_rot3=point_down_rot3-y_help
|
||||||
point_down_rot4=point_down_rot4-y_help
|
point_down_rot4=point_down_rot4-y_help
|
||||||
|
|
||||||
textline_boxes_rot.append(np.array([[int(x_min_rot1), int(point_up_rot1)],
|
textline_boxes_rot.append(np.array([[[int(x_min_rot1), int(point_up_rot1)]],
|
||||||
[int(x_max_rot2), int(point_up_rot2)],
|
[[int(x_max_rot2), int(point_up_rot2)]],
|
||||||
[int(x_max_rot3), int(point_down_rot3)],
|
[[int(x_max_rot3), int(point_down_rot3)]],
|
||||||
[int(x_min_rot4), int(point_down_rot4)]]))
|
[[int(x_min_rot4), int(point_down_rot4)]]]))
|
||||||
textline_boxes.append(np.array([[int(x_min), int(point_up)],
|
textline_boxes.append(np.array([[[int(x_min), int(point_up)]],
|
||||||
[int(x_max), int(point_up)],
|
[[int(x_max), int(point_up)]],
|
||||||
[int(x_max), int(point_down)],
|
[[int(x_max), int(point_down)]],
|
||||||
[int(x_min), int(point_down)]]))
|
[[int(x_min), int(point_down)]]]))
|
||||||
return peaks, textline_boxes_rot
|
return peaks, textline_boxes_rot
|
||||||
|
|
||||||
def separate_lines_vertical(img_patch, contour_text_interest, thetha):
|
def separate_lines_vertical(img_patch, contour_text_interest, thetha):
|
||||||
|
|
@ -781,14 +781,14 @@ def separate_lines_vertical(img_patch, contour_text_interest, thetha):
|
||||||
if point_up_rot2 < 0:
|
if point_up_rot2 < 0:
|
||||||
point_up_rot2 = 0
|
point_up_rot2 = 0
|
||||||
|
|
||||||
textline_boxes_rot.append(np.array([[int(x_min_rot1), int(point_up_rot1)],
|
textline_boxes_rot.append(np.array([[[int(x_min_rot1), int(point_up_rot1)]],
|
||||||
[int(x_max_rot2), int(point_up_rot2)],
|
[[int(x_max_rot2), int(point_up_rot2)]],
|
||||||
[int(x_max_rot3), int(point_down_rot3)],
|
[[int(x_max_rot3), int(point_down_rot3)]],
|
||||||
[int(x_min_rot4), int(point_down_rot4)]]))
|
[[int(x_min_rot4), int(point_down_rot4)]]]))
|
||||||
textline_boxes.append(np.array([[int(x_min), int(point_up)],
|
textline_boxes.append(np.array([[[int(x_min), int(point_up)]],
|
||||||
[int(x_max), int(point_up)],
|
[[int(x_max), int(point_up)]],
|
||||||
[int(x_max), int(point_down)],
|
[[int(x_max), int(point_down)]],
|
||||||
[int(x_min), int(point_down)]]))
|
[[int(x_min), int(point_down)]]]))
|
||||||
elif len(peaks) < 1:
|
elif len(peaks) < 1:
|
||||||
pass
|
pass
|
||||||
elif len(peaks) == 1:
|
elif len(peaks) == 1:
|
||||||
|
|
@ -817,14 +817,14 @@ def separate_lines_vertical(img_patch, contour_text_interest, thetha):
|
||||||
if point_up_rot2 < 0:
|
if point_up_rot2 < 0:
|
||||||
point_up_rot2 = 0
|
point_up_rot2 = 0
|
||||||
|
|
||||||
textline_boxes_rot.append(np.array([[int(x_min_rot1), int(point_up_rot1)],
|
textline_boxes_rot.append(np.array([[[int(x_min_rot1), int(point_up_rot1)]],
|
||||||
[int(x_max_rot2), int(point_up_rot2)],
|
[[int(x_max_rot2), int(point_up_rot2)]],
|
||||||
[int(x_max_rot3), int(point_down_rot3)],
|
[[int(x_max_rot3), int(point_down_rot3)]],
|
||||||
[int(x_min_rot4), int(point_down_rot4)]]))
|
[[int(x_min_rot4), int(point_down_rot4)]]]))
|
||||||
textline_boxes.append(np.array([[int(x_min), int(y_min)],
|
textline_boxes.append(np.array([[[int(x_min), int(y_min)]],
|
||||||
[int(x_max), int(y_min)],
|
[[int(x_max), int(y_min)]],
|
||||||
[int(x_max), int(y_max)],
|
[[int(x_max), int(y_max)]],
|
||||||
[int(x_min), int(y_max)]]))
