pep 8 code style

pep-8-code-style
cneud 4 months ago
parent dbee1a3084
commit 826d38b865

@ -182,7 +182,7 @@ def main(
if textline_light and not light_version:
print('Error: You used -tll to enable light textline detection but -light is not enabled')
sys.exit(1)
if extract_only_images and (allow_enhancement or allow_scaling or light_version or curved_line or textline_light or full_layout or tables or right2left or headers_off) :
if extract_only_images and (allow_enhancement or allow_scaling or light_version or curved_line or textline_light or full_layout or tables or right2left or headers_off):
print('Error: You used -eoi which can not be enabled alongside light_version -light or allow_scaling -as or allow_enhancement -ae or curved_line -cl or textline_light -tll or full_layout -fl or tables -tab or right2left -r2l or headers_off -ho')
sys.exit(1)
eynollah = Eynollah(
@ -215,5 +215,6 @@ def main(
pcgts = eynollah.run()
eynollah.writer.write_pagexml(pcgts)
if __name__ == "__main__":
main()

File diff suppressed because it is too large Load Diff

@ -2,10 +2,12 @@ from .processor import EynollahProcessor
from click import command
from ocrd.decorators import ocrd_cli_options, ocrd_cli_wrap_processor
@command()
@ocrd_cli_options
def main(*args, **kwargs):
return ocrd_cli_wrap_processor(EynollahProcessor, *args, **kwargs)
if __name__ == '__main__':
main()

@ -9,24 +9,25 @@ from .utils import crop_image_inside_box
from .utils.rotate import rotate_image_different
from .utils.resize import resize_image
class EynollahPlotter():
"""
Class collecting all the plotting and image writing methods
"""
def __init__(
self,
*,
dir_out,
dir_of_all,
dir_save_page,
dir_of_deskewed,
dir_of_layout,
dir_of_cropped_images,
image_filename_stem,
image_org=None,
scale_x=1,
scale_y=1,
self,
*,
dir_out,
dir_of_all,
dir_save_page,
dir_of_deskewed,
dir_of_layout,
dir_of_cropped_images,
image_filename_stem,
image_org=None,
scale_x=1,
scale_y=1,
):
self.dir_out = dir_out
self.dir_of_all = dir_of_all
@ -44,7 +45,7 @@ class EynollahPlotter():
if self.dir_of_layout is not None:
values = np.unique(text_regions_p[:, :])
# pixels=['Background' , 'Main text' , 'Heading' , 'Marginalia' ,'Drop capitals' , 'Images' , 'Seperators' , 'Tables', 'Graphics']
pixels=['Background' , 'Main text' , 'Image' , 'Separator','Marginalia']
pixels = ['Background', 'Main text', 'Image', 'Separator', 'Marginalia']
values_indexes = [0, 1, 2, 3, 4]
plt.figure(figsize=(40, 40))
plt.rcParams["font.size"] = "40"
@ -53,13 +54,12 @@ class EynollahPlotter():
patches = [mpatches.Patch(color=colors[np.where(values == i)[0][0]], label="{l}".format(l=pixels[int(np.where(values_indexes == i)[0][0])])) for i in values]
plt.legend(handles=patches, bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.0, fontsize=40)
plt.savefig(os.path.join(self.dir_of_layout, self.image_filename_stem + "_layout_main.png"))
def save_plot_of_layout_main_all(self, text_regions_p, image_page):
if self.dir_of_all is not None:
values = np.unique(text_regions_p[:, :])
# pixels=['Background' , 'Main text' , 'Heading' , 'Marginalia' ,'Drop capitals' , 'Images' , 'Seperators' , 'Tables', 'Graphics']
pixels=['Background' , 'Main text' , 'Image' , 'Separator','Marginalia']
# pixels = ['Background', 'Main text', 'Heading', 'Marginalia', 'Drop capitals', 'Images', 'Seperators', 'Tables', 'Graphics']
pixels = ['Background', 'Main text', 'Image', 'Separator', 'Marginalia']
values_indexes = [0, 1, 2, 3, 4]
plt.figure(figsize=(80, 40))
plt.rcParams["font.size"] = "40"
@ -131,33 +131,34 @@ class EynollahPlotter():
cv2.imwrite(os.path.join(self.dir_of_all, self.image_filename_stem + "_page.png"), image_page)
if self.dir_save_page is not None:
cv2.imwrite(os.path.join(self.dir_save_page, self.image_filename_stem + "_page.png"), image_page)
def save_enhanced_image(self, img_res):
cv2.imwrite(os.path.join(self.dir_out, self.image_filename_stem + "_enhanced.png"), img_res)
def save_plot_of_textline_density(self, img_patch_org):
if self.dir_of_all is not None:
plt.figure(figsize=(80,40))
plt.rcParams['font.size']='50'
plt.subplot(1,2,1)
plt.figure(figsize=(80, 40))
plt.rcParams['font.size'] = '50'
plt.subplot(1, 2, 1)
plt.imshow(img_patch_org)
plt.subplot(1,2,2)
plt.plot(gaussian_filter1d(img_patch_org.sum(axis=1), 3),np.array(range(len(gaussian_filter1d(img_patch_org.sum(axis=1), 3)))),linewidth=8)
plt.xlabel('Density of textline prediction in direction of X axis',fontsize=60)
plt.ylabel('Height',fontsize=60)
plt.yticks([0,len(gaussian_filter1d(img_patch_org.sum(axis=1), 3))])
plt.subplot(1, 2, 2)
plt.plot(gaussian_filter1d(img_patch_org.sum(axis=1), 3), np.array(range(len(gaussian_filter1d(img_patch_org.sum(axis=1), 3)))), linewidth=8)
plt.xlabel('Density of textline prediction in direction of X axis', fontsize=60)
plt.ylabel('Height', fontsize=60)
plt.yticks([0, len(gaussian_filter1d(img_patch_org.sum(axis=1), 3))])
plt.gca().invert_yaxis()
plt.savefig(os.path.join(self.dir_of_all, self.image_filename_stem+'_density_of_textline.png'))
plt.savefig(os.path.join(self.dir_of_all, self.image_filename_stem + '_density_of_textline.png'))
def save_plot_of_rotation_angle(self, angels, var_res):
if self.dir_of_all is not None:
plt.figure(figsize=(60,30))
plt.rcParams['font.size']='50'
plt.plot(angels,np.array(var_res),'-o',markersize=25,linewidth=4)
plt.xlabel('angle',fontsize=50)
plt.ylabel('variance of sum of rotated textline in direction of x axis',fontsize=50)
plt.plot(angels[np.argmax(var_res)],var_res[np.argmax(np.array(var_res))] ,'*',markersize=50,label='Angle of deskewing=' +str("{:.2f}".format(angels[np.argmax(var_res)]))+r'$\degree$')
plt.figure(figsize=(60, 30))
plt.rcParams['font.size'] = '50'
plt.plot(angels, np.array(var_res), '-o', markersize=25, linewidth=4)
plt.xlabel('angle', fontsize=50)
plt.ylabel('variance of sum of rotated textline in direction of x axis', fontsize=50)
plt.plot(angels[np.argmax(var_res)], var_res[np.argmax(np.array(var_res))], '*', markersize=50, label='Angle of deskewing=' + str("{:.2f}".format(angels[np.argmax(var_res)])) + r'$\degree$')
plt.legend(loc='best')
plt.savefig(os.path.join(self.dir_of_all, self.image_filename_stem+'_rotation_angle.png'))
plt.savefig(os.path.join(self.dir_of_all, self.image_filename_stem + '_rotation_angle.png'))
def write_images_into_directory(self, img_contours, image_page):
if self.dir_of_cropped_images is not None:
@ -165,11 +166,10 @@ class EynollahPlotter():
for cont_ind in img_contours:
x, y, w, h = cv2.boundingRect(cont_ind)
box = [x, y, w, h]
croped_page, page_coord = crop_image_inside_box(box, image_page)
cropped_page, page_coord = crop_image_inside_box(box, image_page)
croped_page = resize_image(croped_page, int(croped_page.shape[0] / self.scale_y), int(croped_page.shape[1] / self.scale_x))
cropped_page = resize_image(cropped_page, int(cropped_page.shape[0] / self.scale_y), int(cropped_page.shape[1] / self.scale_x))
path = os.path.join(self.dir_of_cropped_images, self.image_filename_stem + "_" + str(index) + ".jpg")
cv2.imwrite(path, croped_page)
cv2.imwrite(path, cropped_page)
index += 1

@ -22,6 +22,7 @@ from .utils.pil_cv2 import pil2cv
OCRD_TOOL = loads(resource_string(__name__, 'ocrd-tool.json').decode('utf8'))
class EynollahProcessor(Processor):
def __init__(self, *args, **kwargs):

