@ -245,7 +245,7 @@ class Eynollah:
self . model_dir_of_col_classifier = dir_models + " /eynollah-column-classifier_20210425 "
self . model_region_dir_p = dir_models + " /eynollah-main-regions-aug-scaling_20210425 "
self . model_region_dir_p2 = dir_models + " /eynollah-main-regions-aug-rotation_20210425 "
self . model_region_dir_fully_np = dir_models + " / eynollah-full-regions-1column_20210425 "
self . model_region_dir_fully_np = dir_models + " / model_full_lay_13_241024" #"/modelens_full_lay_13_17_231024"#"/modelens_full_lay_1_2_221024"#"/ eynollah-full-regions-1column_20210425"
#self.model_region_dir_fully = dir_models + "/eynollah-full-regions-3+column_20210425"
self . model_page_dir = dir_models + " /eynollah-page-extraction_20210425 "
self . model_region_dir_p_ens = dir_models + " /eynollah-main-regions-ensembled_20210425 "
@ -253,11 +253,11 @@ class Eynollah:
self . model_reading_order_machine_dir = dir_models + " /model_ens_reading_order_machine_based "
self . model_region_dir_p_1_2_sp_np = dir_models + " /modelens_e_l_all_sp_0_1_2_3_4_171024 " #"/modelens_12sp_elay_0_3_4__3_6_n"#"/modelens_earlylayout_12spaltige_2_3_5_6_7_8"#"/modelens_early12_sp_2_3_5_6_7_8_9_10_12_14_15_16_18"#"/modelens_1_2_4_5_early_lay_1_2_spaltige"#"/model_3_eraly_layout_no_patches_1_2_spaltige"
##self.model_region_dir_fully_new = dir_models + "/model_2_full_layout_new_trans"
self . model_region_dir_fully = dir_models + " /model ens_full_layout_24_till_28 " #"/model_2_full_layout_new_trans"
self . model_region_dir_fully = dir_models + " /model _full_lay_13_241024" #"/modelens_full_lay_13_17_231024"#"/modelens_full_lay_1_2_221024"#"/model ens_full_layout_24_till_28"#"/model_2_full_layout_new_trans"
if self . textline_light :
self . model_textline_dir = dir_models + " /model ens_textline_0_1__2_4_16092024 " #"/modelens_textline_1_4_16092024"#"/model_textline_ens_3_4_5_6_artificial"#"/modelens_textline_1_3_4_20240915"#"/model_textline_ens_3_4_5_6_artificial"#"/modelens_textline_9_12_13_14_15"#"/eynollah-textline_light_20210425"#
self . model_textline_dir = dir_models + " /model _textline_ens_5_6_7_8_10_11_nopatch" #"/model ens_textline_0_1__2_4_16092024"#"/modelens_textline_1_4_16092024"#"/model_textline_ens_3_4_5_6_artificial"#"/modelens_textline_1_3_4_20240915"#"/model_textline_ens_3_4_5_6_artificial"#"/modelens_textline_9_12_13_14_15"#"/eynollah-textline_light_20210425"#
else :
self . model_textline_dir = dir_models + " /model ens_textline_0_1__2_4_16092024 " #"/eynollah-textline_20210425"
self . model_textline_dir = dir_models + " /model _textline_ens_5_6_7_8_10_11_nopatch" #"/model ens_textline_0_1__2_4_16092024"#"/eynollah-textline_20210425"
if self . ocr :
self . model_ocr_dir = dir_models + " /checkpoint-166692_printed_trocr "
@ -816,6 +816,14 @@ class Eynollah:
verbose = 0 )
seg = np . argmax ( label_p_pred , axis = 3 ) [ 0 ]
if thresholding_for_artificial_class_in_light_version :
seg_art = label_p_pred [ 0 , : , : , 2 ]
seg_art [ seg_art < 0.2 ] = 0
seg_art [ seg_art > 0 ] = 1
seg [ seg_art == 1 ] = 2
seg_color = np . repeat ( seg [ : , : , np . newaxis ] , 3 , axis = 2 )
prediction_true = resize_image ( seg_color , img_h_page , img_w_page )
prediction_true = prediction_true . astype ( np . uint8 )
@ -1546,7 +1554,7 @@ class Eynollah:
pass
else :
img = otsu_copy_binary ( img )
img = img . astype ( np . uint8 )
#img = img.astype(np.uint8 )
prediction_regions2 = None
else :
if cols == 1 :
@ -1608,6 +1616,9 @@ class Eynollah:
prediction_regions = self . do_prediction ( patches , img , model_region , marginal_of_patch_percent = marginal_of_patch_percent , n_batch_inference = 3 )
##prediction_regions = self.do_prediction(False, img, model_region, marginal_of_patch_percent=marginal_of_patch_percent, n_batch_inference=3)
prediction_regions = resize_image ( prediction_regions , img_height_h , img_width_h )
self . logger . debug ( " exit extract_text_regions " )
return prediction_regions , prediction_regions
@ -2148,7 +2159,7 @@ class Eynollah:
if not thresholding_for_artificial_class_in_light_version :
textline_mask_tot_ea_art = textline_mask_tot_ea_art . astype ( ' uint8 ' )
textline_mask_tot_ea_art = cv2 . dilate ( textline_mask_tot_ea_art , KERNEL , iterations = 1 )
#textline_mask_tot_ea_art = cv2.dilate(textline_mask_tot_ea_art, KERNEL, iterations=1 )
prediction_textline [ : , : ] [ textline_mask_tot_ea_art [ : , : ] == 1 ] = 2
@ -2245,26 +2256,27 @@ class Eynollah:
#if (not self.input_binary) or self.full_layout:
#if self.input_binary:
#img_bin = np.copy(img_resized)