|
[[int(x_min), int(y_max)]]]))
|
||||||
elif len(peaks) == 2:
|
elif len(peaks) == 2:
|
||||||
dis_to_next = np.abs(peaks[1] - peaks[0])
|
dis_to_next = np.abs(peaks[1] - peaks[0])
|
||||||
for jj in range(len(peaks)):
|
for jj in range(len(peaks)):
|
||||||
|
|
@ -872,14 +872,14 @@ def separate_lines_vertical(img_patch, contour_text_interest, thetha):
|
||||||
if point_up_rot2 < 0:
|
if point_up_rot2 < 0:
|
||||||
point_up_rot2 = 0
|
point_up_rot2 = 0
|
||||||
|
|
||||||
textline_boxes_rot.append(np.array([[int(x_min_rot1), int(point_up_rot1)],
|
textline_boxes_rot.append(np.array([[[int(x_min_rot1), int(point_up_rot1)]],
|
||||||
[int(x_max_rot2), int(point_up_rot2)],
|
[[int(x_max_rot2), int(point_up_rot2)]],
|
||||||
[int(x_max_rot3), int(point_down_rot3)],
|
[[int(x_max_rot3), int(point_down_rot3)]],
|
||||||
[int(x_min_rot4), int(point_down_rot4)]]))
|
[[int(x_min_rot4), int(point_down_rot4)]]]))
|
||||||
textline_boxes.append(np.array([[int(x_min), int(point_up)],
|
textline_boxes.append(np.array([[[int(x_min), int(point_up)]],
|
||||||
[int(x_max), int(point_up)],
|
[[int(x_max), int(point_up)]],
|
||||||
[int(x_max), int(point_down)],
|
[[int(x_max), int(point_down)]],
|
||||||
[int(x_min), int(point_down)]]))
|
[[int(x_min), int(point_down)]]]))
|
||||||
else:
|
else:
|
||||||
for jj in range(len(peaks)):
|
for jj in range(len(peaks)):
|
||||||
if jj == 0:
|
if jj == 0:
|
||||||
|
|
@ -938,14 +938,14 @@ def separate_lines_vertical(img_patch, contour_text_interest, thetha):
|
||||||
if point_up_rot2 < 0:
|
if point_up_rot2 < 0:
|
||||||
point_up_rot2 = 0
|
point_up_rot2 = 0
|
||||||
|
|
||||||
textline_boxes_rot.append(np.array([[int(x_min_rot1), int(point_up_rot1)],
|
textline_boxes_rot.append(np.array([[[int(x_min_rot1), int(point_up_rot1)]],
|
||||||
[int(x_max_rot2), int(point_up_rot2)],
|
[[int(x_max_rot2), int(point_up_rot2)]],
|
||||||
[int(x_max_rot3), int(point_down_rot3)],
|
[[int(x_max_rot3), int(point_down_rot3)]],
|
||||||
[int(x_min_rot4), int(point_down_rot4)]]))
|
[[int(x_min_rot4), int(point_down_rot4)]]]))
|
||||||
textline_boxes.append(np.array([[int(x_min), int(point_up)],
|
textline_boxes.append(np.array([[[int(x_min), int(point_up)]],
|
||||||
[int(x_max), int(point_up)],
|
[[int(x_max), int(point_up)]],
|
||||||
[int(x_max), int(point_down)],
|
[[int(x_max), int(point_down)]],
|
||||||
[int(x_min), int(point_down)]]))
|
[[int(x_min), int(point_down)]]]))
|
||||||
return peaks, textline_boxes_rot
|
return peaks, textline_boxes_rot
|
||||||
|
|
||||||
def separate_lines_new_inside_tiles2(img_patch, thetha):
|
def separate_lines_new_inside_tiles2(img_patch, thetha):
|
||||||
|
|
@ -1560,6 +1560,9 @@ def return_deskew_slop(img_patch_org, sigma_des,n_tot_angles=100,
|
||||||
angle2, var2 = get_smallest_skew(img_resized, sigma_des, angles2, map=map, logger=logger, plotter=plotter)
|
angle2, var2 = get_smallest_skew(img_resized, sigma_des, angles2, map=map, logger=logger, plotter=plotter)
|
||||||
if var2 > var:
|
if var2 > var:
|
||||||
angle = angle2
|
angle = angle2
|
||||||
|
# precision stage:
|
||||||
|
angles = np.linspace(angle - 2.5, angle + 2.5, n_tot_angles // 2)
|
||||||
|
angle, _ = get_smallest_skew(img_resized, sigma_des, angles, map=map, logger=logger, plotter=plotter)
|