File diff suppressed because it is too large Load Diff

@ -5,6 +5,8 @@ from shapely import geometry
from .rotate import rotate_image, rotation_image_new
from multiprocessing import Process, Queue, cpu_count
from multiprocessing import Pool
def contours_in_same_horizon(cy_main_hor):
X1 = np.zeros((len(cy_main_hor), len(cy_main_hor)))
X2 = np.zeros((len(cy_main_hor), len(cy_main_hor)))
@ -22,6 +24,7 @@ def contours_in_same_horizon(cy_main_hor):
all_args.append(list(set(list_h)))
return np.unique(np.array(all_args, dtype=object))
def find_contours_mean_y_diff(contours_main):
M_main = [cv2.moments(contours_main[j]) for j in range(len(contours_main))]
cy_main = [(M_main[j]["m01"] / (M_main[j]["m00"] + 1e-32)) for j in range(len(M_main))]
@ -29,7 +32,6 @@ def find_contours_mean_y_diff(contours_main):
def get_text_region_boxes_by_given_contours(contours):
kernel = np.ones((5, 5), np.uint8)
boxes = []
contours_new = []
@ -42,39 +44,43 @@ def get_text_region_boxes_by_given_contours(contours):
del contours
return boxes, contours_new
def filter_contours_area_of_image(image, contours, hierarchy, max_area, min_area):
found_polygons_early = list()
for jv,c in enumerate(contours):
for jv, c in enumerate(contours):
if len(c) < 3: # A polygon cannot have less than 3 points
continue
polygon = geometry.Polygon([point[0] for point in c])
area = polygon.area
if area >= min_area * np.prod(image.shape[:2]) and area <= max_area * np.prod(image.shape[:2]) and hierarchy[0][jv][3] == -1: # and hierarchy[0][jv][3]==-1 :
if area >= min_area * np.prod(image.shape[:2]) and area <= max_area * np.prod(image.shape[:2]) and \
hierarchy[0][jv][3] == -1: # and hierarchy[0][jv][3]==-1 :
found_polygons_early.append(np.array([[point] for point in polygon.exterior.coords], dtype=np.uint))
return found_polygons_early
def filter_contours_area_of_image_tables(image, contours, hierarchy, max_area, min_area):
found_polygons_early = list()
for jv,c in enumerate(contours):
for jv, c in enumerate(contours):
if len(c) < 3: # A polygon cannot have less than 3 points
continue
polygon = geometry.Polygon([point[0] for point in c])
# area = cv2.contourArea(c)
area = polygon.area
##print(np.prod(thresh.shape[:2]))
# print(np.prod(thresh.shape[:2]))
# Check that polygon has area greater than minimal area
# print(hierarchy[0][jv][3],hierarchy )
if area >= min_area * np.prod(image.shape[:2]) and area <= max_area * np.prod(image.shape[:2]): # and hierarchy[0][jv][3]==-1 :
if area >= min_area * np.prod(image.shape[:2]) and area <= max_area * np.prod(
image.shape[:2]): # and hierarchy[0][jv][3]==-1 :
# print(c[0][0][1])
found_polygons_early.append(np.array([[point] for point in polygon.exterior.coords], dtype=np.int32))
return found_polygons_early
def find_new_features_of_contours(contours_main):
def find_new_features_of_contours(contours_main):
areas_main = np.array([cv2.contourArea(contours_main[j]) for j in range(len(contours_main))])
M_main = [cv2.moments(contours_main[j]) for j in range(len(contours_main))]
cx_main = [(M_main[j]["m10"] / (M_main[j]["m00"] + 1e-32)) for j in range(len(M_main))]
@ -85,7 +91,8 @@ def find_new_features_of_contours(contours_main):
argmin_x_main = np.array([np.argmin(contours_main[j][:, 0, 0]) for j in range(len(contours_main))])
x_min_from_argmin = np.array([contours_main[j][argmin_x_main[j], 0, 0] for j in range(len(contours_main))])
y_corr_x_min_from_argmin = np.array([contours_main[j][argmin_x_main[j], 0, 1] for j in range(len(contours_main))])
y_corr_x_min_from_argmin = np.array(
[contours_main[j][argmin_x_main[j], 0, 1] for j in range(len(contours_main))])
x_max_main = np.array([np.max(contours_main[j][:, 0, 0]) for j in range(len(contours_main))])
@ -107,27 +114,28 @@ def find_new_features_of_contours(contours_main):
# dis_x=np.abs(x_max_main-x_min_main)
return cx_main, cy_main, x_min_main, x_max_main, y_min_main, y_max_main, y_corr_x_min_from_argmin
def find_features_of_contours(contours_main):
areas_main=np.array([cv2.contourArea(contours_main[j]) for j in range(len(contours_main))])
M_main=[cv2.moments(contours_main[j]) for j in range(len(contours_main))]
cx_main=[(M_main[j]['m10']/(M_main[j]['m00']+1e-32)) for j in range(len(M_main))]
cy_main=[(M_main[j]['m01']/(M_main[j]['m00']+1e-32)) for j in range(len(M_main))]
x_min_main=np.array([np.min(contours_main[j][:,0,0]) for j in range(len(contours_main))])
x_max_main=np.array([np.max(contours_main[j][:,0,0]) for j in range(len(contours_main))])
y_min_main=np.array([np.min(contours_main[j][:,0,1]) for j in range(len(contours_main))])
y_max_main=np.array([np.max(contours_main[j][:,0,1]) for j in range(len(contours_main))])
def find_features_of_contours(contours_main):
areas_main = np.array([cv2.contourArea(contours_main[j]) for j in range(len(contours_main))])
M_main = [cv2.moments(contours_main[j]) for j in range(len(contours_main))]
cx_main = [(M_main[j]['m10'] / (M_main[j]['m00'] + 1e-32)) for j in range(len(M_main))]
cy_main = [(M_main[j]['m01'] / (M_main[j]['m00'] + 1e-32)) for j in range(len(M_main))]
x_min_main = np.array([np.min(contours_main[j][:, 0, 0]) for j in range(len(contours_main))])
x_max_main = np.array([np.max(contours_main[j][:, 0, 0]) for j in range(len(contours_main))])
y_min_main = np.array([np.min(contours_main[j][:, 0, 1]) for j in range(len(contours_main))])
y_max_main = np.array([np.max(contours_main[j][:, 0, 1]) for j in range(len(contours_main))])
return y_min_main, y_max_main
def return_parent_contours(contours, hierarchy):
contours_parent = [contours[i] for i in range(len(contours)) if hierarchy[0][i][3] == -1]
return contours_parent
def return_contours_of_interested_region(region_pre_p, pixel, min_area=0.0002):
def return_contours_of_interested_region(region_pre_p, pixel, min_area=0.0002):
# pixels of images are identified by 5
if len(region_pre_p.shape) == 3:
cnts_images = (region_pre_p[:, :, 0] == pixel) * 1
@ -145,12 +153,13 @@ def return_contours_of_interested_region(region_pre_p, pixel, min_area=0.0002):
return contours_imgs
def do_work_of_contours_in_image(queue_of_all_params, contours_per_process, indexes_r_con_per_pro, img, slope_first):
cnts_org_per_each_subprocess = []
index_by_text_region_contours = []
for mv in range(len(contours_per_process)):
index_by_text_region_contours.append(indexes_r_con_per_pro[mv])
img_copy = np.zeros(img.shape)
img_copy = cv2.fillPoly(img_copy, pts=[contours_per_process[mv]], color=(1, 1, 1))
@ -165,14 +174,12 @@ def do_work_of_contours_in_image(queue_of_all_params, contours_per_process, inde
cont_int[0][:, 0, 0] = cont_int[0][:, 0, 0] + np.abs(img_copy.shape[1] - img.shape[1])
cont_int[0][:, 0, 1] = cont_int[0][:, 0, 1] + np.abs(img_copy.shape[0] - img.shape[0])
cnts_org_per_each_subprocess.append(cont_int[0])
queue_of_all_params.put([ cnts_org_per_each_subprocess, index_by_text_region_contours])
queue_of_all_params.put([cnts_org_per_each_subprocess, index_by_text_region_contours])
def get_textregion_contours_in_org_image_multi(cnts, img, slope_first):
num_cores = cpu_count()
queue_of_all_params = Queue()
@ -180,10 +187,10 @@ def get_textregion_contours_in_org_image_multi(cnts, img, slope_first):
nh = np.linspace(0, len(cnts), num_cores + 1)
indexes_by_text_con = np.array(range(len(cnts)))
for i in range(num_cores):
contours_per_process = cnts[int(nh[i]) : int(nh[i + 1])]
indexes_text_con_per_process = indexes_by_text_con[int(nh[i]) : int(nh[i + 1])]
contours_per_process = cnts[int(nh[i]): int(nh[i + 1])]
indexes_text_con_per_process = indexes_by_text_con[int(nh[i]): int(nh[i + 1])]
processes.append(Process(target=do_work_of_contours_in_image, args=(queue_of_all_params, contours_per_process, indexes_text_con_per_process, img,slope_first )))
processes.append(Process(target=do_work_of_contours_in_image, args=(queue_of_all_params, contours_per_process, indexes_text_con_per_process, img, slope_first)))
for i in range(num_cores):
processes[i].start()
cnts_org = []
@ -200,7 +207,9 @@ def get_textregion_contours_in_org_image_multi(cnts, img, slope_first):
print(all_index_text_con)
return cnts_org
def loop_contour_image(index_l, cnts,img, slope_first):
def loop_contour_image(index_l, cnts, img, slope_first):
img_copy = np.zeros(img.shape)
img_copy = cv2.fillPoly(img_copy, pts=[cnts[index_l]], color=(1, 1, 1))
@ -209,7 +218,7 @@ def loop_contour_image(index_l, cnts,img, slope_first):
# print(img.shape,'img')
img_copy = rotation_image_new(img_copy, -slope_first)
##print(img_copy.shape,'img_copy')
# print(img_copy.shape,'img_copy')
# plt.imshow(img_copy)
# plt.show()
@ -224,17 +233,17 @@ def loop_contour_image(index_l, cnts,img, slope_first):
# print(np.shape(cont_int[0]))
return cont_int[0]
def get_textregion_contours_in_org_image_multi2(cnts, img, slope_first):
def get_textregion_contours_in_org_image_multi2(cnts, img, slope_first):
cnts_org = []
# print(cnts,'cnts')
with Pool(cpu_count()) as p:
cnts_org = p.starmap(loop_contour_image, [(index_l,cnts, img,slope_first) for index_l in range(len(cnts))])
cnts_org = p.starmap(loop_contour_image, [(index_l, cnts, img, slope_first) for index_l in range(len(cnts))])
return cnts_org
def get_textregion_contours_in_org_image(cnts, img, slope_first):
def get_textregion_contours_in_org_image(cnts, img, slope_first):
cnts_org = []
# print(cnts,'cnts')
for i in range(len(cnts)):
@ -246,7 +255,7 @@ def get_textregion_contours_in_org_image(cnts, img, slope_first):
# print(img.shape,'img')
img_copy = rotation_image_new(img_copy, -slope_first)
##print(img_copy.shape,'img_copy')
# print(img_copy.shape,'img_copy')
# plt.imshow(img_copy)
# plt.show()
@ -263,17 +272,17 @@ def get_textregion_contours_in_org_image(cnts, img, slope_first):
return cnts_org
def get_textregion_contours_in_org_image_light(cnts, img, slope_first):
h_o = img.shape[0]
w_o = img.shape[1]
img = cv2.resize(img, (int(img.shape[1]/3.), int(img.shape[0]/3.)), interpolation=cv2.INTER_NEAREST)
##cnts = list( (np.array(cnts)/2).astype(np.int16) )
#cnts = cnts/2
cnts = [(i/ 3).astype(np.int32) for i in cnts]
img = cv2.resize(img, (int(img.shape[1] / 3.), int(img.shape[0] / 3.)), interpolation=cv2.INTER_NEAREST)
# cnts = list( (np.array(cnts)/2).astype(np.int16) )
# cnts = cnts/2
cnts = [(i / 3).astype(np.int32) for i in cnts]
cnts_org = []
#print(cnts,'cnts')
# print(cnts,'cnts')
for i in range(len(cnts)):
img_copy = np.zeros(img.shape)
img_copy = cv2.fillPoly(img_copy, pts=[cnts[i]], color=(1, 1, 1))
@ -283,7 +292,7 @@ def get_textregion_contours_in_org_image_light(cnts, img, slope_first):
# print(img.shape,'img')
img_copy = rotation_image_new(img_copy, -slope_first)
##print(img_copy.shape,'img_copy')
# print(img_copy.shape,'img_copy')
# plt.imshow(img_copy)
# plt.show()
@ -296,12 +305,12 @@ def get_textregion_contours_in_org_image_light(cnts, img, slope_first):
cont_int[0][:, 0, 0] = cont_int[0][:, 0, 0] + np.abs(img_copy.shape[1] - img.shape[1])
cont_int[0][:, 0, 1] = cont_int[0][:, 0, 1] + np.abs(img_copy.shape[0] - img.shape[0])
# print(np.shape(cont_int[0]))
cnts_org.append(cont_int[0]*3)
cnts_org.append(cont_int[0] * 3)
return cnts_org
def return_contours_of_interested_textline(region_pre_p, pixel):
def return_contours_of_interested_textline(region_pre_p, pixel):
# pixels of images are identified by 5
if len(region_pre_p.shape) == 3:
cnts_images = (region_pre_p[:, :, 0] == pixel) * 1
@ -317,8 +326,8 @@ def return_contours_of_interested_textline(region_pre_p, pixel):
contours_imgs = filter_contours_area_of_image_tables(thresh, contours_imgs, hierarchy, max_area=1, min_area=0.000000003)
return contours_imgs
def return_contours_of_image(image):
def return_contours_of_image(image):
if len(image.shape) == 2:
image = np.repeat(image[:, :, np.newaxis], 3, axis=2)
image = image.astype(np.uint8)
@ -329,8 +338,8 @@ def return_contours_of_image(image):
contours, hierarchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
return contours, hierarchy
def return_contours_of_interested_region_by_min_size(region_pre_p, pixel, min_size=0.00003):
def return_contours_of_interested_region_by_min_size(region_pre_p, pixel, min_size=0.00003):
# pixels of images are identified by 5
if len(region_pre_p.shape) == 3:
cnts_images = (region_pre_p[:, :, 0] == pixel) * 1
@ -348,8 +357,8 @@ def return_contours_of_interested_region_by_min_size(region_pre_p, pixel, min_si
return contours_imgs
def return_contours_of_interested_region_by_size(region_pre_p, pixel, min_area, max_area):
def return_contours_of_interested_region_by_size(region_pre_p, pixel, min_area, max_area):
# pixels of images are identified by 5
if len(region_pre_p.shape) == 3:
cnts_images = (region_pre_p[:, :, 0] == pixel) * 1
@ -367,4 +376,3 @@ def return_contours_of_interested_region_by_size(region_pre_p, pixel, min_area,
img_ret = np.zeros((region_pre_p.shape[0], region_pre_p.shape[1], 3))
img_ret = cv2.fillPoly(img_ret, pts=contours_imgs, color=(1, 1, 1))
return img_ret[:, :, 0]

