pep8: whitespaces around operators

code-suggestions
cneud 1 week ago
parent fa7bb63481
commit 87ae6d11a9

@ -17,21 +17,18 @@ def main():
help="directory of GT page-xml files",
type=click.Path(exists=True, file_okay=False),
)
@click.option(
"--dir_out_modal_image",
"-domi",
help="directory where ground truth images would be written",
type=click.Path(exists=True, file_okay=False),
)
@click.option(
"--dir_out_classes",
"-docl",
help="directory where ground truth classes would be written",
type=click.Path(exists=True, file_okay=False),
)
@click.option(
"--input_height",
"-ih",
@ -47,18 +44,17 @@ def main():
"-min",
help="min area size of regions considered for reading order training.",
)
def machine_based_reading_order(dir_xml, dir_out_modal_image, dir_out_classes, input_height, input_width, min_area_size):
def machine_based_reading_order(dir_xml, dir_out_modal_image, dir_out_classes, input_height, input_width,
min_area_size):
xml_files_ind = os.listdir(dir_xml)
@main.command()
@click.option('--patches/--no-patches', default=True, help='by enabling this parameter you let the model to see the image in patches.')
@click.option('--model_dir', '-m', type=click.Path(exists=True, file_okay=False), required=True, help='directory containing models for prediction')
@main.command()
@click.option('--patches/--no-patches', default=True,
help='by enabling this parameter you let the model to see the image in patches.')
@click.option('--model_dir', '-m', type=click.Path(exists=True, file_okay=False), required=True,
help='directory containing models for prediction')
@click.argument('input_image')
@click.argument('output_image')
@click.option(
"--dir_in",
@ -72,7 +68,6 @@ def machine_based_reading_order(dir_xml, dir_out_modal_image, dir_out_classes, i
help="directory where the binarized images will be written",
type=click.Path(exists=True, file_okay=False),
)
def binarization(patches, model_dir, input_image, output_image, dir_in, dir_out):
if not dir_out and dir_in:
print("Error: You used -di but did not set -do")
@ -80,9 +75,8 @@ def binarization(patches, model_dir, input_image, output_image, dir_in, dir_out)
elif dir_out and not dir_in:
print("Error: You used -do to write out binarized images but have not set -di")
sys.exit(1)
SbbBinarizer(model_dir).run(image_path=input_image, use_patches=patches, save=output_image, dir_in=dir_in, dir_out=dir_out)
SbbBinarizer(model_dir).run(image_path=input_image, use_patches=patches, save=output_image, dir_in=dir_in,
dir_out=dir_out)
@main.command()
@ -92,7 +86,6 @@ def binarization(patches, model_dir, input_image, output_image, dir_in, dir_out)
help="image filename",
type=click.Path(exists=True, dir_okay=False),
)
@click.option(
"--out",
"-o",
@ -261,15 +254,19 @@ def binarization(patches, model_dir, input_image, output_image, dir_in, dir_out)
type=click.Choice(['OFF', 'DEBUG', 'INFO', 'WARN', 'ERROR']),
help="Override log level globally to this",
)
def layout(image, out, overwrite, dir_in, model, save_images, save_layout, save_deskewed, save_all, extract_only_images, save_page, enable_plotting, allow_enhancement, curved_line, textline_light, full_layout, tables, right2left, input_binary, allow_scaling, headers_off, light_version, reading_order_machine_based, do_ocr, num_col_upper, num_col_lower, skip_layout_and_reading_order, ignore_page_extraction, log_level):
def layout(image, out, overwrite, dir_in, model, save_images, save_layout, save_deskewed, save_all, extract_only_images,
save_page, enable_plotting, allow_enhancement, curved_line, textline_light, full_layout, tables, right2left,
input_binary, allow_scaling, headers_off, light_version, reading_order_machine_based, do_ocr, num_col_upper,
num_col_lower, skip_layout_and_reading_order, ignore_page_extraction, log_level):
initLogging()
if log_level:
getLogger('eynollah').setLevel(getLevelName(log_level))
if not enable_plotting and (save_layout or save_deskewed or save_all or save_page or save_images or allow_enhancement):
if not enable_plotting and (
save_layout or save_deskewed or save_all or save_page or save_images or allow_enhancement):
print("Error: You used one of -sl, -sd, -sa, -sp, -si or -ae but did not enable plotting with -ep")
sys.exit(1)
elif enable_plotting and not (save_layout or save_deskewed or save_all or save_page or save_images or allow_enhancement):
elif enable_plotting and not (
save_layout or save_deskewed or save_all or save_page or save_images or allow_enhancement):
print("Error: You used -ep to enable plotting but set none of -sl, -sd, -sa, -sp, -si or -ae")
sys.exit(1)
if textline_light and not light_version:
@ -277,8 +274,10 @@ def layout(image, out, overwrite, dir_in, model, save_images, save_layout, save_
sys.exit(1)
if light_version and not textline_light:
print('Error: You used -light without -tll. Light version need light textline to be enabled.')
if extract_only_images and (allow_enhancement or allow_scaling or light_version or curved_line or textline_light or full_layout or tables or right2left or headers_off) :
print('Error: You used -eoi which can not be enabled alongside light_version -light or allow_scaling -as or allow_enhancement -ae or curved_line -cl or textline_light -tll or full_layout -fl or tables -tab or right2left -r2l or headers_off -ho')
if extract_only_images and (
allow_enhancement or allow_scaling or light_version or curved_line or textline_light or full_layout or tables or right2left or headers_off):
print(
'Error: You used -eoi which can not be enabled alongside light_version -light or allow_scaling -as or allow_enhancement -ae or curved_line -cl or textline_light -tll or full_layout -fl or tables -tab or right2left -r2l or headers_off -ho')
sys.exit(1)
eynollah = Eynollah(
image_filename=image,
@ -315,8 +314,8 @@ def layout(image, out, overwrite, dir_in, model, save_images, save_layout, save_
else:
pcgts = eynollah.run()
eynollah.writer.write_pagexml(pcgts)
@main.command()
@click.option(
"--dir_in",
@ -368,8 +367,8 @@ def layout(image, out, overwrite, dir_in, model, save_images, save_layout, save_
type=click.Choice(['OFF', 'DEBUG', 'INFO', 'WARN', 'ERROR']),
help="Override log level globally to this",
)
def ocr(dir_in, out, dir_xmls, model, tr_ocr, export_textline_images_and_text, do_not_mask_with_textline_contour, log_level):
def ocr(dir_in, out, dir_xmls, model, tr_ocr, export_textline_images_and_text, do_not_mask_with_textline_contour,
log_level):
if log_level:
setOverrideLogLevel(log_level)
initLogging()

File diff suppressed because it is too large Load Diff

@ -32,7 +32,7 @@ def cv2pil(img):
def pil2cv(img):
# from ocrd/workspace.py
color_conversion = cv2.COLOR_GRAY2BGR if img.mode in ('1', 'L') else cv2.COLOR_RGB2BGR
color_conversion = cv2.COLOR_GRAY2BGR if img.mode in ('1', 'L') else cv2.COLOR_RGB2BGR
pil_as_np_array = np.array(img).astype('uint8') if img.mode == '1' else np.array(img)
return cv2.cvtColor(pil_as_np_array, color_conversion)
@ -112,40 +112,45 @@ class SbbBinarizeProcessor(Processor):
bin_image = cv2pil(self.binarizer.run(image=pil2cv(page_image), use_patches=True))
# update METS (add the image file):
bin_image_path = self.workspace.save_image_file(bin_image,
file_id + '.IMG-BIN',
page_id=input_file.pageId,
file_grp=self.output_file_grp)
page.add_AlternativeImage(AlternativeImageType(filename=bin_image_path, comments='%s,binarized' % page_xywh['features']))
file_id + '.IMG-BIN',
page_id=input_file.pageId,
file_grp=self.output_file_grp)
page.add_AlternativeImage(
AlternativeImageType(filename=bin_image_path, comments='%s,binarized' % page_xywh['features']))
elif oplevel == 'region':
regions = page.get_AllRegions(['Text', 'Table'], depth=1)
if not regions:
LOG.warning("Page '%s' contains no text/table regions", page_id)
for region in regions:
region_image, region_xywh = self.workspace.image_from_segment(region, page_image, page_xywh, feature_filter='binarized')
region_image, region_xywh = self.workspace.image_from_segment(region, page_image, page_xywh,
feature_filter='binarized')
region_image_bin = cv2pil(binarizer.run(image=pil2cv(region_image), use_patches=True))
region_image_bin_path = self.workspace.save_image_file(
region_image_bin,
"%s_%s.IMG-BIN" % (file_id, region.id),
page_id=input_file.pageId,
file_grp=self.output_file_grp)
region_image_bin,
"%s_%s.IMG-BIN" % (file_id, region.id),
page_id=input_file.pageId,
file_grp=self.output_file_grp)
region.add_AlternativeImage(
AlternativeImageType(filename=region_image_bin_path, comments='%s,binarized' % region_xywh['features']))
AlternativeImageType(filename=region_image_bin_path,
comments='%s,binarized' % region_xywh['features']))
elif oplevel == 'line':
region_line_tuples = [(r.id, r.get_TextLine()) for r in page.get_AllRegions(['Text'], depth=0)]
if not region_line_tuples:
LOG.warning("Page '%s' contains no text lines", page_id)
for region_id, line in region_line_tuples:
line_image, line_xywh = self.workspace.image_from_segment(line, page_image, page_xywh, feature_filter='binarized')
line_image, line_xywh = self.workspace.image_from_segment(line, page_image, page_xywh,
feature_filter='binarized')
line_image_bin = cv2pil(binarizer.run(image=pil2cv(line_image), use_patches=True))
line_image_bin_path = self.workspace.save_image_file(
line_image_bin,
"%s_%s_%s.IMG-BIN" % (file_id, region_id, line.id),
page_id=input_file.pageId,
file_grp=self.output_file_grp)
line_image_bin,
"%s_%s_%s.IMG-BIN" % (file_id, region_id, line.id),
page_id=input_file.pageId,
file_grp=self.output_file_grp)
line.add_AlternativeImage(
AlternativeImageType(filename=line_image_bin_path, comments='%s,binarized' % line_xywh['features']))
AlternativeImageType(filename=line_image_bin_path,
comments='%s,binarized' % line_xywh['features']))
self.workspace.add_file(