||||||
return angle
|
return angle
|
||||||
|
|
||||||
def get_smallest_skew(img, sigma_des, angles, logger=None, plotter=None, map=map):
|
def get_smallest_skew(img, sigma_des, angles, logger=None, plotter=None, map=map):
|
||||||
|
|
|
||||||
|
|
@ -370,8 +370,8 @@ def break_curved_line_into_small_pieces_and_then_merge(img_curved, mask_curved,
|
||||||
return img_curved, img_bin_curved
|
return img_curved, img_bin_curved
|
||||||
|
|
||||||
def return_textline_contour_with_added_box_coordinate(textline_contour, box_ind):
|
def return_textline_contour_with_added_box_coordinate(textline_contour, box_ind):
|
||||||
textline_contour[:,0] = textline_contour[:,0] + box_ind[2]
|
textline_contour[:,:,0] += box_ind[2]
|
||||||
textline_contour[:,1] = textline_contour[:,1] + box_ind[0]
|
textline_contour[:,:,1] += box_ind[0]
|
||||||
return textline_contour
|
return textline_contour
|
||||||
|
|
||||||
|
|
||||||
|
|
|
||||||
|
|
@ -2,11 +2,12 @@
|
||||||
# pylint: disable=import-error
|
# pylint: disable=import-error
|
||||||
from pathlib import Path
|
from pathlib import Path
|
||||||
import os.path
|
import os.path
|
||||||
from typing import Optional
|
|
||||||
import logging
|
import logging
|
||||||
from .utils.xml import create_page_xml, xml_reading_order
|
from typing import Optional
|
||||||
from .utils.counter import EynollahIdCounter
|
import numpy as np
|
||||||
|
from shapely import affinity, clip_by_rect
|
||||||
|
|
||||||
|
from ocrd_utils import points_from_polygon
|
||||||
from ocrd_models.ocrd_page import (
|
from ocrd_models.ocrd_page import (
|
||||||
BorderType,
|
BorderType,
|
||||||
CoordsType,
|
CoordsType,
|
||||||
|
|
@ -19,6 +20,10 @@ from ocrd_models.ocrd_page import (
|
||||||
to_xml
|
to_xml
|
||||||
)
|
)
|
||||||
|
|
||||||
|
from .utils.xml import create_page_xml, xml_reading_order
|
||||||
|
from .utils.counter import EynollahIdCounter
|
||||||
|
from .utils.contour import contour2polygon, make_valid
|
||||||
|
|
||||||
class EynollahXmlWriter:
|
class EynollahXmlWriter:
|
||||||
|
|
||||||
def __init__(self, *, dir_out, image_filename, curved_line, pcgts=None):
|
def __init__(self, *, dir_out, image_filename, curved_line, pcgts=None):
|
||||||
|
|
@ -38,20 +43,14 @@ class EynollahXmlWriter:
|
||||||
def image_filename_stem(self):
|
def image_filename_stem(self):
|
||||||
return Path(Path(self.image_filename).name).stem
|
return Path(Path(self.image_filename).name).stem
|
||||||
|
|
||||||
def calculate_page_coords(self, cont_page):
|
def calculate_points(self, contour, offset=None):
|
||||||
self.logger.debug('enter calculate_page_coords')
|
self.logger.debug('enter calculate_points')
|
||||||
points_page_print = ""
|
poly = contour2polygon(contour)
|
||||||
for _, contour in enumerate(cont_page[0]):
|
if offset is not None:
|
||||||
if len(contour) == 2:
|
poly = affinity.translate(poly, *offset)
|
||||||
points_page_print += str(int((contour[0]) / self.scale_x))
|
poly = affinity.scale(poly, xfact=1 / self.scale_x, yfact=1 / self.scale_y, origin=(0, 0))
|
||||||
points_page_print += ','
|
poly = make_valid(clip_by_rect(poly, 0, 0, self.width_org, self.height_org))
|
||||||
points_page_print += str(int((contour[1]) / self.scale_y))
|
return points_from_polygon(poly.exterior.coords[:-1])
|
||||||