@ -3,6 +3,7 @@ from collections import Counter
REGION_ID_TEMPLATE = 'region_%04d'
LINE_ID_TEMPLATE = 'region_%04d_line_%04d'
class EynollahIdCounter():
def __init__(self, region_idx=0, line_idx=0):

@ -6,6 +6,7 @@ from .contour import (
return_parent_contours,
)
def adhere_drop_capital_region_into_corresponding_textline(
text_regions_p,
polygons_of_drop_capitals,
@ -26,8 +27,8 @@ def adhere_drop_capital_region_into_corresponding_textline(
img_con_all = np.zeros((text_regions_p.shape[0], text_regions_p.shape[1], 3))
for j_cont in range(len(contours_only_text_parent)):
img_con_all[all_box_coord[j_cont][0] : all_box_coord[j_cont][1], all_box_coord[j_cont][2] : all_box_coord[j_cont][3], 0] = (j_cont + 1) * 3
# img_con_all=cv2.fillPoly(img_con_all,pts=[contours_only_text_parent[j_cont]],color=((j_cont+1)*3,(j_cont+1)*3,(j_cont+1)*3))
img_con_all[all_box_coord[j_cont][0]: all_box_coord[j_cont][1], all_box_coord[j_cont][2]: all_box_coord[j_cont][3], 0] = (j_cont + 1) * 3
# img_con_all=cv2.fillPoly(img_con_all,pts = [contours_only_text_parent[j_cont]],color = ((j_cont+1)*3,(j_cont+1)*3,(j_cont+1)*3))
# plt.imshow(img_con_all[:,:,0])
# plt.show()
@ -44,7 +45,7 @@ def adhere_drop_capital_region_into_corresponding_textline(
# plt.imshow(img_con[:,:,0])
# plt.show()
##img_con=cv2.dilate(img_con, kernel, iterations=30)
# img_con=cv2.dilate(img_con, kernel, iterations=30)
# plt.imshow(img_con[:,:,0])
# plt.show()
@ -185,7 +186,7 @@ def adhere_drop_capital_region_into_corresponding_textline(
# contours_biggest[:,0,1]=contours_biggest[:,0,1]#-all_box_coord[int(region_final)][0]
# print(np.shape(contours_biggest),'contours_biggest')
# print(np.shape(all_found_textline_polygons[int(region_final)][arg_min]))
##contours_biggest=contours_biggest.reshape(np.shape(contours_biggest)[0],np.shape(contours_biggest)[2])
# contours_biggest=contours_biggest.reshape(np.shape(contours_biggest)[0],np.shape(contours_biggest)[2])
all_found_textline_polygons[int(region_final)][arg_min] = contours_biggest
except:
pass
@ -230,7 +231,7 @@ def adhere_drop_capital_region_into_corresponding_textline(
contours_biggest[:, 0, 0] = contours_biggest[:, 0, 0] # -all_box_coord[int(region_final)][2]
contours_biggest[:, 0, 1] = contours_biggest[:, 0, 1] # -all_box_coord[int(region_final)][0]
##contours_biggest=contours_biggest.reshape(np.shape(contours_biggest)[0],np.shape(contours_biggest)[2])
# contours_biggest=contours_biggest.reshape(np.shape(contours_biggest)[0],np.shape(contours_biggest)[2])
all_found_textline_polygons[int(region_final)][arg_min] = contours_biggest
# all_found_textline_polygons[int(region_final)][arg_min]=contours_biggest
@ -239,49 +240,49 @@ def adhere_drop_capital_region_into_corresponding_textline(
else:
pass
##cx_t,cy_t ,_, _, _ ,_,_= find_new_features_of_contours(all_found_textline_polygons[int(region_final)])
###print(all_box_coord[j_cont])
###print(cx_t)
###print(cy_t)
###print(cx_d[i_drop])
###print(cy_d[i_drop])
##y_lines=all_box_coord[int(region_final)][0]+np.array(cy_t)
# cx_t,cy_t ,_, _, _ ,_,_ = find_new_features_of_contours(all_found_textline_polygons[int(region_final)])
# print(all_box_coord[j_cont])
# print(cx_t)
# print(cy_t)
# print(cx_d[i_drop])
# print(cy_d[i_drop])
# y_lines = all_box_coord[int(region_final)][0]+np.array(cy_t)
##y_lines[y_lines<y_min_d[i_drop]]=0
###print(y_lines)
# y_lines[y_lines<y_min_d[i_drop]]=0
# print(y_lines)
##arg_min=np.argmin(np.abs(y_lines-y_min_d[i_drop]) )
###print(arg_min)
# arg_min=np.argmin(np.abs(y_lines-y_min_d[i_drop]) )
# print(arg_min)
##cnt_nearest=np.copy(all_found_textline_polygons[int(region_final)][arg_min])
##cnt_nearest[:,0,0]=all_found_textline_polygons[int(region_final)][arg_min][:,0,0]#+all_box_coord[int(region_final)][2]
##cnt_nearest[:,0,1]=all_found_textline_polygons[int(region_final)][arg_min][:,0,1]#+all_box_coord[int(region_final)][0]
# cnt_nearest=np.copy(all_found_textline_polygons[int(region_final)][arg_min])
# cnt_nearest[:,0,0]=all_found_textline_polygons[int(region_final)][arg_min][:,0,0]#+all_box_coord[int(region_final)][2]
# cnt_nearest[:,0,1]=all_found_textline_polygons[int(region_final)][arg_min][:,0,1]#+all_box_coord[int(region_final)][0]
##img_textlines=np.zeros((text_regions_p.shape[0],text_regions_p.shape[1],3))
##img_textlines=cv2.fillPoly(img_textlines,pts=[cnt_nearest],color=(255,255,255))
##img_textlines=cv2.fillPoly(img_textlines,pts=[polygons_of_drop_capitals[i_drop] ],color=(255,255,255))
# img_textlines=np.zeros((text_regions_p.shape[0],text_regions_p.shape[1],3))
# img_textlines=cv2.fillPoly(img_textlines,pts=[cnt_nearest],color=(255,255,255))
# img_textlines=cv2.fillPoly(img_textlines,pts=[polygons_of_drop_capitals[i_drop] ],color=(255,255,255))
##img_textlines=img_textlines.astype(np.uint8)
# img_textlines=img_textlines.astype(np.uint8)
##plt.imshow(img_textlines)
##plt.show()
##imgray = cv2.cvtColor(img_textlines, cv2.COLOR_BGR2GRAY)
##ret, thresh = cv2.threshold(imgray, 0, 255, 0)
# plt.imshow(img_textlines)
# plt.show()
# imgray = cv2.cvtColor(img_textlines, cv2.COLOR_BGR2GRAY)
# ret, thresh = cv2.threshold(imgray, 0, 255, 0)
##contours_combined,hierarchy=cv2.findContours(thresh,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)
# contours_combined,hierarchy=cv2.findContours(thresh,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)
##print(len(contours_combined),'len textlines mixed')
##areas_cnt_text=np.array([cv2.contourArea(contours_combined[j]) for j in range(len(contours_combined))])
# print(len(contours_combined),'len textlines mixed')
# areas_cnt_text=np.array([cv2.contourArea(contours_combined[j]) for j in range(len(contours_combined))])
##contours_biggest=contours_combined[np.argmax(areas_cnt_text)]
# contours_biggest=contours_combined[np.argmax(areas_cnt_text)]
###print(np.shape(contours_biggest))
###print(contours_biggest[:])
##contours_biggest[:,0,0]=contours_biggest[:,0,0]#-all_box_coord[int(region_final)][2]
##contours_biggest[:,0,1]=contours_biggest[:,0,1]#-all_box_coord[int(region_final)][0]
# rint(np.shape(contours_biggest))
# print(contours_biggest[:])
# contours_biggest[:,0,0]=contours_biggest[:,0,0]#-all_box_coord[int(region_final)][2]
# contours_biggest[:,0,1]=contours_biggest[:,0,1]#-all_box_coord[int(region_final)][0]
##contours_biggest=contours_biggest.reshape(np.shape(contours_biggest)[0],np.shape(contours_biggest)[2])
##all_found_textline_polygons[int(region_final)][arg_min]=contours_biggest
# contours_biggest=contours_biggest.reshape(np.shape(contours_biggest)[0],np.shape(contours_biggest)[2])
# all_found_textline_polygons[int(region_final)][arg_min]=contours_biggest
else:
if len(region_with_intersected_drop) > 1:
@ -399,71 +400,72 @@ def adhere_drop_capital_region_into_corresponding_textline(
else:
pass
#####for i_drop in range(len(polygons_of_drop_capitals)):
#####for j_cont in range(len(contours_only_text_parent)):
#####img_con=np.zeros((text_regions_p.shape[0],text_regions_p.shape[1],3))
#####img_con=cv2.fillPoly(img_con,pts=[polygons_of_drop_capitals[i_drop] ],color=(255,255,255))
#####img_con=cv2.fillPoly(img_con,pts=[contours_only_text_parent[j_cont]],color=(255,255,255))
#####img_con=img_con.astype(np.uint8)
######imgray = cv2.cvtColor(img_con, cv2.COLOR_BGR2GRAY)
######ret, thresh = cv2.threshold(imgray, 0, 255, 0)
######contours_new,hierarchy=cv2.findContours(thresh,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)
#####contours_new,hir_new=return_contours_of_image(img_con)
#####contours_new_parent=return_parent_contours( contours_new,hir_new)
######plt.imshow(img_con)
######plt.show()
#####try:
#####if len(contours_new_parent)==1:
######print(all_found_textline_polygons[j_cont][0])
#####cx_t,cy_t ,_, _, _ ,_,_= find_new_features_of_contours(all_found_textline_polygons[j_cont])
######print(all_box_coord[j_cont])
######print(cx_t)
######print(cy_t)
######print(cx_d[i_drop])
######print(cy_d[i_drop])
#####y_lines=all_box_coord[j_cont][0]+np.array(cy_t)
######print(y_lines)
#####arg_min=np.argmin(np.abs(y_lines-y_min_d[i_drop]) )
######print(arg_min)
#####cnt_nearest=np.copy(all_found_textline_polygons[j_cont][arg_min])
#####cnt_nearest[:,0]=all_found_textline_polygons[j_cont][arg_min][:,0]+all_box_coord[j_cont][2]
#####cnt_nearest[:,1]=all_found_textline_polygons[j_cont][arg_min][:,1]+all_box_coord[j_cont][0]
#####img_textlines=np.zeros((text_regions_p.shape[0],text_regions_p.shape[1],3))
#####img_textlines=cv2.fillPoly(img_textlines,pts=[cnt_nearest],color=(255,255,255))
#####img_textlines=cv2.fillPoly(img_textlines,pts=[polygons_of_drop_capitals[i_drop] ],color=(255,255,255))
#####img_textlines=img_textlines.astype(np.uint8)
#####imgray = cv2.cvtColor(img_textlines, cv2.COLOR_BGR2GRAY)
#####ret, thresh = cv2.threshold(imgray, 0, 255, 0)
#####contours_combined,hierarchy=cv2.findContours(thresh,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)
#####areas_cnt_text=np.array([cv2.contourArea(contours_combined[j]) for j in range(len(contours_combined))])
#####contours_biggest=contours_combined[np.argmax(areas_cnt_text)]
######print(np.shape(contours_biggest))
######print(contours_biggest[:])
#####contours_biggest[:,0,0]=contours_biggest[:,0,0]-all_box_coord[j_cont][2]
#####contours_biggest[:,0,1]=contours_biggest[:,0,1]-all_box_coord[j_cont][0]
#####all_found_textline_polygons[j_cont][arg_min]=contours_biggest
######print(contours_biggest)
######plt.imshow(img_textlines[:,:,0])
######plt.show()
#####else:
#####pass
#####except:
#####pass
# for i_drop in range(len(polygons_of_drop_capitals)):
# for j_cont in range(len(contours_only_text_parent)):
# img_con=np.zeros((text_regions_p.shape[0],text_regions_p.shape[1],3))
# img_con=cv2.fillPoly(img_con,pts=[polygons_of_drop_capitals[i_drop] ],color=(255,255,255))
# img_con=cv2.fillPoly(img_con,pts=[contours_only_text_parent[j_cont]],color=(255,255,255))
# img_con=img_con.astype(np.uint8)
# imgray = cv2.cvtColor(img_con, cv2.COLOR_BGR2GRAY)
# ret, thresh = cv2.threshold(imgray, 0, 255, 0)
# contours_new,hierarchy=cv2.findContours(thresh,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)
# contours_new,hir_new=return_contours_of_image(img_con)
# contours_new_parent=return_parent_contours( contours_new,hir_new)
# plt.imshow(img_con)
# plt.show()
# try:
# if len(contours_new_parent)==1:
# print(all_found_textline_polygons[j_cont][0])
# cx_t,cy_t ,_, _, _ ,_,_= find_new_features_of_contours(all_found_textline_polygons[j_cont])
# print(all_box_coord[j_cont])
# print(cx_t)
# print(cy_t)
# print(cx_d[i_drop])
# print(cy_d[i_drop])
# y_lines=all_box_coord[j_cont][0]+np.array(cy_t)
# print(y_lines)
# arg_min=np.argmin(np.abs(y_lines-y_min_d[i_drop]) )
# print(arg_min)
# cnt_nearest=np.copy(all_found_textline_polygons[j_cont][arg_min])
# cnt_nearest[:,0]=all_found_textline_polygons[j_cont][arg_min][:,0]+all_box_coord[j_cont][2]
# cnt_nearest[:,1]=all_found_textline_polygons[j_cont][arg_min][:,1]+all_box_coord[j_cont][0]
# img_textlines=np.zeros((text_regions_p.shape[0],text_regions_p.shape[1],3))
# img_textlines=cv2.fillPoly(img_textlines,pts=[cnt_nearest],color=(255,255,255))
# img_textlines=cv2.fillPoly(img_textlines,pts=[polygons_of_drop_capitals[i_drop] ],color=(255,255,255))
# img_textlines=img_textlines.astype(np.uint8)
# imgray = cv2.cvtColor(img_textlines, cv2.COLOR_BGR2GRAY)
# ret, thresh = cv2.threshold(imgray, 0, 255, 0)
# contours_combined,hierarchy=cv2.findContours(thresh,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)
# areas_cnt_text=np.array([cv2.contourArea(contours_combined[j]) for j in range(len(contours_combined))])
# contours_biggest=contours_combined[np.argmax(areas_cnt_text)]
# print(np.shape(contours_biggest))
# print(contours_biggest[:])
# contours_biggest[:,0,0]=contours_biggest[:,0,0]-all_box_coord[j_cont][2]
# contours_biggest[:,0,1]=contours_biggest[:,0,1]-all_box_coord[j_cont][0]
# all_found_textline_polygons[j_cont][arg_min]=contours_biggest
# print(contours_biggest)
# plt.imshow(img_textlines[:,:,0])
# plt.show()
# else:
# pass
# except:
# pass
return all_found_textline_polygons
def filter_small_drop_capitals_from_no_patch_layout(layout_no_patch, layout1):
drop_only = (layout_no_patch[:, :, 0] == 4) * 1
@ -489,7 +491,7 @@ def filter_small_drop_capitals_from_no_patch_layout(layout_no_patch, layout1):
if iou_of_box_and_contoure > 60 and weigh_to_height_ratio < 1.2 and height_to_weight_ratio < 2:
map_of_drop_contour_bb = np.zeros((layout1.shape[0], layout1.shape[1]))
map_of_drop_contour_bb[y : y + h, x : x + w] = layout1[y : y + h, x : x + w]
map_of_drop_contour_bb[y: y + h, x: x + w] = layout1[y: y + h, x: x + w]
if (((map_of_drop_contour_bb == 1) * 1).sum() / float(((map_of_drop_contour_bb == 5) * 1).sum()) * 100) >= 15:
contours_drop_parent_final.append(contours_drop_parent[jj])