ID=file_id,

@ -16,18 +16,18 @@ class EynollahPlotter:
"""
def __init__(
self,
*,
dir_out,
dir_of_all,
dir_save_page,
dir_of_deskewed,
dir_of_layout,
dir_of_cropped_images,
image_filename_stem,
image_org=None,
scale_x=1,
scale_y=1,
self,
*,
dir_out,
dir_of_all,
dir_save_page,
dir_of_deskewed,
dir_of_layout,
dir_of_cropped_images,
image_filename_stem,
image_org=None,
scale_x=1,
scale_y=1,
):
self.dir_out = dir_out
self.dir_of_all = dir_of_all
@ -45,22 +45,23 @@ class EynollahPlotter:
if self.dir_of_layout is not None:
values = np.unique(text_regions_p[:, :])
# pixels=['Background' , 'Main text' , 'Heading' , 'Marginalia' ,'Drop capitals' , 'Images' , 'Seperators' , 'Tables', 'Graphics']
pixels=['Background' , 'Main text' , 'Image' , 'Separator','Marginalia']
pixels = ['Background', 'Main text', 'Image', 'Separator', 'Marginalia']
values_indexes = [0, 1, 2, 3, 4]
plt.figure(figsize=(40, 40))
plt.rcParams["font.size"] = "40"
im = plt.imshow(text_regions_p[:, :])
colors = [im.cmap(im.norm(value)) for value in values]
patches = [mpatches.Patch(color=colors[np.where(values == i)[0][0]], label="{l}".format(l=pixels[int(np.where(values_indexes == i)[0][0])])) for i in values]
patches = [mpatches.Patch(color=colors[np.where(values == i)[0][0]],
label="{l}".format(l=pixels[int(np.where(values_indexes == i)[0][0])])) for i in
values]
plt.legend(handles=patches, bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.0, fontsize=40)
plt.savefig(os.path.join(self.dir_of_layout, self.image_filename_stem + "_layout_main.png"))
def save_plot_of_layout_main_all(self, text_regions_p, image_page):
if self.dir_of_all is not None:
values = np.unique(text_regions_p[:, :])
# pixels=['Background' , 'Main text' , 'Heading' , 'Marginalia' ,'Drop capitals' , 'Images' , 'Seperators' , 'Tables', 'Graphics']
pixels=['Background' , 'Main text' , 'Image' , 'Separator','Marginalia']
pixels = ['Background', 'Main text', 'Image', 'Separator', 'Marginalia']
values_indexes = [0, 1, 2, 3, 4]
plt.figure(figsize=(80, 40))
plt.rcParams["font.size"] = "40"
@ -69,7 +70,9 @@ class EynollahPlotter:
plt.subplot(1, 2, 2)
im = plt.imshow(text_regions_p[:, :])
colors = [im.cmap(im.norm(value)) for value in values]
patches = [mpatches.Patch(color=colors[np.where(values == i)[0][0]], label="{l}".format(l=pixels[int(np.where(values_indexes == i)[0][0])])) for i in values]
patches = [mpatches.Patch(color=colors[np.where(values == i)[0][0]],
label="{l}".format(l=pixels[int(np.where(values_indexes == i)[0][0])])) for i in
values]
plt.legend(handles=patches, bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.0, fontsize=60)
plt.savefig(os.path.join(self.dir_of_all, self.image_filename_stem + "_layout_main_and_page.png"))
@ -83,7 +86,9 @@ class EynollahPlotter:
plt.rcParams["font.size"] = "40"
im = plt.imshow(text_regions_p[:, :])
colors = [im.cmap(im.norm(value)) for value in values]
patches = [mpatches.Patch(color=colors[np.where(values == i)[0][0]], label="{l}".format(l=pixels[int(np.where(values_indexes == i)[0][0])])) for i in values]
patches = [mpatches.Patch(color=colors[np.where(values == i)[0][0]],
label="{l}".format(l=pixels[int(np.where(values_indexes == i)[0][0])])) for i in
values]
plt.legend(handles=patches, bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.0, fontsize=40)
plt.savefig(os.path.join(self.dir_of_layout, self.image_filename_stem + "_layout.png"))
@ -100,7 +105,9 @@ class EynollahPlotter:
plt.subplot(1, 2, 2)
im = plt.imshow(text_regions_p[:, :])
colors = [im.cmap(im.norm(value)) for value in values]
patches = [mpatches.Patch(color=colors[np.where(values == i)[0][0]], label="{l}".format(l=pixels[int(np.where(values_indexes == i)[0][0])])) for i in values]
patches = [mpatches.Patch(color=colors[np.where(values == i)[0][0]],
label="{l}".format(l=pixels[int(np.where(values_indexes == i)[0][0])])) for i in
values]
plt.legend(handles=patches, bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.0, fontsize=60)
plt.savefig(os.path.join(self.dir_of_all, self.image_filename_stem + "_layout_and_page.png"))
@ -116,7 +123,9 @@ class EynollahPlotter:
plt.subplot(1, 2, 2)
im = plt.imshow(textline_mask_tot_ea[:, :])
colors = [im.cmap(im.norm(value)) for value in values]
patches = [mpatches.Patch(color=colors[np.where(values == i)[0][0]], label="{l}".format(l=pixels[int(np.where(values_indexes == i)[0][0])])) for i in values]
patches = [mpatches.Patch(color=colors[np.where(values == i)[0][0]],
label="{l}".format(l=pixels[int(np.where(values_indexes == i)[0][0])])) for i in
values]
plt.legend(handles=patches, bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.0, fontsize=60)
plt.savefig(os.path.join(self.dir_of_all, self.image_filename_stem + "_textline_and_page.png"))
@ -132,33 +141,36 @@ class EynollahPlotter:
cv2.imwrite(os.path.join(self.dir_of_all, self.image_filename_stem + "_page.png"), image_page)
if self.dir_save_page is not None:
cv2.imwrite(os.path.join(self.dir_save_page, self.image_filename_stem + "_page.png"), image_page)
def save_enhanced_image(self, img_res):
cv2.imwrite(os.path.join(self.dir_out, self.image_filename_stem + "_enhanced.png"), img_res)
def save_plot_of_textline_density(self, img_patch_org):
if self.dir_of_all is not None:
plt.figure(figsize=(80,40))
plt.rcParams['font.size']='50'
plt.subplot(1,2,1)
plt.figure(figsize=(80, 40))
plt.rcParams['font.size'] = '50'
plt.subplot(1, 2, 1)
plt.imshow(img_patch_org)
plt.subplot(1,2,2)
plt.plot(gaussian_filter1d(img_patch_org.sum(axis=1), 3),np.array(range(len(gaussian_filter1d(img_patch_org.sum(axis=1), 3)))),linewidth=8)
plt.xlabel('Density of textline prediction in direction of X axis',fontsize=60)
plt.ylabel('Height',fontsize=60)
plt.yticks([0,len(gaussian_filter1d(img_patch_org.sum(axis=1), 3))])
plt.subplot(1, 2, 2)
plt.plot(gaussian_filter1d(img_patch_org.sum(axis=1), 3),
np.array(range(len(gaussian_filter1d(img_patch_org.sum(axis=1), 3)))), linewidth=8)
plt.xlabel('Density of textline prediction in direction of X axis', fontsize=60)
plt.ylabel('Height', fontsize=60)
plt.yticks([0, len(gaussian_filter1d(img_patch_org.sum(axis=1), 3))])
plt.gca().invert_yaxis()
plt.savefig(os.path.join(self.dir_of_all, self.image_filename_stem+'_density_of_textline.png'))
plt.savefig(os.path.join(self.dir_of_all, self.image_filename_stem + '_density_of_textline.png'))
def save_plot_of_rotation_angle(self, angels, var_res):
if self.dir_of_all is not None:
plt.figure(figsize=(60,30))
plt.rcParams['font.size']='50'
plt.plot(angels,np.array(var_res),'-o',markersize=25,linewidth=4)
plt.xlabel('angle',fontsize=50)
plt.ylabel('variance of sum of rotated textline in direction of x axis',fontsize=50)
plt.plot(angels[np.argmax(var_res)],var_res[np.argmax(np.array(var_res))] ,'*',markersize=50,label='Angle of deskewing=' +str("{:.2f}".format(angels[np.argmax(var_res)]))+r'$\degree$')
plt.figure(figsize=(60, 30))
plt.rcParams['font.size'] = '50'
plt.plot(angels, np.array(var_res), '-o', markersize=25, linewidth=4)
plt.xlabel('angle', fontsize=50)
plt.ylabel('variance of sum of rotated textline in direction of x axis', fontsize=50)
plt.plot(angels[np.argmax(var_res)], var_res[np.argmax(np.array(var_res))], '*', markersize=50,
label='Angle of deskewing=' + str("{:.2f}".format(angels[np.argmax(var_res)])) + r'$\degree$')
plt.legend(loc='best')
plt.savefig(os.path.join(self.dir_of_all, self.image_filename_stem+'_rotation_angle.png'))
plt.savefig(os.path.join(self.dir_of_all, self.image_filename_stem + '_rotation_angle.png'))
def write_images_into_directory(self, img_contours, image_page):
if self.dir_of_cropped_images is not None:
@ -168,9 +180,9 @@ class EynollahPlotter:
box = [x, y, w, h]
croped_page, page_coord = crop_image_inside_box(box, image_page)
croped_page = resize_image(croped_page, int(croped_page.shape[0] / self.scale_y), int(croped_page.shape[1] / self.scale_x))
croped_page = resize_image(croped_page, int(croped_page.shape[0] / self.scale_y),
int(croped_page.shape[1] / self.scale_x))
path = os.path.join(self.dir_of_cropped_images, self.image_filename_stem + "_" + str(index) + ".jpg")
cv2.imwrite(path, croped_page)
index += 1

@ -12,14 +12,15 @@ import os
import numpy as np
from PIL import Image
import cv2
environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
stderr = sys.stderr
sys.stderr = open(devnull, 'w')
import tensorflow as tf
from tensorflow.keras.models import load_model
from tensorflow.python.keras import backend as tensorflow_backend
sys.stderr = stderr
sys.stderr = stderr
import logging
@ -36,7 +37,7 @@ class SbbBinarizer:
self.start_new_session()
self.model_files = glob(self.model_dir+"/*/", recursive = True)
self.model_files = glob(self.model_dir + "/*/", recursive=True)
self.models = []
for model_file in self.model_files:
@ -56,52 +57,49 @@ class SbbBinarizer:
def load_model(self, model_name):
model = load_model(join(self.model_dir, model_name), compile=False)
model_height = model.layers[len(model.layers)-1].output_shape[1]
model_width = model.layers[len(model.layers)-1].output_shape[2]
n_classes = model.layers[len(model.layers)-1].output_shape[3]
model_height = model.layers[len(model.layers) - 1].output_shape[1]
model_width = model.layers[len(model.layers) - 1].output_shape[2]
n_classes = model.layers[len(model.layers) - 1].output_shape[3]
return model, model_height, model_width, n_classes
def predict(self, model_in, img, use_patches, n_batch_inference=5):
tensorflow_backend.set_session(self.session)
model, model_height, model_width, n_classes = model_in
img_org_h = img.shape[0]
img_org_w = img.shape[1]
if img.shape[0] < model_height and img.shape[1] >= model_width:
img_padded = np.zeros(( model_height, img.shape[1], img.shape[2] ))
index_start_h = int( abs( img.shape[0] - model_height) /2.)