else:
|
|
||||||
points_page_print += str(int((contour[0][0]) / self.scale_x))
|
|
||||||
points_page_print += ','
|
|
||||||
points_page_print += str(int((contour[0][1] ) / self.scale_y))
|
|
||||||
points_page_print = points_page_print + ' '
|
|
||||||
return points_page_print[:-1]
|
|
||||||
|
|
||||||
def serialize_lines_in_region(self, text_region, all_found_textline_polygons, region_idx, page_coord, all_box_coord, slopes, counter, ocr_all_textlines_textregion):
|
def serialize_lines_in_region(self, text_region, all_found_textline_polygons, region_idx, page_coord, all_box_coord, slopes, counter, ocr_all_textlines_textregion):
|
||||||
self.logger.debug('enter serialize_lines_in_region')
|
self.logger.debug('enter serialize_lines_in_region')
|
||||||
|
|
@ -64,16 +63,12 @@ class EynollahXmlWriter:
|
||||||
text_region.add_TextLine(textline)
|
text_region.add_TextLine(textline)
|
||||||
text_region.set_orientation(-slopes[region_idx])
|
text_region.set_orientation(-slopes[region_idx])
|
||||||
region_bboxes = all_box_coord[region_idx]
|
region_bboxes = all_box_coord[region_idx]
|
||||||
points_co = ''
|
offset = [page_coord[2], page_coord[0]]
|
||||||
for point in polygon_textline:
|
# FIXME: or actually... self.curved_line or np.abs(slopes[region_idx]) > 45?
|
||||||
if len(point) != 2:
|
if self.curved_line and np.abs(slopes[region_idx]) > 45:
|
||||||
point = point[0]
|
offset[0] += region_bboxes[2]
|
||||||
point_x = point[0] + page_coord[2]
|
offset[1] += region_bboxes[0]
|
||||||
point_y = point[1] + page_coord[0]
|
coords.set_points(self.calculate_points(polygon_textline, offset))
|
||||||
point_x = max(0, int(point_x / self.scale_x))
|
|
||||||
point_y = max(0, int(point_y / self.scale_y))
|
|
||||||
points_co += f'{point_x},{point_y} '
|
|
||||||
coords.set_points(points_co[:-1])
|
|
||||||
|
|
||||||
def write_pagexml(self, pcgts):
|
def write_pagexml(self, pcgts):
|
||||||
self.logger.info("output filename: '%s'", self.output_filename)
|
self.logger.info("output filename: '%s'", self.output_filename)
|
||||||
|
|
@ -168,9 +163,13 @@ class EynollahXmlWriter:
|
||||||
# create the file structure
|
# create the file structure
|
||||||
pcgts = self.pcgts if self.pcgts else create_page_xml(self.image_filename, self.height_org, self.width_org)
|
pcgts = self.pcgts if self.pcgts else create_page_xml(self.image_filename, self.height_org, self.width_org)
|
||||||
page = pcgts.get_Page()
|
page = pcgts.get_Page()
|
||||||
assert page
|
if len(cont_page):
|
||||||
page.set_Border(BorderType(Coords=CoordsType(points=self.calculate_page_coords(cont_page))))
|
page.set_Border(BorderType(Coords=CoordsType(points=self.calculate_points(cont_page[0]))))
|
||||||
|
|
||||||
|
if skip_layout_reading_order:
|
||||||
|
offset = None
|
||||||
|
else:
|
||||||
|
offset = [page_coord[2], page_coord[0]]
|
||||||
counter = EynollahIdCounter()
|
counter = EynollahIdCounter()
|
||||||
if len(order_of_texts):
|
if len(order_of_texts):
|
||||||
_counter_marginals = EynollahIdCounter(region_idx=len(order_of_texts))
|
_counter_marginals = EynollahIdCounter(region_idx=len(order_of_texts))
|
||||||
|
|
@ -183,8 +182,7 @@ class EynollahXmlWriter:
|
||||||
for mm, region_contour in enumerate(found_polygons_text_region):
|