@ -3,250 +3,223 @@ import cv2
from scipy.signal import find_peaks
from scipy.ndimage import gaussian_filter1d
from .contour import find_new_features_of_contours, return_contours_of_interested_region
from .resize import resize_image
from .rotate import rotate_image
def get_marginals(text_with_lines, text_regions, num_col, slope_deskew, kernel=None):
mask_marginals=np.zeros((text_with_lines.shape[0],text_with_lines.shape[1]))
mask_marginals=mask_marginals.astype(np.uint8)
def get_marginals(text_with_lines, text_regions, num_col, slope_deskew, kernel=None):
mask_marginals = np.zeros((text_with_lines.shape[0], text_with_lines.shape[1]))
mask_marginals = mask_marginals.astype(np.uint8)
text_with_lines=text_with_lines.astype(np.uint8)
##text_with_lines=cv2.erode(text_with_lines,self.kernel,iterations=3)
text_with_lines = text_with_lines.astype(np.uint8)
# text_with_lines=cv2.erode(text_with_lines,self.kernel,iterations=3)
text_with_lines_eroded=cv2.erode(text_with_lines,kernel,iterations=5)
text_with_lines_eroded = cv2.erode(text_with_lines, kernel, iterations=5)
if text_with_lines.shape[0]<=1500:
if text_with_lines.shape[0] <= 1500:
pass
elif text_with_lines.shape[0]>1500 and text_with_lines.shape[0]<=1800:
text_with_lines=resize_image(text_with_lines,int(text_with_lines.shape[0]*1.5),text_with_lines.shape[1])
text_with_lines=cv2.erode(text_with_lines,kernel,iterations=5)
text_with_lines=resize_image(text_with_lines,text_with_lines_eroded.shape[0],text_with_lines_eroded.shape[1])
elif text_with_lines.shape[0] > 1500 and text_with_lines.shape[0] <= 1800:
text_with_lines = resize_image(text_with_lines, int(text_with_lines.shape[0] * 1.5), text_with_lines.shape[1])
text_with_lines = cv2.erode(text_with_lines, kernel, iterations=5)
text_with_lines = resize_image(text_with_lines, text_with_lines_eroded.shape[0], text_with_lines_eroded.shape[1])
else:
text_with_lines=resize_image(text_with_lines,int(text_with_lines.shape[0]*1.8),text_with_lines.shape[1])
text_with_lines=cv2.erode(text_with_lines,kernel,iterations=7)
text_with_lines=resize_image(text_with_lines,text_with_lines_eroded.shape[0],text_with_lines_eroded.shape[1])
text_with_lines = resize_image(text_with_lines, int(text_with_lines.shape[0] * 1.8), text_with_lines.shape[1])
text_with_lines = cv2.erode(text_with_lines, kernel, iterations=7)
text_with_lines = resize_image(text_with_lines, text_with_lines_eroded.shape[0], text_with_lines_eroded.shape[1])
text_with_lines_y=text_with_lines.sum(axis=0)
text_with_lines_y_eroded=text_with_lines_eroded.sum(axis=0)
text_with_lines_y = text_with_lines.sum(axis=0)
text_with_lines_y_eroded = text_with_lines_eroded.sum(axis=0)
thickness_along_y_percent=text_with_lines_y_eroded.max()/(float(text_with_lines.shape[0]))*100
thickness_along_y_percent = text_with_lines_y_eroded.max() / (float(text_with_lines.shape[0])) * 100
#print(thickness_along_y_percent,'thickness_along_y_percent')
# print(thickness_along_y_percent,'thickness_along_y_percent')
if thickness_along_y_percent<30:
min_textline_thickness=8
elif thickness_along_y_percent>=30 and thickness_along_y_percent<50:
min_textline_thickness=20
if thickness_along_y_percent < 30:
min_textline_thickness = 8
elif thickness_along_y_percent >= 30 and thickness_along_y_percent < 50:
min_textline_thickness = 20
else:
min_textline_thickness=40
if thickness_along_y_percent>=14:
text_with_lines_y_rev=-1*text_with_lines_y[:]
#print(text_with_lines_y)
#print(text_with_lines_y_rev)
#plt.plot(text_with_lines_y)
#plt.show()
text_with_lines_y_rev=text_with_lines_y_rev-np.min(text_with_lines_y_rev)
#plt.plot(text_with_lines_y_rev)
#plt.show()
sigma_gaus=1
region_sum_0= gaussian_filter1d(text_with_lines_y, sigma_gaus)
min_textline_thickness = 40
region_sum_0_rev=gaussian_filter1d(text_with_lines_y_rev, sigma_gaus)
if thickness_along_y_percent >= 14:
#plt.plot(region_sum_0_rev)
#plt.show()
region_sum_0_updown=region_sum_0[len(region_sum_0)::-1]
text_with_lines_y_rev = -1 * text_with_lines_y[:]
# print(text_with_lines_y)
# print(text_with_lines_y_rev)
first_nonzero=(next((i for i, x in enumerate(region_sum_0) if x), None))
last_nonzero=(next((i for i, x in enumerate(region_sum_0_updown) if x), None))
# plt.plot(text_with_lines_y)
# plt.show()
text_with_lines_y_rev = text_with_lines_y_rev - np.min(text_with_lines_y_rev)
last_nonzero=len(region_sum_0)-last_nonzero
# plt.plot(text_with_lines_y_rev)
# plt.show()
sigma_gaus = 1
region_sum_0 = gaussian_filter1d(text_with_lines_y, sigma_gaus)
##img_sum_0_smooth_rev=-region_sum_0
region_sum_0_rev = gaussian_filter1d(text_with_lines_y_rev, sigma_gaus)
# plt.plot(region_sum_0_rev)
# plt.show()
region_sum_0_updown = region_sum_0[len(region_sum_0)::-1]
mid_point=(last_nonzero+first_nonzero)/2.
first_nonzero = (next((i for i, x in enumerate(region_sum_0) if x), None))
last_nonzero = (next((i for i, x in enumerate(region_sum_0_updown) if x), None))
last_nonzero = len(region_sum_0) - last_nonzero
one_third_right=(last_nonzero-mid_point)/3.0
one_third_left=(mid_point-first_nonzero)/3.0
#img_sum_0_smooth_rev=img_sum_0_smooth_rev-np.min(img_sum_0_smooth_rev)
# img_sum_0_smooth_rev=-region_sum_0
mid_point = (last_nonzero + first_nonzero) / 2.
one_third_right = (last_nonzero - mid_point) / 3.0
one_third_left = (mid_point - first_nonzero) / 3.0
# img_sum_0_smooth_rev=img_sum_0_smooth_rev-np.min(img_sum_0_smooth_rev)
peaks, _ = find_peaks(text_with_lines_y_rev, height=0)
peaks = np.array(peaks)
peaks=np.array(peaks)
#print(region_sum_0[peaks])
##plt.plot(region_sum_0)
##plt.plot(peaks,region_sum_0[peaks],'*')
##plt.show()
#print(first_nonzero,last_nonzero,peaks)
peaks=peaks[(peaks>first_nonzero) & ((peaks<last_nonzero))]
#print(first_nonzero,last_nonzero,peaks)
# print(region_sum_0[peaks])
# plt.plot(region_sum_0)
# plt.plot(peaks,region_sum_0[peaks],'*')
# plt.show()
# print(first_nonzero,last_nonzero,peaks)
peaks = peaks[(peaks > first_nonzero) & (peaks < last_nonzero)]
# print(first_nonzero,last_nonzero,peaks)
#print(region_sum_0[peaks]<10)
####peaks=peaks[region_sum_0[peaks]<25 ]
# print(region_sum_0[peaks]<10)
# peaks=peaks[region_sum_0[peaks]<25 ]
#print(region_sum_0[peaks])
peaks=peaks[region_sum_0[peaks]<min_textline_thickness ]
#print(peaks)
#print(first_nonzero,last_nonzero,one_third_right,one_third_left)
if num_col==1:
peaks_right=peaks[peaks>mid_point]
peaks_left=peaks[peaks<mid_point]
if num_col==2:
peaks_right=peaks[peaks>(mid_point+one_third_right)]
peaks_left=peaks[peaks<(mid_point-one_third_left)]
# print(region_sum_0[peaks])
peaks = peaks[region_sum_0[peaks] < min_textline_thickness]
# print(peaks)
# print(first_nonzero,last_nonzero,one_third_right,one_third_left)
if num_col == 1:
peaks_right = peaks[peaks > mid_point]
peaks_left = peaks[peaks < mid_point]
if num_col == 2:
peaks_right = peaks[peaks > (mid_point + one_third_right)]
peaks_left = peaks[peaks < (mid_point - one_third_left)]
try:
point_right=np.min(peaks_right)
point_right = np.min(peaks_right)
except:
point_right=last_nonzero
point_right = last_nonzero
try:
point_left=np.max(peaks_left)
point_left = np.max(peaks_left)
except:
point_left=first_nonzero