img_padded = np.zeros((model_height, img.shape[1], img.shape[2]))
index_start_h = int(abs(img.shape[0] - model_height) / 2.)
index_start_w = 0
img_padded [ index_start_h: index_start_h+img.shape[0], :, : ] = img[:,:,:]
img_padded[index_start_h: index_start_h + img.shape[0], :, :] = img[:, :, :]
elif img.shape[0] >= model_height and img.shape[1] < model_width:
img_padded = np.zeros(( img.shape[0], model_width, img.shape[2] ))
index_start_h = 0
index_start_w = int( abs( img.shape[1] - model_width) /2.)
img_padded [ :, index_start_w: index_start_w+img.shape[1], : ] = img[:,:,:]
img_padded = np.zeros((img.shape[0], model_width, img.shape[2]))
index_start_h = 0
index_start_w = int(abs(img.shape[1] - model_width) / 2.)
img_padded[:, index_start_w: index_start_w + img.shape[1], :] = img[:, :, :]
elif img.shape[0] < model_height and img.shape[1] < model_width:
img_padded = np.zeros(( model_height, model_width, img.shape[2] ))
index_start_h = int( abs( img.shape[0] - model_height) /2.)
index_start_w = int( abs( img.shape[1] - model_width) /2.)
img_padded [ index_start_h: index_start_h+img.shape[0], index_start_w: index_start_w+img.shape[1], : ] = img[:,:,:]
img_padded = np.zeros((model_height, model_width, img.shape[2]))
index_start_h = int(abs(img.shape[0] - model_height) / 2.)
index_start_w = int(abs(img.shape[1] - model_width) / 2.)
img_padded[index_start_h: index_start_h + img.shape[0], index_start_w: index_start_w + img.shape[1],
:] = img[:, :, :]
else:
index_start_h = 0
index_start_w = 0
index_start_w = 0
img_padded = np.copy(img)
img = np.copy(img_padded)
if use_patches:
@ -110,7 +108,6 @@ class SbbBinarizer:
width_mid = model_width - 2 * margin
height_mid = model_height - 2 * margin
img = img / float(255.0)
img_h = img.shape[0]
@ -130,18 +127,17 @@ class SbbBinarizer:
nyf = int(nyf) + 1
else:
nyf = int(nyf)
list_i_s = []
list_j_s = []
list_x_u = []
list_x_d = []
list_y_u = []
list_y_d = []
batch_indexer = 0
img_patch = np.zeros((n_batch_inference, model_height, model_width,3))
img_patch = np.zeros((n_batch_inference, model_height, model_width, 3))
for i in range(nxf):
for j in range(nyf):
@ -166,146 +162,167 @@ class SbbBinarizer:
if index_y_u > img_h:
index_y_u = img_h
index_y_d = img_h - model_height
list_i_s.append(i)
list_j_s.append(j)
list_x_u.append(index_x_u)
list_x_d.append(index_x_d)
list_y_d.append(index_y_d)
list_y_u.append(index_y_u)
img_patch[batch_indexer,:,:,:] = img[index_y_d:index_y_u, index_x_d:index_x_u, :]
img_patch[batch_indexer, :, :, :] = img[index_y_d:index_y_u, index_x_d:index_x_u, :]
batch_indexer = batch_indexer + 1
if batch_indexer == n_batch_inference:
label_p_pred = model.predict(img_patch,verbose=0)
label_p_pred = model.predict(img_patch, verbose=0)
seg = np.argmax(label_p_pred, axis=3)
#print(seg.shape, len(seg), len(list_i_s))
indexer_inside_batch = 0
for i_batch, j_batch in zip(list_i_s, list_j_s):
seg_in = seg[indexer_inside_batch,:,:]
seg_in = seg[indexer_inside_batch, :, :]
seg_color = np.repeat(seg_in[:, :, np.newaxis], 3, axis=2)
index_y_u_in = list_y_u[indexer_inside_batch]
index_y_d_in = list_y_d[indexer_inside_batch]
index_x_u_in = list_x_u[indexer_inside_batch]
index_x_d_in = list_x_d[indexer_inside_batch]
if i_batch == 0 and j_batch == 0:
seg_color = seg_color[0 : seg_color.shape[0] - margin, 0 : seg_color.shape[1] - margin, :]
prediction_true[index_y_d_in + 0 : index_y_u_in - margin, index_x_d_in + 0 : index_x_u_in - margin, :] = seg_color
seg_color = seg_color[0: seg_color.shape[0] - margin, 0: seg_color.shape[1] - margin, :]
prediction_true[index_y_d_in + 0: index_y_u_in - margin,
index_x_d_in + 0: index_x_u_in - margin, :] = seg_color
elif i_batch == nxf - 1 and j_batch == nyf - 1:
seg_color = seg_color[margin : seg_color.shape[0] - 0, margin : seg_color.shape[1] - 0, :]
prediction_true[index_y_d_in + margin : index_y_u_in - 0, index_x_d_in + margin : index_x_u_in - 0, :] = seg_color
seg_color = seg_color[margin: seg_color.shape[0] - 0, margin: seg_color.shape[1] - 0, :]
prediction_true[index_y_d_in + margin: index_y_u_in - 0,
index_x_d_in + margin: index_x_u_in - 0, :] = seg_color
elif i_batch == 0 and j_batch == nyf - 1:
seg_color = seg_color[margin : seg_color.shape[0] - 0, 0 : seg_color.shape[1] - margin, :]
prediction_true[index_y_d_in + margin : index_y_u_in - 0, index_x_d_in + 0 : index_x_u_in - margin, :] = seg_color
seg_color = seg_color[margin: seg_color.shape[0] - 0, 0: seg_color.shape[1] - margin, :]
prediction_true[index_y_d_in + margin: index_y_u_in - 0,
index_x_d_in + 0: index_x_u_in - margin, :] = seg_color
elif i_batch == nxf - 1 and j_batch == 0:
seg_color = seg_color[0 : seg_color.shape[0] - margin, margin : seg_color.shape[1] - 0, :]
prediction_true[index_y_d_in + 0 : index_y_u_in - margin, index_x_d_in + margin : index_x_u_in - 0, :] = seg_color
seg_color = seg_color[0: seg_color.shape[0] - margin, margin: seg_color.shape[1] - 0, :]
prediction_true[index_y_d_in + 0: index_y_u_in - margin,
index_x_d_in + margin: index_x_u_in - 0, :] = seg_color
elif i_batch == 0 and j_batch != 0 and j_batch != nyf - 1:
seg_color = seg_color[margin : seg_color.shape[0] - margin, 0 : seg_color.shape[1] - margin, :]
prediction_true[index_y_d_in + margin : index_y_u_in - margin, index_x_d_in + 0 : index_x_u_in - margin, :] = seg_color
seg_color = seg_color[margin: seg_color.shape[0] - margin,
0: seg_color.shape[1] - margin, :]
prediction_true[index_y_d_in + margin: index_y_u_in - margin,
index_x_d_in + 0: index_x_u_in - margin, :] = seg_color
elif i_batch == nxf - 1 and j_batch != 0 and j_batch != nyf - 1:
seg_color = seg_color[margin : seg_color.shape[0] - margin, margin : seg_color.shape[1] - 0, :]
prediction_true[index_y_d_in + margin : index_y_u_in - margin, index_x_d_in + margin : index_x_u_in - 0, :] = seg_color
seg_color = seg_color[margin: seg_color.shape[0] - margin,
margin: seg_color.shape[1] - 0, :]
prediction_true[index_y_d_in + margin: index_y_u_in - margin,
index_x_d_in + margin: index_x_u_in - 0, :] = seg_color
elif i_batch != 0 and i_batch != nxf - 1 and j_batch == 0:
seg_color = seg_color[0 : seg_color.shape[0] - margin, margin : seg_color.shape[1] - margin, :]
prediction_true[index_y_d_in + 0 : index_y_u_in - margin, index_x_d_in + margin : index_x_u_in - margin, :] = seg_color
seg_color = seg_color[0: seg_color.shape[0] - margin,
margin: seg_color.shape[1] - margin, :]
prediction_true[index_y_d_in + 0: index_y_u_in - margin,
index_x_d_in + margin: index_x_u_in - margin, :] = seg_color
elif i_batch != 0 and i_batch != nxf - 1 and j_batch == nyf - 1:
seg_color = seg_color[margin : seg_color.shape[0] - 0, margin : seg_color.shape[1] - margin, :]
prediction_true[index_y_d_in + margin : index_y_u_in - 0, index_x_d_in + margin : index_x_u_in - margin, :] = seg_color
seg_color = seg_color[margin: seg_color.shape[0] - 0,
margin: seg_color.shape[1] - margin, :]
prediction_true[index_y_d_in + margin: index_y_u_in - 0,
index_x_d_in + margin: index_x_u_in - margin, :] = seg_color
else:
seg_color = seg_color[margin : seg_color.shape[0] - margin, margin : seg_color.shape[1] - margin, :]
prediction_true[index_y_d_in + margin : index_y_u_in - margin, index_x_d_in + margin : index_x_u_in - margin, :] = seg_color
indexer_inside_batch = indexer_inside_batch +1
seg_color = seg_color[margin: seg_color.shape[0] - margin,
margin: seg_color.shape[1] - margin, :]
prediction_true[index_y_d_in + margin: index_y_u_in - margin,
index_x_d_in + margin: index_x_u_in - margin, :] = seg_color
indexer_inside_batch = indexer_inside_batch + 1
list_i_s = []
list_j_s = []
list_x_u = []
list_x_d = []
list_y_u = []
list_y_d = []
batch_indexer = 0
img_patch = np.zeros((n_batch_inference, model_height, model_width,3))
elif i==(nxf-1) and j==(nyf-1):
label_p_pred = model.predict(img_patch,verbose=0)