for mm, region_contour in enumerate(found_polygons_text_region):
|
||||||
textregion = TextRegionType(
|
textregion = TextRegionType(
|
||||||
id=counter.next_region_id, type_='paragraph',
|
id=counter.next_region_id, type_='paragraph',
|
||||||
Coords=CoordsType(points=self.calculate_polygon_coords(region_contour, page_coord,
|
Coords=CoordsType(points=self.calculate_points(region_contour, offset))
|
||||||
skip_layout_reading_order))
|
|
||||||
)
|
)
|
||||||
assert textregion.Coords
|
assert textregion.Coords
|
||||||
if conf_contours_textregions:
|
if conf_contours_textregions:
|
||||||
|
|
@ -201,7 +199,7 @@ class EynollahXmlWriter:
|
||||||
for mm, region_contour in enumerate(found_polygons_text_region_h):
|
for mm, region_contour in enumerate(found_polygons_text_region_h):
|
||||||
textregion = TextRegionType(
|
textregion = TextRegionType(
|
||||||
id=counter.next_region_id, type_='heading',
|
id=counter.next_region_id, type_='heading',
|
||||||
Coords=CoordsType(points=self.calculate_polygon_coords(region_contour, page_coord))
|
Coords=CoordsType(points=self.calculate_points(region_contour, offset))
|
||||||
)
|
)
|
||||||
assert textregion.Coords
|
assert textregion.Coords
|
||||||
if conf_contours_textregions_h:
|
if conf_contours_textregions_h:
|
||||||
|
|
@ -217,7 +215,7 @@ class EynollahXmlWriter:
|
||||||
for mm, region_contour in enumerate(found_polygons_marginals_left):
|
for mm, region_contour in enumerate(found_polygons_marginals_left):
|
||||||
marginal = TextRegionType(
|
marginal = TextRegionType(
|
||||||
id=counter.next_region_id, type_='marginalia',
|
id=counter.next_region_id, type_='marginalia',
|
||||||
Coords=CoordsType(points=self.calculate_polygon_coords(region_contour, page_coord))
|
Coords=CoordsType(points=self.calculate_points(region_contour, offset))
|
||||||
)
|
)
|
||||||
page.add_TextRegion(marginal)
|
page.add_TextRegion(marginal)
|
||||||
if ocr_all_textlines_marginals_left:
|
if ocr_all_textlines_marginals_left:
|
||||||
|
|
@ -229,7 +227,7 @@ class EynollahXmlWriter:
|
||||||
for mm, region_contour in enumerate(found_polygons_marginals_right):
|
for mm, region_contour in enumerate(found_polygons_marginals_right):
|
||||||
marginal = TextRegionType(
|
marginal = TextRegionType(
|
||||||
id=counter.next_region_id, type_='marginalia',
|
id=counter.next_region_id, type_='marginalia',
|
||||||
Coords=CoordsType(points=self.calculate_polygon_coords(region_contour, page_coord))
|
Coords=CoordsType(points=self.calculate_points(region_contour, offset))
|
||||||
)
|
)
|
||||||
page.add_TextRegion(marginal)
|
page.add_TextRegion(marginal)
|
||||||
if ocr_all_textlines_marginals_right:
|
if ocr_all_textlines_marginals_right:
|
||||||
|
|
@ -242,7 +240,7 @@ class EynollahXmlWriter:
|
||||||
for mm, region_contour in enumerate(found_polygons_drop_capitals):
|
for mm, region_contour in enumerate(found_polygons_drop_capitals):
|
||||||
dropcapital = TextRegionType(
|
dropcapital = TextRegionType(
|
||||||
id=counter.next_region_id, type_='drop-capital',
|
id=counter.next_region_id, type_='drop-capital',
|
||||||
Coords=CoordsType(points=self.calculate_polygon_coords(region_contour, page_coord))
|
Coords=CoordsType(points=self.calculate_points(region_contour, offset))
|
||||||
)
|
)
|
||||||
page.add_TextRegion(dropcapital)