point_left = first_nonzero
#print(point_left,point_right)
#print(text_regions.shape)
if point_right>=mask_marginals.shape[1]:
point_right=mask_marginals.shape[1]-1
# print(point_left,point_right)
# print(text_regions.shape)
if point_right >= mask_marginals.shape[1]:
point_right = mask_marginals.shape[1] - 1
try:
mask_marginals[:,point_left:point_right]=1
mask_marginals[:, point_left:point_right] = 1
except:
mask_marginals[:,:]=1
mask_marginals[:, :] = 1
#print(mask_marginals.shape,point_left,point_right,'nadosh')
mask_marginals_rotated=rotate_image(mask_marginals,-slope_deskew)
# print(mask_marginals.shape,point_left,point_right,'nadosh')
mask_marginals_rotated = rotate_image(mask_marginals, -slope_deskew)
#print(mask_marginals_rotated.shape,'nadosh')
mask_marginals_rotated_sum=mask_marginals_rotated.sum(axis=0)
# print(mask_marginals_rotated.shape,'nadosh')
mask_marginals_rotated_sum = mask_marginals_rotated.sum(axis=0)
mask_marginals_rotated_sum[mask_marginals_rotated_sum!=0]=1
index_x=np.array(range(len(mask_marginals_rotated_sum)))+1
mask_marginals_rotated_sum[mask_marginals_rotated_sum != 0] = 1
index_x = np.array(range(len(mask_marginals_rotated_sum))) + 1
index_x_interest=index_x[mask_marginals_rotated_sum==1]
index_x_interest = index_x[mask_marginals_rotated_sum == 1]
min_point_of_left_marginal=np.min(index_x_interest)-16
max_point_of_right_marginal=np.max(index_x_interest)+16
min_point_of_left_marginal = np.min(index_x_interest) - 16
max_point_of_right_marginal = np.max(index_x_interest) + 16
if min_point_of_left_marginal<0:
min_point_of_left_marginal=0
if max_point_of_right_marginal>=text_regions.shape[1]:
max_point_of_right_marginal=text_regions.shape[1]-1
if min_point_of_left_marginal < 0:
min_point_of_left_marginal = 0
if max_point_of_right_marginal >= text_regions.shape[1]:
max_point_of_right_marginal = text_regions.shape[1] - 1
# print(np.min(index_x_interest) ,np.max(index_x_interest),'minmaxnew')
# print(mask_marginals_rotated.shape,text_regions.shape,'mask_marginals_rotated')
# plt.imshow(mask_marginals)
# plt.show()
#print(np.min(index_x_interest) ,np.max(index_x_interest),'minmaxnew')
#print(mask_marginals_rotated.shape,text_regions.shape,'mask_marginals_rotated')
#plt.imshow(mask_marginals)
#plt.show()
# plt.imshow(mask_marginals_rotated)
# plt.show()
#plt.imshow(mask_marginals_rotated)
#plt.show()
text_regions[(mask_marginals_rotated[:, :] != 1) & (text_regions[:, :] == 1)] = 4
text_regions[(mask_marginals_rotated[:,:]!=1) & (text_regions[:,:]==1)]=4
# plt.imshow(text_regions)
# plt.show()
#plt.imshow(text_regions)
#plt.show()
pixel_img = 4
min_area_text = 0.00001
polygons_of_marginals = return_contours_of_interested_region(text_regions, pixel_img, min_area_text)
pixel_img=4
min_area_text=0.00001
polygons_of_marginals=return_contours_of_interested_region(text_regions,pixel_img,min_area_text)
cx_text_only, cy_text_only, x_min_text_only, x_max_text_only, y_min_text_only, y_max_text_only, y_cor_x_min_main = find_new_features_of_contours(polygons_of_marginals)
cx_text_only,cy_text_only ,x_min_text_only,x_max_text_only, y_min_text_only ,y_max_text_only,y_cor_x_min_main=find_new_features_of_contours(polygons_of_marginals)
text_regions[(text_regions[:, :] == 4)] = 1
text_regions[(text_regions[:,:]==4)]=1
marginlas_should_be_main_text = []
marginlas_should_be_main_text=[]
x_min_marginals_left=[]
x_min_marginals_right=[]
x_min_marginals_left = []
x_min_marginals_right = []
for i in range(len(cx_text_only)):
x_width_mar=abs(x_min_text_only[i]-x_max_text_only[i])
y_height_mar=abs(y_min_text_only[i]-y_max_text_only[i])
#print(x_width_mar,y_height_mar,y_height_mar/x_width_mar,'y_height_mar')
if x_width_mar>16 and y_height_mar/x_width_mar<18:
x_width_mar = abs(x_min_text_only[i] - x_max_text_only[i])
y_height_mar = abs(y_min_text_only[i] - y_max_text_only[i])
# print(x_width_mar,y_height_mar,y_height_mar/x_width_mar,'y_height_mar')
if x_width_mar > 16 and y_height_mar / x_width_mar < 18:
marginlas_should_be_main_text.append(polygons_of_marginals[i])
if x_min_text_only[i]<(mid_point-one_third_left):
x_min_marginals_left_new=x_min_text_only[i]
if len(x_min_marginals_left)==0:
if x_min_text_only[i] < (mid_point - one_third_left):
x_min_marginals_left_new = x_min_text_only[i]
if len(x_min_marginals_left) == 0:
x_min_marginals_left.append(x_min_marginals_left_new)
else:
x_min_marginals_left[0]=min(x_min_marginals_left[0],x_min_marginals_left_new)
x_min_marginals_left[0] = min(x_min_marginals_left[0], x_min_marginals_left_new)
else:
x_min_marginals_right_new=x_min_text_only[i]
if len(x_min_marginals_right)==0:
x_min_marginals_right_new = x_min_text_only[i]
if len(x_min_marginals_right) == 0:
x_min_marginals_right.append(x_min_marginals_right_new)
else:
x_min_marginals_right[0]=min(x_min_marginals_right[0],x_min_marginals_right_new)
if len(x_min_marginals_left)==0:
x_min_marginals_left=[0]
if len(x_min_marginals_right)==0:
x_min_marginals_right=[text_regions.shape[1]-1]
x_min_marginals_right[0] = min(x_min_marginals_right[0], x_min_marginals_right_new)
#print(x_min_marginals_left[0],x_min_marginals_right[0],'margo')
if len(x_min_marginals_left) == 0:
x_min_marginals_left = [0]
if len(x_min_marginals_right) == 0:
x_min_marginals_right = [text_regions.shape[1] - 1]
#print(marginlas_should_be_main_text,'marginlas_should_be_main_text')
text_regions=cv2.fillPoly(text_regions, pts =marginlas_should_be_main_text, color=(4,4))
# print(x_min_marginals_left[0],x_min_marginals_right[0],'margo')
#print(np.unique(text_regions))
# print(marginlas_should_be_main_text,'marginlas_should_be_main_text')
text_regions = cv2.fillPoly(text_regions, pts=marginlas_should_be_main_text, color=(4, 4))
#text_regions[:,:int(x_min_marginals_left[0])][text_regions[:,:int(x_min_marginals_left[0])]==1]=0
#text_regions[:,int(x_min_marginals_right[0]):][text_regions[:,int(x_min_marginals_right[0]):]==1]=0
# print(np.unique(text_regions))
text_regions[:,:int(min_point_of_left_marginal)][text_regions[:,:int(min_point_of_left_marginal)]==1]=0
text_regions[:,int(max_point_of_right_marginal):][text_regions[:,int(max_point_of_right_marginal):]==1]=0
# text_regions[:,:int(x_min_marginals_left[0])][text_regions[:,:int(x_min_marginals_left[0])]==1]=0
# text_regions[:,int(x_min_marginals_right[0]):][text_regions[:,int(x_min_marginals_right[0]):]==1]=0
###text_regions[:,0:point_left][text_regions[:,0:point_left]==1]=4
text_regions[:, :int(min_point_of_left_marginal)][text_regions[:, :int(min_point_of_left_marginal)] == 1] = 0
text_regions[:, int(max_point_of_right_marginal):][text_regions[:, int(max_point_of_right_marginal):] == 1] = 0
###text_regions[:,point_right:][ text_regions[:,point_right:]==1]=4
#plt.plot(region_sum_0)
#plt.plot(peaks,region_sum_0[peaks],'*')
#plt.show()
# text_regions[:,0:point_left][text_regions[:,0:point_left]==1]=4
# text_regions[:,point_right:][ text_regions[:,point_right:]==1]=4
# plt.plot(region_sum_0)
# plt.plot(peaks,region_sum_0[peaks],'*')
# plt.show()
#plt.imshow(text_regions)
#plt.show()
# plt.imshow(text_regions)
# plt.show()
#sys.exit()
# sys.exit()
else:
pass
return text_regions