img_patch = np.zeros((n_batch_inference, model_height, model_width, 3))
elif i == (nxf - 1) and j == (nyf - 1):
label_p_pred = model.predict(img_patch, verbose=0)
seg = np.argmax(label_p_pred, axis=3)
#print(seg.shape, len(seg), len(list_i_s))
indexer_inside_batch = 0
for i_batch, j_batch in zip(list_i_s, list_j_s):
seg_in = seg[indexer_inside_batch,:,:]
seg_in = seg[indexer_inside_batch, :, :]
seg_color = np.repeat(seg_in[:, :, np.newaxis], 3, axis=2)
index_y_u_in = list_y_u[indexer_inside_batch]
index_y_d_in = list_y_d[indexer_inside_batch]
index_x_u_in = list_x_u[indexer_inside_batch]
index_x_d_in = list_x_d[indexer_inside_batch]
if i_batch == 0 and j_batch == 0:
seg_color = seg_color[0 : seg_color.shape[0] - margin, 0 : seg_color.shape[1] - margin, :]
prediction_true[index_y_d_in + 0 : index_y_u_in - margin, index_x_d_in + 0 : index_x_u_in - margin, :] = seg_color
seg_color = seg_color[0: seg_color.shape[0] - margin, 0: seg_color.shape[1] - margin, :]
prediction_true[index_y_d_in + 0: index_y_u_in - margin,
index_x_d_in + 0: index_x_u_in - margin, :] = seg_color
elif i_batch == nxf - 1 and j_batch == nyf - 1:
seg_color = seg_color[margin : seg_color.shape[0] - 0, margin : seg_color.shape[1] - 0, :]
prediction_true[index_y_d_in + margin : index_y_u_in - 0, index_x_d_in + margin : index_x_u_in - 0, :] = seg_color
seg_color = seg_color[margin: seg_color.shape[0] - 0, margin: seg_color.shape[1] - 0, :]
prediction_true[index_y_d_in + margin: index_y_u_in - 0,
index_x_d_in + margin: index_x_u_in - 0, :] = seg_color
elif i_batch == 0 and j_batch == nyf - 1:
seg_color = seg_color[margin : seg_color.shape[0] - 0, 0 : seg_color.shape[1] - margin, :]
prediction_true[index_y_d_in + margin : index_y_u_in - 0, index_x_d_in + 0 : index_x_u_in - margin, :] = seg_color
seg_color = seg_color[margin: seg_color.shape[0] - 0, 0: seg_color.shape[1] - margin, :]
prediction_true[index_y_d_in + margin: index_y_u_in - 0,
index_x_d_in + 0: index_x_u_in - margin, :] = seg_color
elif i_batch == nxf - 1 and j_batch == 0:
seg_color = seg_color[0 : seg_color.shape[0] - margin, margin : seg_color.shape[1] - 0, :]
prediction_true[index_y_d_in + 0 : index_y_u_in - margin, index_x_d_in + margin : index_x_u_in - 0, :] = seg_color
seg_color = seg_color[0: seg_color.shape[0] - margin, margin: seg_color.shape[1] - 0, :]
prediction_true[index_y_d_in + 0: index_y_u_in - margin,
index_x_d_in + margin: index_x_u_in - 0, :] = seg_color
elif i_batch == 0 and j_batch != 0 and j_batch != nyf - 1:
seg_color = seg_color[margin : seg_color.shape[0] - margin, 0 : seg_color.shape[1] - margin, :]
prediction_true[index_y_d_in + margin : index_y_u_in - margin, index_x_d_in + 0 : index_x_u_in - margin, :] = seg_color
seg_color = seg_color[margin: seg_color.shape[0] - margin,
0: seg_color.shape[1] - margin, :]
prediction_true[index_y_d_in + margin: index_y_u_in - margin,
index_x_d_in + 0: index_x_u_in - margin, :] = seg_color
elif i_batch == nxf - 1 and j_batch != 0 and j_batch != nyf - 1:
seg_color = seg_color[margin : seg_color.shape[0] - margin, margin : seg_color.shape[1] - 0, :]
prediction_true[index_y_d_in + margin : index_y_u_in - margin, index_x_d_in + margin : index_x_u_in - 0, :] = seg_color
seg_color = seg_color[margin: seg_color.shape[0] - margin,
margin: seg_color.shape[1] - 0, :]
prediction_true[index_y_d_in + margin: index_y_u_in - margin,
index_x_d_in + margin: index_x_u_in - 0, :] = seg_color
elif i_batch != 0 and i_batch != nxf - 1 and j_batch == 0:
seg_color = seg_color[0 : seg_color.shape[0] - margin, margin : seg_color.shape[1] - margin, :]
prediction_true[index_y_d_in + 0 : index_y_u_in - margin, index_x_d_in + margin : index_x_u_in - margin, :] = seg_color
seg_color = seg_color[0: seg_color.shape[0] - margin,
margin: seg_color.shape[1] - margin, :]
prediction_true[index_y_d_in + 0: index_y_u_in - margin,
index_x_d_in + margin: index_x_u_in - margin, :] = seg_color
elif i_batch != 0 and i_batch != nxf - 1 and j_batch == nyf - 1:
seg_color = seg_color[margin : seg_color.shape[0] - 0, margin : seg_color.shape[1] - margin, :]
prediction_true[index_y_d_in + margin : index_y_u_in - 0, index_x_d_in + margin : index_x_u_in - margin, :] = seg_color
seg_color = seg_color[margin: seg_color.shape[0] - 0,
margin: seg_color.shape[1] - margin, :]
prediction_true[index_y_d_in + margin: index_y_u_in - 0,
index_x_d_in + margin: index_x_u_in - margin, :] = seg_color
else:
seg_color = seg_color[margin : seg_color.shape[0] - margin, margin : seg_color.shape[1] - margin, :]
prediction_true[index_y_d_in + margin : index_y_u_in - margin, index_x_d_in + margin : index_x_u_in - margin, :] = seg_color
indexer_inside_batch = indexer_inside_batch +1
seg_color = seg_color[margin: seg_color.shape[0] - margin,
margin: seg_color.shape[1] - margin, :]
prediction_true[index_y_d_in + margin: index_y_u_in - margin,
index_x_d_in + margin: index_x_u_in - margin, :] = seg_color
indexer_inside_batch = indexer_inside_batch + 1
list_i_s = []
list_j_s = []
list_x_u = []
list_x_d = []
list_y_u = []
list_y_d = []
batch_indexer = 0
img_patch = np.zeros((n_batch_inference, model_height, model_width,3))
prediction_true = prediction_true[index_start_h: index_start_h+img_org_h, index_start_w: index_start_w+img_org_w,:]
img_patch = np.zeros((n_batch_inference, model_height, model_width, 3))
prediction_true = prediction_true[index_start_h: index_start_h + img_org_h,
index_start_w: index_start_w + img_org_w, :]
prediction_true = prediction_true.astype(np.uint8)
else:
@ -320,13 +337,13 @@ class SbbBinarizer:
seg_color = np.repeat(seg[:, :, np.newaxis], 3, axis=2)
prediction_true = resize_image(seg_color, img_h_page, img_w_page)
prediction_true = prediction_true.astype(np.uint8)
return prediction_true[:,:,0]
return prediction_true[:, :, 0]
def run(self, image=None, image_path=None, save=None, use_patches=False, dir_in=None, dir_out=None):
print(dir_in,'dir_in')
print(dir_in, 'dir_in')
if not dir_in:
if (image is not None and image_path is not None) or \
(image is None and image_path is None):
(image is None and image_path is None):
raise ValueError("Must pass either a opencv2 image or an image_path")
if image_path is not None:
image = cv2.imread(image_path)
@ -355,11 +372,11 @@ class SbbBinarizer:
cv2.imwrite(save, img_last)
return img_last
else:
ls_imgs = os.listdir(dir_in)
ls_imgs = os.listdir(dir_in)
for image_name in ls_imgs:
image_stem = image_name.split('.')[0]
print(image_name,'image_name')
image = cv2.imread(os.path.join(dir_in,image_name) )
print(image_name, 'image_name')
image = cv2.imread(os.path.join(dir_in, image_name))
img_last = 0
for n, (model, model_file) in enumerate(zip(self.models, self.model_files)):
self.log.info('Predicting with model %s [%s/%s]' % (model_file, n + 1, len(self.model_files)))
@ -381,5 +398,5 @@ class SbbBinarizer:
kernel = np.ones((5, 5), np.uint8)
img_last[:, :][img_last[:, :] > 0] = 255
img_last = (img_last[:, :] == 0) * 255
cv2.imwrite(os.path.join(dir_out,image_stem+'.png'), img_last)
cv2.imwrite(os.path.join(dir_out, image_stem + '.png'), img_last)

File diff suppressed because it is too large Load Diff

@ -43,14 +43,14 @@ def get_text_region_boxes_by_given_contours(contours):
def filter_contours_area_of_image(image, contours, hierarchy, max_area, min_area):
found_polygons_early = []
for jv,c in enumerate(contours):
for jv, c in enumerate(contours):
if len(c) < 3: # A polygon cannot have less than 3 points
continue
polygon = geometry.Polygon([point[0] for point in c])
area = polygon.area
if (min_area * np.prod(image.shape[:2]) <= area <= max_area * np.prod(image.shape[:2]) and
hierarchy[0][jv][3] == -1):
hierarchy[0][jv][3] == -1):
found_polygons_early.append(np.array([[point]
for point in polygon.exterior.coords], dtype=np.uint))
return found_polygons_early