|
page.add_TextRegion(dropcapital)
|
||||||
all_box_coord_drop = [[0, 0, 0, 0]]
|
all_box_coord_drop = [[0, 0, 0, 0]]
|
||||||
|
|
@ -257,33 +255,17 @@ class EynollahXmlWriter:
|
||||||
for region_contour in found_polygons_text_region_img:
|
for region_contour in found_polygons_text_region_img:
|
||||||
page.add_ImageRegion(
|
page.add_ImageRegion(
|
||||||
ImageRegionType(id=counter.next_region_id,
|
ImageRegionType(id=counter.next_region_id,
|
||||||
Coords=CoordsType(points=self.calculate_polygon_coords(region_contour, page_coord))))
|
Coords=CoordsType(points=self.calculate_points(region_contour, offset))))
|
||||||
|
|
||||||
for region_contour in polygons_seplines:
|
for region_contour in polygons_seplines:
|
||||||
page.add_SeparatorRegion(
|
page.add_SeparatorRegion(
|
||||||
SeparatorRegionType(id=counter.next_region_id,
|
SeparatorRegionType(id=counter.next_region_id,
|
||||||
Coords=CoordsType(points=self.calculate_polygon_coords(region_contour, [0, 0, 0, 0]))))
|
Coords=CoordsType(points=self.calculate_points(region_contour, None))))
|
||||||
|
|
||||||
for region_contour in found_polygons_tables:
|
for region_contour in found_polygons_tables:
|
||||||
page.add_TableRegion(
|
page.add_TableRegion(
|
||||||
TableRegionType(id=counter.next_region_id,
|
TableRegionType(id=counter.next_region_id,
|
||||||
Coords=CoordsType(points=self.calculate_polygon_coords(region_contour, page_coord))))
|
Coords=CoordsType(points=self.calculate_points(region_contour, offset))))
|
||||||
|
|
||||||
return pcgts
|
return pcgts
|
||||||
|
|
||||||
def calculate_polygon_coords(self, contour, page_coord, skip_layout_reading_order=False):
|
|
||||||
self.logger.debug('enter calculate_polygon_coords')
|
|
||||||
coords = ''
|
|
||||||
for point in contour:
|
|
||||||
if len(point) != 2:
|
|
||||||
point = point[0]
|
|
||||||
point_x = point[0]
|
|
||||||
point_y = point[1]
|
|
||||||
if not skip_layout_reading_order:
|
|
||||||
point_x += page_coord[2]
|
|
||||||
point_y += page_coord[0]
|
|
||||||
point_x = int(point_x / self.scale_x)
|
|
||||||
point_y = int(point_y / self.scale_y)
|
|
||||||
coords += str(point_x) + ',' + str(point_y) + ' '
|
|
||||||
return coords[:-1]
|
|
||||||
|
|
||||||
|
|
|
||||||
|
|
@ -22,7 +22,7 @@ def test_run_eynollah_binarization_filename(
|
||||||
'-o', str(outfile),
|
'-o', str(outfile),
|
||||||
] + options,
|
] + options,
|
||||||
[
|
[
|
||||||
'Predicting'
|
'Loaded model'
|
||||||
]
|
]
|
||||||
)
|
)
|
||||||
assert outfile.exists()
|
assert outfile.exists()
|
||||||
|
|
@ -46,8 +46,8 @@ def test_run_eynollah_binarization_directory(
|
||||||
'-o', str(outdir),
|
'-o', str(outdir),
|
||||||
],
|
],
|
||||||
[
|
[
|
||||||
f'Predicting {image_resources[0].name}',
|
f'Binarizing [ 1/2] {image_resources[0].name}',
|
||||||
f'Predicting {image_resources[1].name}',
|
f'Binarizing [ 2/2] {image_resources[1].name}',
|
||||||
]
|
]
|
||||||
)
|
)
|
||||||
assert len(list(outdir.iterdir())) == 2
|
assert len(list(outdir.iterdir())) == 2
|
||||||
|
|
|
||||||
|
|
@ -1,6 +1,6 @@
|
||||||
sacred
|
sacred
|
||||||
seaborn
|
seaborn
|
||||||
numpy <1.24.0
|
numpy
|
||||||
tqdm
|
tqdm
|
||||||
imutils
|
imutils
|
||||||
scipy
|
scipy
|
||||||
|
|
|
||||||
Loading…
Add table
Add a link
Reference in a new issue