@ -5,15 +5,18 @@ from cv2 import COLOR_GRAY2BGR, COLOR_RGB2BGR, COLOR_BGR2RGB, cvtColor, imread
# from sbb_binarization
def cv2pil(img):
return Image.fromarray(np.array(cvtColor(img, COLOR_BGR2RGB)))
def pil2cv(img):
# from ocrd/workspace.py
color_conversion = COLOR_GRAY2BGR if img.mode in ('1', 'L') else COLOR_RGB2BGR
color_conversion = COLOR_GRAY2BGR if img.mode in ('1', 'L') else COLOR_RGB2BGR
pil_as_np_array = np.array(img).astype('uint8') if img.mode == '1' else np.array(img)
return cvtColor(pil_as_np_array, color_conversion)
def check_dpi(img):
try:
if isinstance(img, Image.Image):

@ -1,4 +1,5 @@
import cv2
def resize_image(img_in, input_height, input_width):
return cv2.resize(img_in, (input_width, input_height), interpolation=cv2.INTER_NEAREST)

@ -3,6 +3,7 @@ import math
import imutils
import cv2
def rotatedRectWithMaxArea(w, h, angle):
if w <= 0 or h <= 0:
return 0, 0
@ -25,6 +26,7 @@ def rotatedRectWithMaxArea(w, h, angle):
return wr, hr
def rotate_max_area_new(image, rotated, angle):
wr, hr = rotatedRectWithMaxArea(image.shape[1], image.shape[0], math.radians(angle))
h, w, _ = rotated.shape
@ -34,17 +36,20 @@ def rotate_max_area_new(image, rotated, angle):
x2 = x1 + int(wr)
return rotated[y1:y2, x1:x2]
def rotation_image_new(img, thetha):
rotated = imutils.rotate(img, thetha)
return rotate_max_area_new(img, rotated, thetha)
def rotate_image(img_patch, slope):
(h, w) = img_patch.shape[:2]
center = (w // 2, h // 2)
M = cv2.getRotationMatrix2D(center, slope, 1.0)
return cv2.warpAffine(img_patch, M, (w, h), flags=cv2.INTER_CUBIC, borderMode=cv2.BORDER_REPLICATE)
def rotate_image_different( img, slope):
def rotate_image_different(img, slope):
# img = cv2.imread('images/input.jpg')
num_rows, num_cols = img.shape[:2]
@ -52,6 +57,7 @@ def rotate_image_different( img, slope):
img_rotation = cv2.warpAffine(img, rotation_matrix, (num_cols, num_rows))
return img_rotation
def rotate_max_area(image, rotated, rotated_textline, rotated_layout, rotated_table_prediction, angle):
wr, hr = rotatedRectWithMaxArea(image.shape[1], image.shape[0], math.radians(angle))
h, w, _ = rotated.shape
@ -61,6 +67,7 @@ def rotate_max_area(image, rotated, rotated_textline, rotated_layout, rotated_ta
x2 = x1 + int(wr)
return rotated[y1:y2, x1:x2], rotated_textline[y1:y2, x1:x2], rotated_layout[y1:y2, x1:x2], rotated_table_prediction[y1:y2, x1:x2]
def rotation_not_90_func(img, textline, text_regions_p_1, table_prediction, thetha):
rotated = imutils.rotate(img, thetha)
rotated_textline = imutils.rotate(textline, thetha)
@ -68,6 +75,7 @@ def rotation_not_90_func(img, textline, text_regions_p_1, table_prediction, thet
rotated_table_prediction = imutils.rotate(table_prediction, thetha)
return rotate_max_area(img, rotated, rotated_textline, rotated_layout, rotated_table_prediction, thetha)
def rotation_not_90_func_full_layout(img, textline, text_regions_p_1, text_regions_p_fully, thetha):
rotated = imutils.rotate(img, thetha)
rotated_textline = imutils.rotate(textline, thetha)
@ -75,6 +83,7 @@ def rotation_not_90_func_full_layout(img, textline, text_regions_p_1, text_regio
rotated_layout_full = imutils.rotate(text_regions_p_fully, thetha)
return rotate_max_area_full_layout(img, rotated, rotated_textline, rotated_layout, rotated_layout_full, thetha)
def rotate_max_area_full_layout(image, rotated, rotated_textline, rotated_layout, rotated_layout_full, angle):
wr, hr = rotatedRectWithMaxArea(image.shape[1], image.shape[0], math.radians(angle))
h, w, _ = rotated.shape