@ -58,7 +58,7 @@ def filter_contours_area_of_image(image, contours, hierarchy, max_area, min_area
def filter_contours_area_of_image_tables(image, contours, hierarchy, max_area, min_area):
found_polygons_early = []
for jv,c in enumerate(contours):
for jv, c in enumerate(contours):
if len(c) < 3: # A polygon cannot have less than 3 points
continue
@ -69,8 +69,8 @@ def filter_contours_area_of_image_tables(image, contours, hierarchy, max_area, m
# Check that polygon has area greater than minimal area
# print(hierarchy[0][jv][3],hierarchy )
if (min_area * np.prod(image.shape[:2]) <= area <= max_area * np.prod(image.shape[:2]) and
# hierarchy[0][jv][3]==-1
True):
# hierarchy[0][jv][3]==-1
True):
# print(c[0][0][1])
found_polygons_early.append(np.array([[point]
for point in polygon.exterior.coords], dtype=np.int32))
@ -122,15 +122,15 @@ def find_new_features_of_contours(contours_main):
def find_features_of_contours(contours_main):
areas_main=np.array([cv2.contourArea(contours_main[j]) for j in range(len(contours_main))])
M_main=[cv2.moments(contours_main[j]) for j in range(len(contours_main))]
cx_main=[(M_main[j]['m10']/(M_main[j]['m00']+1e-32)) for j in range(len(M_main))]
cy_main=[(M_main[j]['m01']/(M_main[j]['m00']+1e-32)) for j in range(len(M_main))]
x_min_main=np.array([np.min(contours_main[j][:,0,0]) for j in range(len(contours_main))])
x_max_main=np.array([np.max(contours_main[j][:,0,0]) for j in range(len(contours_main))])
areas_main = np.array([cv2.contourArea(contours_main[j]) for j in range(len(contours_main))])
M_main = [cv2.moments(contours_main[j]) for j in range(len(contours_main))]
cx_main = [(M_main[j]['m10'] / (M_main[j]['m00'] + 1e-32)) for j in range(len(M_main))]
cy_main = [(M_main[j]['m01'] / (M_main[j]['m00'] + 1e-32)) for j in range(len(M_main))]
x_min_main = np.array([np.min(contours_main[j][:, 0, 0]) for j in range(len(contours_main))])
x_max_main = np.array([np.max(contours_main[j][:, 0, 0]) for j in range(len(contours_main))])
y_min_main=np.array([np.min(contours_main[j][:,0,1]) for j in range(len(contours_main))])
y_max_main=np.array([np.max(contours_main[j][:,0,1]) for j in range(len(contours_main))])
y_min_main = np.array([np.min(contours_main[j][:, 0, 1]) for j in range(len(contours_main))])
y_max_main = np.array([np.max(contours_main[j][:, 0, 1]) for j in range(len(contours_main))])
return y_min_main, y_max_main
@ -257,17 +257,17 @@ def do_back_rotation_and_get_cnt_back(contour_par, index_r_con, img, slope_first
def get_textregion_contours_in_org_image_light(cnts, img, slope_first, map=map):
if not len(cnts):
return []
img = cv2.resize(img, (int(img.shape[1]/6), int(img.shape[0]/6)), interpolation=cv2.INTER_NEAREST)
img = cv2.resize(img, (int(img.shape[1] / 6), int(img.shape[0] / 6)), interpolation=cv2.INTER_NEAREST)
##cnts = list( (np.array(cnts)/2).astype(np.int16) )
#cnts = cnts/2
cnts = [(i/6).astype(np.int) for i in cnts]
cnts = [(i / 6).astype(np.int) for i in cnts]
results = map(partial(do_back_rotation_and_get_cnt_back,
img=img,
slope_first=slope_first,
),
cnts, range(len(cnts)))
contours, indexes = tuple(zip(*results))
return [i*6 for i in contours]
return [i * 6 for i in contours]
def return_contours_of_interested_textline(region_pre_p, pixel):
@ -339,4 +339,3 @@ def return_contours_of_interested_region_by_size(region_pre_p, pixel, min_area,
img_ret = cv2.fillPoly(img_ret, pts=contours_imgs, color=(1, 1, 1))
return img_ret[:, :, 0]

@ -9,17 +9,17 @@ from .contour import (
def adhere_drop_capital_region_into_corresponding_textline(
text_regions_p,
polygons_of_drop_capitals,
contours_only_text_parent,
contours_only_text_parent_h,
all_box_coord,
all_box_coord_h,
all_found_textline_polygons,
all_found_textline_polygons_h,
kernel=None,
curved_line=False,
textline_light=False,
text_regions_p,
polygons_of_drop_capitals,
contours_only_text_parent,
contours_only_text_parent_h,
all_box_coord,
all_box_coord_h,
all_found_textline_polygons,
all_found_textline_polygons_h,
kernel=None,
curved_line=False,
textline_light=False,
):
# print(np.shape(all_found_textline_polygons),np.shape(all_found_textline_polygons[3]),'all_found_textline_polygonsshape')
# print(all_found_textline_polygons[3])
@ -29,7 +29,8 @@ def adhere_drop_capital_region_into_corresponding_textline(
img_con_all = np.zeros((text_regions_p.shape[0], text_regions_p.shape[1], 3))
for j_cont in range(len(contours_only_text_parent)):
img_con_all[all_box_coord[j_cont][0] : all_box_coord[j_cont][1], all_box_coord[j_cont][2] : all_box_coord[j_cont][3], 0] = (j_cont + 1) * 3
img_con_all[all_box_coord[j_cont][0]: all_box_coord[j_cont][1],
all_box_coord[j_cont][2]: all_box_coord[j_cont][3], 0] = (j_cont + 1) * 3
# img_con_all=cv2.fillPoly(img_con_all,pts=[contours_only_text_parent[j_cont]],color=((j_cont+1)*3,(j_cont+1)*3,(j_cont+1)*3))
# plt.imshow(img_con_all[:,:,0])
@ -85,14 +86,16 @@ def adhere_drop_capital_region_into_corresponding_textline(
sum_pixels_of_intersection = []
for i in range(len(region_with_intersected_drop)):
# print((region_with_intersected_drop[i]*3+1))
sum_pixels_of_intersection.append(((img_con_all_copy[:, :, 0] == (region_with_intersected_drop[i] * 3 + 1)) * 1).sum())
sum_pixels_of_intersection.append(
((img_con_all_copy[:, :, 0] == (region_with_intersected_drop[i] * 3 + 1)) * 1).sum())
# print(sum_pixels_of_intersection)
region_final = region_with_intersected_drop[np.argmax(sum_pixels_of_intersection)] - 1
# print(region_final,'region_final')
# cx_t,cy_t ,_, _, _ ,_,_= find_new_features_of_contours(all_found_textline_polygons[int(region_final)])
try:
cx_t, cy_t, _, _, _, _, _ = find_new_features_of_contours(all_found_textline_polygons[int(region_final)])
cx_t, cy_t, _, _, _, _, _ = find_new_features_of_contours(
all_found_textline_polygons[int(region_final)])
# print(all_box_coord[j_cont])
# print(cx_t)
# print(cy_t)
@ -109,26 +112,30 @@ def adhere_drop_capital_region_into_corresponding_textline(
# print(arg_min)
cnt_nearest = np.copy(all_found_textline_polygons[int(region_final)][arg_min])
cnt_nearest[:, 0, 0] = all_found_textline_polygons[int(region_final)][arg_min][:, 0, 0] # +all_box_coord[int(region_final)][2]
cnt_nearest[:, 0, 1] = all_found_textline_polygons[int(region_final)][arg_min][:, 0, 1] # +all_box_coord[int(region_final)][0]
cnt_nearest[:, 0, 0] = all_found_textline_polygons[int(region_final)][arg_min][:, 0,
0] # +all_box_coord[int(region_final)][2]
cnt_nearest[:, 0, 1] = all_found_textline_polygons[int(region_final)][arg_min][:, 0,
1] # +all_box_coord[int(region_final)][0]
img_textlines = np.zeros((text_regions_p.shape[0], text_regions_p.shape[1], 3))
img_textlines = cv2.fillPoly(img_textlines, pts=[cnt_nearest], color=(255, 255, 255))
img_textlines = cv2.fillPoly(img_textlines, pts=[polygons_of_drop_capitals[i_drop]], color=(255, 255, 255))
img_textlines = cv2.fillPoly(img_textlines, pts=[polygons_of_drop_capitals[i_drop]],
color=(255, 255, 255))
img_textlines = img_textlines.astype(np.uint8)
contours_combined = return_contours_of_interested_region(img_textlines, 255, 0)
#plt.imshow(img_textlines)
#plt.show()
#imgray = cv2.cvtColor(img_textlines, cv2.COLOR_BGR2GRAY)
#ret, thresh = cv2.threshold(imgray, 0, 255, 0)
#contours_combined, hierarchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
areas_cnt_text = np.array([cv2.contourArea(contours_combined[j]) for j in range(len(contours_combined))])
areas_cnt_text = np.array(
[cv2.contourArea(contours_combined[j]) for j in range(len(contours_combined))])
contours_biggest = contours_combined[np.argmax(areas_cnt_text)]
@ -138,11 +145,12 @@ def adhere_drop_capital_region_into_corresponding_textline(
# contours_biggest[:,0,1]=contours_biggest[:,0,1]#-all_box_coord[int(region_final)][0]
# contours_biggest=contours_biggest.reshape(np.shape(contours_biggest)[0],np.shape(contours_biggest)[2])
if len(contours_combined)==1:
if len(contours_combined) == 1:
all_found_textline_polygons[int(region_final)][arg_min] = contours_biggest
elif len(contours_combined)==2:
all_found_textline_polygons[int(region_final)].insert(arg_min, polygons_of_drop_capitals[i_drop] )
elif len(contours_combined) == 2:
all_found_textline_polygons[int(region_final)].insert(arg_min,
polygons_of_drop_capitals[i_drop])
else:
pass
@ -156,7 +164,8 @@ def adhere_drop_capital_region_into_corresponding_textline(
# cx_t,cy_t ,_, _, _ ,_,_= find_new_features_of_contours(all_found_textline_polygons[int(region_final)])
try:
cx_t, cy_t, _, _, _, _, _ = find_new_features_of_contours(all_found_textline_polygons[int(region_final)])
cx_t, cy_t, _, _, _, _, _ = find_new_features_of_contours(
all_found_textline_polygons[int(region_final)])
# print(all_box_coord[j_cont])
# print(cx_t)
# print(cy_t)
@ -171,23 +180,26 @@ def adhere_drop_capital_region_into_corresponding_textline(
# print(arg_min)
cnt_nearest = np.copy(all_found_textline_polygons[int(region_final)][arg_min])
cnt_nearest[:, 0, 0] = all_found_textline_polygons[int(region_final)][arg_min][:, 0, 0] # +all_box_coord[int(region_final)][2]
cnt_nearest[:, 0, 1] = all_found_textline_polygons[int(region_final)][arg_min][:, 0, 1] # +all_box_coord[int(region_final)][0]
cnt_nearest[:, 0, 0] = all_found_textline_polygons[int(region_final)][arg_min][:, 0,
0] # +all_box_coord[int(region_final)][2]
cnt_nearest[:, 0, 1] = all_found_textline_polygons[int(region_final)][arg_min][:, 0,
1] # +all_box_coord[int(region_final)][0]
img_textlines = np.zeros((text_regions_p.shape[0], text_regions_p.shape[1], 3))
img_textlines = cv2.fillPoly(img_textlines, pts=[cnt_nearest], color=(255, 255, 255))
img_textlines = cv2.fillPoly(img_textlines, pts=[polygons_of_drop_capitals[i_drop]], color=(255, 255, 255))
img_textlines = cv2.fillPoly(img_textlines, pts=[polygons_of_drop_capitals[i_drop]],
color=(255, 255, 255))
img_textlines = img_textlines.astype(np.uint8)
contours_combined = return_contours_of_interested_region(img_textlines, 255, 0)
##imgray = cv2.cvtColor(img_textlines, cv2.COLOR_BGR2GRAY)
##ret, thresh = cv2.threshold(imgray, 0, 255, 0)
##contours_combined, hierarchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
areas_cnt_text = np.array([cv2.contourArea(contours_combined[j]) for j in range(len(contours_combined))])
areas_cnt_text = np.array(
[cv2.contourArea(contours_combined[j]) for j in range(len(contours_combined))])
contours_biggest = contours_combined[np.argmax(areas_cnt_text)]
@ -198,10 +210,11 @@ def adhere_drop_capital_region_into_corresponding_textline(
# print(np.shape(contours_biggest),'contours_biggest')
# print(np.shape(all_found_textline_polygons[int(region_final)][arg_min]))
##contours_biggest=contours_biggest.reshape(np.shape(contours_biggest)[0],np.shape(contours_biggest)[2])
if len(contours_combined)==1:
if len(contours_combined) == 1:
all_found_textline_polygons[int(region_final)][arg_min] = contours_biggest
elif len(contours_combined)==2:
all_found_textline_polygons[int(region_final)].insert(arg_min, polygons_of_drop_capitals[i_drop] )
elif len(contours_combined) == 2:
all_found_textline_polygons[int(region_final)].insert(arg_min,
polygons_of_drop_capitals[i_drop])
else:
pass
except:
@ -209,7 +222,8 @@ def adhere_drop_capital_region_into_corresponding_textline(
try:
# print(all_found_textline_polygons[j_cont][0])
cx_t, cy_t, _, _, _, _, _ = find_new_features_of_contours(all_found_textline_polygons[int(region_final)])
cx_t, cy_t, _, _, _, _, _ = find_new_features_of_contours(
all_found_textline_polygons[int(region_final)])
# print(all_box_coord[j_cont])
# print(cx_t)
# print(cy_t)
@ -224,12 +238,15 @@ def adhere_drop_capital_region_into_corresponding_textline(
# print(arg_min)
cnt_nearest = np.copy(all_found_textline_polygons[int(region_final)][arg_min])
cnt_nearest[:, 0, 0] = all_found_textline_polygons[int(region_final)][arg_min][:, 0, 0] # +all_box_coord[int(region_final)][2]
cnt_nearest[:, 0, 1] = all_found_textline_polygons[int(region_final)][arg_min][:, 0, 1] # +all_box_coord[int(region_final)][0]
cnt_nearest[:, 0, 0] = all_found_textline_polygons[int(region_final)][arg_min][:, 0,
0] # +all_box_coord[int(region_final)][2]
cnt_nearest[:, 0, 1] = all_found_textline_polygons[int(region_final)][arg_min][:, 0,
1] # +all_box_coord[int(region_final)][0]
img_textlines = np.zeros((text_regions_p.shape[0], text_regions_p.shape[1], 3))
img_textlines = cv2.fillPoly(img_textlines, pts=[cnt_nearest], color=(255, 255, 255))
img_textlines = cv2.fillPoly(img_textlines, pts=[polygons_of_drop_capitals[i_drop]], color=(255, 255, 255))
img_textlines = cv2.fillPoly(img_textlines, pts=[polygons_of_drop_capitals[i_drop]],
color=(255, 255, 255))
img_textlines = img_textlines.astype(np.uint8)
contours_combined = return_contours_of_interested_region(img_textlines, 255, 0)
@ -239,7 +256,8 @@ def adhere_drop_capital_region_into_corresponding_textline(
#contours_combined, hierarchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
# print(len(contours_combined),'len textlines mixed')
areas_cnt_text = np.array([cv2.contourArea(contours_combined[j]) for j in range(len(contours_combined))])
areas_cnt_text = np.array(
[cv2.contourArea(contours_combined[j]) for j in range(len(contours_combined))])
contours_biggest = contours_combined[np.argmax(areas_cnt_text)]
@ -249,10 +267,11 @@ def adhere_drop_capital_region_into_corresponding_textline(
contours_biggest[:, 0, 1] = contours_biggest[:, 0, 1] # -all_box_coord[int(region_final)][0]
##contours_biggest=contours_biggest.reshape(np.shape(contours_biggest)[0],np.shape(contours_biggest)[2])
if len(contours_combined)==1:
if len(contours_combined) == 1:
all_found_textline_polygons[int(region_final)][arg_min] = contours_biggest
elif len(contours_combined)==2:
all_found_textline_polygons[int(region_final)].insert(arg_min, polygons_of_drop_capitals[i_drop] )
elif len(contours_combined) == 2:
all_found_textline_polygons[int(region_final)].insert(arg_min,
polygons_of_drop_capitals[i_drop])
else:
pass
# all_found_textline_polygons[int(region_final)][arg_min]=contours_biggest
@ -311,14 +330,16 @@ def adhere_drop_capital_region_into_corresponding_textline(
sum_pixels_of_intersection = []
for i in range(len(region_with_intersected_drop)):
# print((region_with_intersected_drop[i]*3+1))
sum_pixels_of_intersection.append(((img_con_all_copy[:, :, 0] == (region_with_intersected_drop[i] * 3 + 1)) * 1).sum())
sum_pixels_of_intersection.append(
((img_con_all_copy[:, :, 0] == (region_with_intersected_drop[i] * 3 + 1)) * 1).sum())
# print(sum_pixels_of_intersection)
region_final = region_with_intersected_drop[np.argmax(sum_pixels_of_intersection)] - 1
# print(region_final,'region_final')
# cx_t,cy_t ,_, _, _ ,_,_= find_new_features_of_contours(all_found_textline_polygons[int(region_final)])
try:
cx_t, cy_t, _, _, _, _, _ = find_new_features_of_contours(all_found_textline_polygons[int(region_final)])
cx_t, cy_t, _, _, _, _, _ = find_new_features_of_contours(
all_found_textline_polygons[int(region_final)])
# print(all_box_coord[j_cont])
# print(cx_t)
# print(cy_t)
@ -335,23 +356,27 @@ def adhere_drop_capital_region_into_corresponding_textline(
# print(arg_min)
cnt_nearest = np.copy(all_found_textline_polygons[int(region_final)][arg_min])
cnt_nearest[:, 0] = all_found_textline_polygons[int(region_final)][arg_min][:, 0] + all_box_coord[int(region_final)][2]
cnt_nearest[:, 1] = all_found_textline_polygons[int(region_final)][arg_min][:, 1] + all_box_coord[int(region_final)][0]
cnt_nearest[:, 0] = all_found_textline_polygons[int(region_final)][arg_min][:, 0] + \
all_box_coord[int(region_final)][2]
cnt_nearest[:, 1] = all_found_textline_polygons[int(region_final)][arg_min][:, 1] + \
all_box_coord[int(region_final)][0]
img_textlines = np.zeros((text_regions_p.shape[0], text_regions_p.shape[1], 3))