if ( not self . input_binary and self . full_layout ) or ( not self . input_binary and num_col_classifier > = 30 ) :
if not self . dir_in :
model_bin , session_bin = self . start_new_session_and_model ( self . model_dir_of_binarization )
prediction_bin = self . do_prediction ( True , img_resized , model_bin , n_batch_inference = 5 )
else :
prediction_bin = self . do_prediction ( True , img_resized , self . model_bin , n_batch_inference = 5 )
#print("inside bin ", time.time()-t_bin)
prediction_bin = prediction_bin [ : , : , 0 ]
prediction_bin = ( prediction_bin [ : , : ] == 0 ) * 1
prediction_bin = prediction_bin * 255
prediction_bin = np . repeat ( prediction_bin [ : , : , np . newaxis ] , 3 , axis = 2 )
prediction_bin = prediction_bin . astype ( np . uint16 )
#img= np.copy(prediction_bin)
img_bin = np . copy ( prediction_bin )
else :
img_bin = np . copy ( img_resized )
###if (not self.input_binary and self.full_layout) or (not self.input_binary and num_col_classifier >= 30):
###if not self.dir_in:
###model_bin, session_bin = self.start_new_session_and_model(self.model_dir_of_binarization)
###prediction_bin = self.do_prediction(True, img_resized, model_bin, n_batch_inference=5)
###else:
###prediction_bin = self.do_prediction(True, img_resized, self.model_bin, n_batch_inference=5)
####print("inside bin ", time.time()-t_bin)
###prediction_bin=prediction_bin[:,:,0]
###prediction_bin = (prediction_bin[:,:]==0)*1
###prediction_bin = prediction_bin*255
###prediction_bin =np.repeat(prediction_bin[:, :, np.newaxis], 3, axis=2)
###prediction_bin = prediction_bin.astype(np.uint16)
####img= np.copy(prediction_bin)
###img_bin = np.copy(prediction_bin)
###else:
###img_bin = np.copy(img_resized)
img_bin = np . copy ( img_resized )
#print("inside 1 ", time.time()-t_in)
###textline_mask_tot_ea = self.run_textline(img_bin)
@ -3311,7 +3323,8 @@ class Eynollah:
scaler_h_textline = 1 #1.3 # 1.2#1.2
scaler_w_textline = 1 #1.3 # 0.9#1
#print(image_page.shape)
textline_mask_tot_ea , _ = self . textline_contours ( image_page , True , scaler_h_textline , scaler_w_textline , num_col_classifier )
patches = False
textline_mask_tot_ea , _ = self . textline_contours ( image_page , patches , scaler_h_textline , scaler_w_textline , num_col_classifier )
if self . textline_light :
textline_mask_tot_ea = textline_mask_tot_ea . astype ( np . int16 )
@ -3564,9 +3577,9 @@ class Eynollah:
image_page = image_page . astype ( np . uint8 )
#print("full inside 1", time.time()- t_full0)
if self . light_version :
regions_fully , regions_fully_only_drop = self . extract_text_regions_new ( img_bin_light , Tru e, cols = num_col_classifier )
regions_fully , regions_fully_only_drop = self . extract_text_regions_new ( img_bin_light , Fals e, cols = num_col_classifier )
else :
regions_fully , regions_fully_only_drop = self . extract_text_regions_new ( image_page , Tru e, cols = num_col_classifier )
regions_fully , regions_fully_only_drop = self . extract_text_regions_new ( image_page , Fals e, cols = num_col_classifier )
#print("full inside 2", time.time()- t_full0)
# 6 is the separators lable in old full layout model
# 4 is the drop capital class in old full layout model
@ -3590,7 +3603,7 @@ class Eynollah:
regions_fully [ : , : , 0 ] [ drops [ : , : ] == 1 ] = drop_capital_label_in_full_layout_model
regions_fully = putt_bb_of_drop_capitals_of_model_in_patches_in_layout ( regions_fully , drop_capital_label_in_full_layout_model )
##regions_fully = putt_bb_of_drop_capitals_of_model_in_patches_in_layout(regions_fully, drop_capital_label_in_full_layout_model)
##regions_fully_np, _ = self.extract_text_regions(image_page, False, cols=num_col_classifier)
##if num_col_classifier > 2:
##regions_fully_np[:, :, 0][regions_fully_np[:, :, 0] == 4] = 0
@ -4768,9 +4781,9 @@ class Eynollah:
textline_mask_tot_ea_deskew = resize_image ( textline_mask_tot_ea , img_h_new , img_w_new )
slope_deskew , slope_first = 0 , 0 #self.run_deskew(textline_mask_tot_ea_deskew )
slope_deskew , slope_first = self . run_deskew ( textline_mask_tot_ea_deskew )
else :
slope_deskew , slope_first = 0 , 0 #self.run_deskew(textline_mask_tot_ea )
slope_deskew , slope_first = self . run_deskew ( textline_mask_tot_ea )
#print("text region early -2,5 in %.1fs", time.time() - t0)
#self.logger.info("Textregion detection took %.1fs ", time.time() - t1t)
num_col , num_col_classifier , img_only_regions , page_coord , image_page , mask_images , mask_lines , text_regions_p_1 , cont_page , table_prediction , textline_mask_tot_ea , img_bin_light = \