File diff suppressed because it is too large Load Diff

@ -29,6 +29,7 @@ from ocrd_models.ocrd_page import (
to_xml)
def create_page_xml(imageFilename, height, width):
now = datetime.now()
pcgts = PcGtsType(
@ -46,6 +47,7 @@ def create_page_xml(imageFilename, height, width):
))
return pcgts
def xml_reading_order(page, order_of_texts, id_of_marginalia):
region_order = ReadingOrderType()
og = OrderedGroupType(id="ro357564684568544579089")
@ -59,6 +61,7 @@ def xml_reading_order(page, order_of_texts, id_of_marginalia):
og.add_RegionRefIndexed(RegionRefIndexedType(index=str(region_counter.get('region')), regionRef=id_marginal))
region_counter.inc('region')
def order_and_id_of_texts(found_polygons_text_region, found_polygons_text_region_h, matrix_of_orders, indexes_sorted, index_of_types, kind_of_texts, ref_point):
indexes_sorted = np.array(indexes_sorted)
index_of_types = np.array(index_of_types)

@ -8,21 +8,22 @@ from .utils.counter import EynollahIdCounter
from ocrd_utils import getLogger
from ocrd_models.ocrd_page import (
BorderType,
CoordsType,
PcGtsType,
TextLineType,
TextRegionType,
ImageRegionType,
TableRegionType,
SeparatorRegionType,
to_xml
)
BorderType,
CoordsType,
PcGtsType,
TextLineType,
TextRegionType,
ImageRegionType,
TableRegionType,
SeparatorRegionType,
to_xml
)
import numpy as np
class EynollahXmlWriter():
def __init__(self, *, dir_out, image_filename, curved_line,textline_light, pcgts=None):
def __init__(self, *, dir_out, image_filename, curved_line, textline_light, pcgts=None):
self.logger = getLogger('eynollah.writer')
self.counter = EynollahIdCounter()
self.dir_out = dir_out
@ -30,10 +31,10 @@ class EynollahXmlWriter():
self.curved_line = curved_line
self.textline_light = textline_light
self.pcgts = pcgts
self.scale_x = None # XXX set outside __init__
self.scale_y = None # XXX set outside __init__
self.height_org = None # XXX set outside __init__
self.width_org = None # XXX set outside __init__
self.scale_x = None # XXX set outside __init__
self.scale_y = None # XXX set outside __init__
self.height_org = None # XXX set outside __init__
self.width_org = None # XXX set outside __init__
@property
def image_filename_stem(self):
@ -50,7 +51,7 @@ class EynollahXmlWriter():
else:
points_page_print += str(int((contour[0][0]) / self.scale_x))
points_page_print += ','
points_page_print += str(int((contour[0][1] ) / self.scale_y))
points_page_print += str(int((contour[0][1]) / self.scale_y))
points_page_print = points_page_print + ' '
return points_page_print[:-1]
@ -63,11 +64,11 @@ class EynollahXmlWriter():
for l in range(len(all_found_textline_polygons_marginals[marginal_idx][j])):
if not (self.curved_line or self.textline_light):
if len(all_found_textline_polygons_marginals[marginal_idx][j][l]) == 2:
textline_x_coord = max(0, int((all_found_textline_polygons_marginals[marginal_idx][j][l][0] + all_box_coord_marginals[marginal_idx][2] + page_coord[2]) / self.scale_x) )
textline_y_coord = max(0, int((all_found_textline_polygons_marginals[marginal_idx][j][l][1] + all_box_coord_marginals[marginal_idx][0] + page_coord[0]) / self.scale_y) )
textline_x_coord = max(0, int((all_found_textline_polygons_marginals[marginal_idx][j][l][0] + all_box_coord_marginals[marginal_idx][2] + page_coord[2]) / self.scale_x))
textline_y_coord = max(0, int((all_found_textline_polygons_marginals[marginal_idx][j][l][1] + all_box_coord_marginals[marginal_idx][0] + page_coord[0]) / self.scale_y))
else:
textline_x_coord = max(0, int((all_found_textline_polygons_marginals[marginal_idx][j][l][0][0] + all_box_coord_marginals[marginal_idx][2] + page_coord[2]) / self.scale_x) )
textline_y_coord = max(0, int((all_found_textline_polygons_marginals[marginal_idx][j][l][0][1] + all_box_coord_marginals[marginal_idx][0] + page_coord[0]) / self.scale_y) )
textline_x_coord = max(0, int((all_found_textline_polygons_marginals[marginal_idx][j][l][0][0] + all_box_coord_marginals[marginal_idx][2] + page_coord[2]) / self.scale_x))
textline_y_coord = max(0, int((all_found_textline_polygons_marginals[marginal_idx][j][l][0][1] + all_box_coord_marginals[marginal_idx][0] + page_coord[0]) / self.scale_y))
points_co += str(textline_x_coord)
points_co += ','
points_co += str(textline_y_coord)
@ -121,16 +122,16 @@ class EynollahXmlWriter():
else:
points_co += str(int((contour_textline[0][0] + page_coord[2]) / self.scale_x))
points_co += ','
points_co += str(int((contour_textline[0][1] + page_coord[0])/self.scale_y))
points_co += str(int((contour_textline[0][1] + page_coord[0]) / self.scale_y))
elif (self.curved_line or self.textline_light) and np.abs(slopes[region_idx]) > 45:
if len(contour_textline)==2:
points_co += str(int((contour_textline[0] + region_bboxes[2] + page_coord[2])/self.scale_x))
if len(contour_textline) == 2:
points_co += str(int((contour_textline[0] + region_bboxes[2] + page_coord[2]) / self.scale_x))
points_co += ','
points_co += str(int((contour_textline[1] + region_bboxes[0] + page_coord[0])/self.scale_y))
points_co += str(int((contour_textline[1] + region_bboxes[0] + page_coord[0]) / self.scale_y))
else:
points_co += str(int((contour_textline[0][0] + region_bboxes[2]+page_coord[2])/self.scale_x))
points_co += str(int((contour_textline[0][0] + region_bboxes[2] + page_coord[2]) / self.scale_x))
points_co += ','
points_co += str(int((contour_textline[0][1] + region_bboxes[0]+page_coord[0])/self.scale_y))
points_co += str(int((contour_textline[0][1] + region_bboxes[0] + page_coord[0]) / self.scale_y))
points_co += ' '
coords.set_points(points_co[:-1])
@ -140,7 +141,11 @@ class EynollahXmlWriter():
with open(out_fname, 'w') as f:
f.write(to_xml(pcgts))
def build_pagexml_no_full_layout(self, found_polygons_text_region, page_coord, order_of_texts, id_of_texts, all_found_textline_polygons, all_box_coord, found_polygons_text_region_img, found_polygons_marginals, all_found_textline_polygons_marginals, all_box_coord_marginals, slopes, slopes_marginals, cont_page, polygons_lines_to_be_written_in_xml, found_polygons_tables):
def build_pagexml_no_full_layout(self, found_polygons_text_region, page_coord, order_of_texts, id_of_texts,
all_found_textline_polygons, all_box_coord, found_polygons_text_region_img,
found_polygons_marginals, all_found_textline_polygons_marginals,
all_box_coord_marginals, slopes, slopes_marginals, cont_page,
polygons_lines_to_be_written_in_xml, found_polygons_tables):
self.logger.debug('enter build_pagexml_no_full_layout')
# create the file structure
@ -156,14 +161,13 @@ class EynollahXmlWriter():
for mm in range(len(found_polygons_text_region)):
textregion = TextRegionType(id=counter.next_region_id, type_='paragraph',
Coords=CoordsType(points=self.calculate_polygon_coords(found_polygons_text_region[mm], page_coord)),
)
Coords=CoordsType(points=self.calculate_polygon_coords(found_polygons_text_region[mm], page_coord)),)
page.add_TextRegion(textregion)
self.serialize_lines_in_region(textregion, all_found_textline_polygons, mm, page_coord, all_box_coord, slopes, counter)
for mm in range(len(found_polygons_marginals)):
marginal = TextRegionType(id=counter.next_region_id, type_='marginalia',
Coords=CoordsType(points=self.calculate_polygon_coords(found_polygons_marginals[mm], page_coord)))
Coords=CoordsType(points=self.calculate_polygon_coords(found_polygons_marginals[mm], page_coord)))
page.add_TextRegion(marginal)
self.serialize_lines_in_marginal(marginal, all_found_textline_polygons_marginals, mm, page_coord, all_box_coord_marginals, slopes_marginals, counter)
@ -173,27 +177,27 @@ class EynollahXmlWriter():
points_co = ''
for lmm in range(len(found_polygons_text_region_img[mm])):
try:
points_co += str(int((found_polygons_text_region_img[mm][lmm,0,0] + page_coord[2]) / self.scale_x))
points_co += str(int((found_polygons_text_region_img[mm][lmm, 0, 0] + page_coord[2]) / self.scale_x))
points_co += ','
points_co += str(int((found_polygons_text_region_img[mm][lmm,0,1] + page_coord[0]) / self.scale_y))
points_co += str(int((found_polygons_text_region_img[mm][lmm, 0, 1] + page_coord[0]) / self.scale_y))
points_co += ' '
except:
points_co += str(int((found_polygons_text_region_img[mm][lmm][0] + page_coord[2])/ self.scale_x ))
points_co += str(int((found_polygons_text_region_img[mm][lmm][0] + page_coord[2]) / self.scale_x))
points_co += ','
points_co += str(int((found_polygons_text_region_img[mm][lmm][1] + page_coord[0])/ self.scale_y ))
points_co += str(int((found_polygons_text_region_img[mm][lmm][1] + page_coord[0]) / self.scale_y))
points_co += ' '
img_region.get_Coords().set_points(points_co[:-1])
for mm in range(len(polygons_lines_to_be_written_in_xml)):
sep_hor = SeparatorRegionType(id=counter.next_region_id, Coords=CoordsType())
page.add_SeparatorRegion(sep_hor)
points_co = ''
for lmm in range(len(polygons_lines_to_be_written_in_xml[mm])):
points_co += str(int((polygons_lines_to_be_written_in_xml[mm][lmm,0,0] ) / self.scale_x))
points_co += str(int((polygons_lines_to_be_written_in_xml[mm][lmm, 0, 0]) / self.scale_x))
points_co += ','
points_co += str(int((polygons_lines_to_be_written_in_xml[mm][lmm,0,1] ) / self.scale_y))
points_co += str(int((polygons_lines_to_be_written_in_xml[mm][lmm, 0, 1]) / self.scale_y))
points_co += ' '
sep_hor.get_Coords().set_points(points_co[:-1])
for mm in range(len(found_polygons_tables)):
@ -201,15 +205,21 @@ class EynollahXmlWriter():
page.add_TableRegion(tab_region)
points_co = ''
for lmm in range(len(found_polygons_tables[mm])):
points_co += str(int((found_polygons_tables[mm][lmm,0,0] + page_coord[2]) / self.scale_x))
points_co += str(int((found_polygons_tables[mm][lmm, 0, 0] + page_coord[2]) / self.scale_x))
points_co += ','
points_co += str(int((found_polygons_tables[mm][lmm,0,1] + page_coord[0]) / self.scale_y))
points_co += str(int((found_polygons_tables[mm][lmm, 0, 1] + page_coord[0]) / self.scale_y))
points_co += ' '
tab_region.get_Coords().set_points(points_co[:-1])
return pcgts
def build_pagexml_full_layout(self, found_polygons_text_region, found_polygons_text_region_h, page_coord, order_of_texts, id_of_texts, all_found_textline_polygons, all_found_textline_polygons_h, all_box_coord, all_box_coord_h, found_polygons_text_region_img, found_polygons_tables, found_polygons_drop_capitals, found_polygons_marginals, all_found_textline_polygons_marginals, all_box_coord_marginals, slopes, slopes_h, slopes_marginals, cont_page, polygons_lines_to_be_written_in_xml):
def build_pagexml_full_layout(self, found_polygons_text_region, found_polygons_text_region_h, page_coord,
order_of_texts, id_of_texts, all_found_textline_polygons,
all_found_textline_polygons_h, all_box_coord, all_box_coord_h,
found_polygons_text_region_img, found_polygons_tables, found_polygons_drop_capitals,
found_polygons_marginals, all_found_textline_polygons_marginals,
all_box_coord_marginals, slopes, slopes_h, slopes_marginals, cont_page,
polygons_lines_to_be_written_in_xml):
self.logger.debug('enter build_pagexml_full_layout')
# create the file structure
@ -224,35 +234,38 @@ class EynollahXmlWriter():
for mm in range(len(found_polygons_text_region)):
textregion = TextRegionType(id=counter.next_region_id, type_='paragraph',
Coords=CoordsType(points=self.calculate_polygon_coords(found_polygons_text_region[mm], page_coord)))
Coords=CoordsType(points=self.calculate_polygon_coords(found_polygons_text_region[mm], page_coord)))
page.add_TextRegion(textregion)
self.serialize_lines_in_region(textregion, all_found_textline_polygons, mm, page_coord, all_box_coord, slopes, counter)
self.logger.debug('len(found_polygons_text_region_h) %s', len(found_polygons_text_region_h))
for mm in range(len(found_polygons_text_region_h)):
textregion = TextRegionType(id=counter.next_region_id, type_='header',
Coords=CoordsType(points=self.calculate_polygon_coords(found_polygons_text_region_h[mm], page_coord)))
Coords=CoordsType(points=self.calculate_polygon_coords(found_polygons_text_region_h[mm], page_coord)))
page.add_TextRegion(textregion)
self.serialize_lines_in_region(textregion, all_found_textline_polygons_h, mm, page_coord, all_box_coord_h, slopes_h, counter)
for mm in range(len(found_polygons_marginals)):
marginal = TextRegionType(id=counter.next_region_id, type_='marginalia',
Coords=CoordsType(points=self.calculate_polygon_coords(found_polygons_marginals[mm], page_coord)))
Coords=CoordsType(points=self.calculate_polygon_coords(found_polygons_marginals[mm], page_coord)))
page.add_TextRegion(marginal)
self.serialize_lines_in_marginal(marginal, all_found_textline_polygons_marginals, mm, page_coord, all_box_coord_marginals, slopes_marginals, counter)
for mm in range(len(found_polygons_drop_capitals)):
page.add_TextRegion(TextRegionType(id=counter.next_region_id, type_='drop-capital',
Coords=CoordsType(points=self.calculate_polygon_coords(found_polygons_drop_capitals[mm], page_coord))))
Coords=CoordsType(points=self.calculate_polygon_coords(found_polygons_drop_capitals[mm], page_coord))))
for mm in range(len(found_polygons_text_region_img)):
page.add_ImageRegion(ImageRegionType(id=counter.next_region_id, Coords=CoordsType(points=self.calculate_polygon_coords(found_polygons_text_region_img[mm], page_coord))))
page.add_ImageRegion(ImageRegionType(id=counter.next_region_id, Coords=CoordsType(
points=self.calculate_polygon_coords(found_polygons_text_region_img[mm], page_coord))))
for mm in range(len(polygons_lines_to_be_written_in_xml)):
page.add_SeparatorRegion(ImageRegionType(id=counter.next_region_id, Coords=CoordsType(points=self.calculate_polygon_coords(polygons_lines_to_be_written_in_xml[mm], [0 , 0, 0, 0]))))
page.add_SeparatorRegion(ImageRegionType(id=counter.next_region_id, Coords=CoordsType(
points=self.calculate_polygon_coords(polygons_lines_to_be_written_in_xml[mm], [0, 0, 0, 0]))))
for mm in range(len(found_polygons_tables)):
page.add_TableRegion(TableRegionType(id=counter.next_region_id, Coords=CoordsType(points=self.calculate_polygon_coords(found_polygons_tables[mm], page_coord))))
page.add_TableRegion(TableRegionType(id=counter.next_region_id, Coords=CoordsType(
points=self.calculate_polygon_coords(found_polygons_tables[mm], page_coord))))
return pcgts
@ -268,6 +281,5 @@ class EynollahXmlWriter():
coords += str(int((value_bbox[0][0] + page_coord[2]) / self.scale_x))
coords += ','
coords += str(int((value_bbox[0][1] + page_coord[0]) / self.scale_y))
coords=coords + ' '
coords = coords + ' '
return coords[:-1]