img_textlines = cv2.fillPoly(img_textlines, pts=[cnt_nearest], color=(255, 255, 255))
img_textlines = cv2.fillPoly(img_textlines, pts=[polygons_of_drop_capitals[i_drop]], color=(255, 255, 255))
img_textlines = cv2.fillPoly(img_textlines, pts=[polygons_of_drop_capitals[i_drop]],
color=(255, 255, 255))
img_textlines = img_textlines.astype(np.uint8)
contours_combined = return_contours_of_interested_region(img_textlines, 255, 0)
#imgray = cv2.cvtColor(img_textlines, cv2.COLOR_BGR2GRAY)
#ret, thresh = cv2.threshold(imgray, 0, 255, 0)
#contours_combined, hierarchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
# print(len(contours_combined),'len textlines mixed')
areas_cnt_text = np.array([cv2.contourArea(contours_combined[j]) for j in range(len(contours_combined))])
areas_cnt_text = np.array(
[cv2.contourArea(contours_combined[j]) for j in range(len(contours_combined))])
contours_biggest = contours_combined[np.argmax(areas_cnt_text)]
@ -360,11 +385,13 @@ def adhere_drop_capital_region_into_corresponding_textline(
contours_biggest[:, 0, 0] = contours_biggest[:, 0, 0] - all_box_coord[int(region_final)][2]
contours_biggest[:, 0, 1] = contours_biggest[:, 0, 1] - all_box_coord[int(region_final)][0]
contours_biggest = contours_biggest.reshape(np.shape(contours_biggest)[0], np.shape(contours_biggest)[2])
if len(contours_combined)==1:
contours_biggest = contours_biggest.reshape(np.shape(contours_biggest)[0],
np.shape(contours_biggest)[2])
if len(contours_combined) == 1:
all_found_textline_polygons[int(region_final)][arg_min] = contours_biggest
elif len(contours_combined)==2:
all_found_textline_polygons[int(region_final)].insert(arg_min, polygons_of_drop_capitals[i_drop] )
elif len(contours_combined) == 2:
all_found_textline_polygons[int(region_final)].insert(arg_min,
polygons_of_drop_capitals[i_drop])
else:
pass
@ -381,7 +408,8 @@ def adhere_drop_capital_region_into_corresponding_textline(
# print(cx_t,'print')
try:
# print(all_found_textline_polygons[j_cont][0])
cx_t, cy_t, _, _, _, _, _ = find_new_features_of_contours(all_found_textline_polygons[int(region_final)])
cx_t, cy_t, _, _, _, _, _ = find_new_features_of_contours(
all_found_textline_polygons[int(region_final)])
# print(all_box_coord[j_cont])
# print(cx_t)
# print(cy_t)
@ -396,23 +424,27 @@ def adhere_drop_capital_region_into_corresponding_textline(
# print(arg_min)
cnt_nearest = np.copy(all_found_textline_polygons[int(region_final)][arg_min])
cnt_nearest[:, 0] = all_found_textline_polygons[int(region_final)][arg_min][:, 0] + all_box_coord[int(region_final)][2]
cnt_nearest[:, 1] = all_found_textline_polygons[int(region_final)][arg_min][:, 1] + all_box_coord[int(region_final)][0]
cnt_nearest[:, 0] = all_found_textline_polygons[int(region_final)][arg_min][:, 0] + \
all_box_coord[int(region_final)][2]
cnt_nearest[:, 1] = all_found_textline_polygons[int(region_final)][arg_min][:, 1] + \
all_box_coord[int(region_final)][0]
img_textlines = np.zeros((text_regions_p.shape[0], text_regions_p.shape[1], 3))
img_textlines = cv2.fillPoly(img_textlines, pts=[cnt_nearest], color=(255, 255, 255))
img_textlines = cv2.fillPoly(img_textlines, pts=[polygons_of_drop_capitals[i_drop]], color=(255, 255, 255))
img_textlines = cv2.fillPoly(img_textlines, pts=[polygons_of_drop_capitals[i_drop]],
color=(255, 255, 255))
img_textlines = img_textlines.astype(np.uint8)
contours_combined = return_contours_of_interested_region(img_textlines, 255, 0)
#imgray = cv2.cvtColor(img_textlines, cv2.COLOR_BGR2GRAY)
#ret, thresh = cv2.threshold(imgray, 0, 255, 0)
#contours_combined, hierarchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
# print(len(contours_combined),'len textlines mixed')
areas_cnt_text = np.array([cv2.contourArea(contours_combined[j]) for j in range(len(contours_combined))])
areas_cnt_text = np.array(
[cv2.contourArea(contours_combined[j]) for j in range(len(contours_combined))])
contours_biggest = contours_combined[np.argmax(areas_cnt_text)]
@ -421,11 +453,13 @@ def adhere_drop_capital_region_into_corresponding_textline(
contours_biggest[:, 0, 0] = contours_biggest[:, 0, 0] - all_box_coord[int(region_final)][2]
contours_biggest[:, 0, 1] = contours_biggest[:, 0, 1] - all_box_coord[int(region_final)][0]
contours_biggest = contours_biggest.reshape(np.shape(contours_biggest)[0], np.shape(contours_biggest)[2])
if len(contours_combined)==1:
contours_biggest = contours_biggest.reshape(np.shape(contours_biggest)[0],
np.shape(contours_biggest)[2])
if len(contours_combined) == 1:
all_found_textline_polygons[int(region_final)][arg_min] = contours_biggest
elif len(contours_combined)==2:
all_found_textline_polygons[int(region_final)].insert(arg_min, polygons_of_drop_capitals[i_drop] )
elif len(contours_combined) == 2:
all_found_textline_polygons[int(region_final)].insert(arg_min,
polygons_of_drop_capitals[i_drop])
else:
pass
# all_found_textline_polygons[int(region_final)][arg_min]=contours_biggest
@ -502,7 +536,6 @@ def adhere_drop_capital_region_into_corresponding_textline(
def filter_small_drop_capitals_from_no_patch_layout(layout_no_patch, layout1):
drop_only = (layout_no_patch[:, :, 0] == 4) * 1
contours_drop, hir_on_drop = return_contours_of_image(drop_only)
contours_drop_parent = return_parent_contours(contours_drop, hir_on_drop)
@ -510,7 +543,8 @@ def filter_small_drop_capitals_from_no_patch_layout(layout_no_patch, layout1):
areas_cnt_text = np.array([cv2.contourArea(contours_drop_parent[j]) for j in range(len(contours_drop_parent))])
areas_cnt_text = areas_cnt_text / float(drop_only.shape[0] * drop_only.shape[1])
contours_drop_parent = [contours_drop_parent[jz] for jz in range(len(contours_drop_parent)) if areas_cnt_text[jz] > 0.001]
contours_drop_parent = [contours_drop_parent[jz] for jz in range(len(contours_drop_parent)) if
areas_cnt_text[jz] > 0.001]
areas_cnt_text = [areas_cnt_text[jz] for jz in range(len(areas_cnt_text)) if areas_cnt_text[jz] > 0.001]
@ -520,15 +554,17 @@ def filter_small_drop_capitals_from_no_patch_layout(layout_no_patch, layout1):
x, y, w, h = cv2.boundingRect(contours_drop_parent[jj])
# boxes.append([int(x), int(y), int(w), int(h)])
iou_of_box_and_contoure = float(drop_only.shape[0] * drop_only.shape[1]) * areas_cnt_text[jj] / float(w * h) * 100
iou_of_box_and_contoure = float(drop_only.shape[0] * drop_only.shape[1]) * areas_cnt_text[jj] / float(
w * h) * 100
height_to_weight_ratio = h / float(w)
weigh_to_height_ratio = w / float(h)
if iou_of_box_and_contoure > 60 and weigh_to_height_ratio < 1.2 and height_to_weight_ratio < 2:
map_of_drop_contour_bb = np.zeros((layout1.shape[0], layout1.shape[1]))
map_of_drop_contour_bb[y : y + h, x : x + w] = layout1[y : y + h, x : x + w]
map_of_drop_contour_bb[y: y + h, x: x + w] = layout1[y: y + h, x: x + w]
if (((map_of_drop_contour_bb == 1) * 1).sum() / float(((map_of_drop_contour_bb == 5) * 1).sum()) * 100) >= 15:
if (((map_of_drop_contour_bb == 1) * 1).sum() / float(
((map_of_drop_contour_bb == 5) * 1).sum()) * 100) >= 15:
contours_drop_parent_final.append(contours_drop_parent[jj])
layout_no_patch[:, :, 0][layout_no_patch[:, :, 0] == 4] = 0
@ -536,4 +572,3 @@ def filter_small_drop_capitals_from_no_patch_layout(layout_no_patch, layout1):
layout_no_patch = cv2.fillPoly(layout_no_patch, pts=contours_drop_parent_final, color=(4, 4, 4))
return layout_no_patch

@ -8,206 +8,196 @@ from .rotate import rotate_image
def get_marginals(text_with_lines, text_regions, num_col, slope_deskew, light_version=False, kernel=None):
mask_marginals=np.zeros((text_with_lines.shape[0],text_with_lines.shape[1]))
mask_marginals=mask_marginals.astype(np.uint8)
mask_marginals = np.zeros((text_with_lines.shape[0], text_with_lines.shape[1]))
mask_marginals = mask_marginals.astype(np.uint8)
text_with_lines=text_with_lines.astype(np.uint8)