@ -10,12 +10,14 @@ from unittest import TestCase as VanillaTestCase, skip, main as unittests_main
import pytest
from ocrd_utils import disableLogging, initLogging
def main(fn=None):
if fn:
sys.exit(pytest.main([fn]))
else:
unittests_main()
class TestCase(VanillaTestCase):
@classmethod
@ -26,6 +28,7 @@ class TestCase(VanillaTestCase):
disableLogging()
initLogging()
class CapturingTestCase(TestCase):
"""
A TestCase that needs to capture stderr/stdout and invoke click CLI.
@ -42,7 +45,7 @@ class CapturingTestCase(TestCase):
"""
self.capture_out_err() # XXX snapshot just before executing the CLI
code = 0
sys.argv[1:] = args # XXX necessary because sys.argv reflects pytest args not cli args
sys.argv[1:] = args # XXX necessary because sys.argv reflects pytest args not cli args
try:
cli.main(args=args)
except SystemExit as e:

@ -1,6 +1,7 @@
from tests.base import main
from src.eynollah.utils.counter import EynollahIdCounter
def test_counter_string():
c = EynollahIdCounter()
assert c.next_region_id == 'region_0001'
@ -11,6 +12,7 @@ def test_counter_string():
assert c.region_id(999) == 'region_0999'
assert c.line_id(999, 888) == 'region_0999_line_0888'
def test_counter_init():
c = EynollahIdCounter(region_idx=2)
assert c.get('region') == 2
@ -19,6 +21,7 @@ def test_counter_init():
c.reset()
assert c.get('region') == 2
def test_counter_methods():
c = EynollahIdCounter()
assert c.get('region') == 0
@ -29,5 +32,6 @@ def test_counter_methods():
c.inc('region', -9)
assert c.get('region') == 1
if __name__ == '__main__':
main(__file__)

@ -3,9 +3,11 @@ from pathlib import Path
from src.eynollah.utils.pil_cv2 import check_dpi
from tests.base import main
def test_dpi():
fpath = str(Path(__file__).parent.joinpath('resources', 'kant_aufklaerung_1784_0020.tif'))
assert 230 == check_dpi(cv2.imread(fpath))
if __name__ == '__main__':
main(__file__)

@ -8,6 +8,7 @@ testdir = Path(__file__).parent.resolve()
EYNOLLAH_MODELS = environ.get('EYNOLLAH_MODELS', str(testdir.joinpath('..', 'models_eynollah').resolve()))
class TestEynollahRun(TestCase):
def test_full_run(self):
@ -20,5 +21,6 @@ class TestEynollahRun(TestCase):
print(code, out, err)
assert not code
if __name__ == '__main__':
main(__file__)

@ -4,11 +4,13 @@ from ocrd_models.ocrd_page import to_xml
PAGE_2019 = 'http://schema.primaresearch.org/PAGE/gts/pagecontent/2019-07-15'
def test_create_xml():
pcgts = create_page_xml('/path/to/img.tif', 100, 100)
xmlstr = to_xml(pcgts)
assert 'xmlns:pc="%s"' % PAGE_2019 in xmlstr
assert 'Metadata' in xmlstr
if __name__ == '__main__':
main([__file__])

Loading…
Cancel
Save