text_with_lines = text_with_lines.astype(np.uint8)
##text_with_lines=cv2.erode(text_with_lines,self.kernel,iterations=3)
text_with_lines_eroded=cv2.erode(text_with_lines,kernel,iterations=5)
text_with_lines_eroded = cv2.erode(text_with_lines, kernel, iterations=5)
if text_with_lines.shape[0]<=1500:
if text_with_lines.shape[0] <= 1500:
pass
elif 1500 < text_with_lines.shape[0] <= 1800:
text_with_lines=resize_image(text_with_lines,int(text_with_lines.shape[0]*1.5),text_with_lines.shape[1])
text_with_lines=cv2.erode(text_with_lines,kernel,iterations=5)
text_with_lines=resize_image(text_with_lines,text_with_lines_eroded.shape[0],text_with_lines_eroded.shape[1])
text_with_lines = resize_image(text_with_lines, int(text_with_lines.shape[0] * 1.5), text_with_lines.shape[1])
text_with_lines = cv2.erode(text_with_lines, kernel, iterations=5)
text_with_lines = resize_image(text_with_lines, text_with_lines_eroded.shape[0],
text_with_lines_eroded.shape[1])
else:
text_with_lines=resize_image(text_with_lines,int(text_with_lines.shape[0]*1.8),text_with_lines.shape[1])
text_with_lines=cv2.erode(text_with_lines,kernel,iterations=7)
text_with_lines=resize_image(text_with_lines,text_with_lines_eroded.shape[0],text_with_lines_eroded.shape[1])
text_with_lines = resize_image(text_with_lines, int(text_with_lines.shape[0] * 1.8), text_with_lines.shape[1])
text_with_lines = cv2.erode(text_with_lines, kernel, iterations=7)
text_with_lines = resize_image(text_with_lines, text_with_lines_eroded.shape[0],
text_with_lines_eroded.shape[1])
text_with_lines_y=text_with_lines.sum(axis=0)
text_with_lines_y_eroded=text_with_lines_eroded.sum(axis=0)
text_with_lines_y = text_with_lines.sum(axis=0)
text_with_lines_y_eroded = text_with_lines_eroded.sum(axis=0)
thickness_along_y_percent=text_with_lines_y_eroded.max()/(float(text_with_lines.shape[0]))*100
thickness_along_y_percent = text_with_lines_y_eroded.max() / (float(text_with_lines.shape[0])) * 100
#print(thickness_along_y_percent,'thickness_along_y_percent')
if thickness_along_y_percent<30:
min_textline_thickness=8
if thickness_along_y_percent < 30:
min_textline_thickness = 8
elif 30 <= thickness_along_y_percent < 50:
min_textline_thickness=20
min_textline_thickness = 20
else:
min_textline_thickness=40
if thickness_along_y_percent>=14:
text_with_lines_y_rev=-1*text_with_lines_y[:]
min_textline_thickness = 40
text_with_lines_y_rev=text_with_lines_y_rev-np.min(text_with_lines_y_rev)
if thickness_along_y_percent >= 14:
sigma_gaus=1
region_sum_0= gaussian_filter1d(text_with_lines_y, sigma_gaus)
text_with_lines_y_rev = -1 * text_with_lines_y[:]
region_sum_0_rev=gaussian_filter1d(text_with_lines_y_rev, sigma_gaus)
text_with_lines_y_rev = text_with_lines_y_rev - np.min(text_with_lines_y_rev)
region_sum_0_updown=region_sum_0[len(region_sum_0)::-1]
sigma_gaus = 1
region_sum_0 = gaussian_filter1d(text_with_lines_y, sigma_gaus)
first_nonzero=(next((i for i, x in enumerate(region_sum_0) if x), None))
last_nonzero=(next((i for i, x in enumerate(region_sum_0_updown) if x), None))
region_sum_0_rev = gaussian_filter1d(text_with_lines_y_rev, sigma_gaus)
region_sum_0_updown = region_sum_0[len(region_sum_0)::-1]
last_nonzero=len(region_sum_0)-last_nonzero
first_nonzero = (next((i for i, x in enumerate(region_sum_0) if x), None))
last_nonzero = (next((i for i, x in enumerate(region_sum_0_updown) if x), None))
mid_point=(last_nonzero+first_nonzero)/2.
last_nonzero = len(region_sum_0) - last_nonzero
mid_point = (last_nonzero + first_nonzero) / 2.
one_third_right=(last_nonzero-mid_point)/3.0
one_third_left=(mid_point-first_nonzero)/3.0
one_third_right = (last_nonzero - mid_point) / 3.0
one_third_left = (mid_point - first_nonzero) / 3.0
peaks, _ = find_peaks(text_with_lines_y_rev, height=0)
peaks=np.array(peaks)
peaks=peaks[(peaks>first_nonzero) & (peaks < last_nonzero)]
peaks=peaks[region_sum_0[peaks]<min_textline_thickness ]
if num_col==1:
peaks_right=peaks[peaks>mid_point]
peaks_left=peaks[peaks<mid_point]
if num_col==2:
peaks_right=peaks[peaks>(mid_point+one_third_right)]
peaks_left=peaks[peaks<(mid_point-one_third_left)]
peaks = np.array(peaks)
peaks = peaks[(peaks > first_nonzero) & (peaks < last_nonzero)]
peaks = peaks[region_sum_0[peaks] < min_textline_thickness]
if num_col == 1:
peaks_right = peaks[peaks > mid_point]
peaks_left = peaks[peaks < mid_point]
if num_col == 2:
peaks_right = peaks[peaks > (mid_point + one_third_right)]
peaks_left = peaks[peaks < (mid_point - one_third_left)]
try:
point_right=np.min(peaks_right)
point_right = np.min(peaks_right)
except:
point_right=last_nonzero
point_right = last_nonzero
try:
point_left=np.max(peaks_left)
point_left = np.max(peaks_left)
except:
point_left=first_nonzero
point_left = first_nonzero
if point_right>=mask_marginals.shape[1]:
point_right=mask_marginals.shape[1]-1
if point_right >= mask_marginals.shape[1]:
point_right = mask_marginals.shape[1] - 1
try:
mask_marginals[:,point_left:point_right]=1
mask_marginals[:, point_left:point_right] = 1
except:
mask_marginals[:,:]=1
mask_marginals[:, :] = 1
mask_marginals_rotated=rotate_image(mask_marginals,-slope_deskew)
mask_marginals_rotated = rotate_image(mask_marginals, -slope_deskew)
mask_marginals_rotated_sum=mask_marginals_rotated.sum(axis=0)
mask_marginals_rotated_sum = mask_marginals_rotated.sum(axis=0)
mask_marginals_rotated_sum[mask_marginals_rotated_sum!=0]=1
index_x=np.array(range(len(mask_marginals_rotated_sum)))+1
mask_marginals_rotated_sum[mask_marginals_rotated_sum != 0] = 1
index_x = np.array(range(len(mask_marginals_rotated_sum))) + 1
index_x_interest=index_x[mask_marginals_rotated_sum==1]
index_x_interest = index_x[mask_marginals_rotated_sum == 1]
min_point_of_left_marginal=np.min(index_x_interest)-16
max_point_of_right_marginal=np.max(index_x_interest)+16
min_point_of_left_marginal = np.min(index_x_interest) - 16
max_point_of_right_marginal = np.max(index_x_interest) + 16
if min_point_of_left_marginal<0:
min_point_of_left_marginal=0
if max_point_of_right_marginal>=text_regions.shape[1]:
max_point_of_right_marginal=text_regions.shape[1]-1
if min_point_of_left_marginal < 0:
min_point_of_left_marginal = 0
if max_point_of_right_marginal >= text_regions.shape[1]:
max_point_of_right_marginal = text_regions.shape[1] - 1
if light_version:
text_regions_org = np.copy(text_regions)
text_regions[text_regions[:,:]==1]=4
pixel_img=4
min_area_text=0.00001
polygon_mask_marginals_rotated = return_contours_of_interested_region(mask_marginals,1,min_area_text)
text_regions[text_regions[:, :] == 1] = 4
pixel_img = 4
min_area_text = 0.00001
polygon_mask_marginals_rotated = return_contours_of_interested_region(mask_marginals, 1, min_area_text)
polygon_mask_marginals_rotated = polygon_mask_marginals_rotated[0]
polygons_of_marginals=return_contours_of_interested_region(text_regions,pixel_img,min_area_text)
polygons_of_marginals = return_contours_of_interested_region(text_regions, pixel_img, min_area_text)
cx_text_only,cy_text_only ,x_min_text_only,x_max_text_only, y_min_text_only ,y_max_text_only,y_cor_x_min_main=find_new_features_of_contours(polygons_of_marginals)
cx_text_only, cy_text_only, x_min_text_only, x_max_text_only, y_min_text_only, y_max_text_only, y_cor_x_min_main = find_new_features_of_contours(
polygons_of_marginals)
text_regions[(text_regions[:,:]==4)]=1
text_regions[(text_regions[:, :] == 4)] = 1
marginlas_should_be_main_text=[]
marginlas_should_be_main_text = []
x_min_marginals_left=[]
x_min_marginals_right=[]
x_min_marginals_left = []
x_min_marginals_right = []
for i in range(len(cx_text_only)):
results = cv2.pointPolygonTest(polygon_mask_marginals_rotated, (cx_text_only[i], cy_text_only[i]), False)
results = cv2.pointPolygonTest(polygon_mask_marginals_rotated, (cx_text_only[i], cy_text_only[i]),
False)
if results == -1:
marginlas_should_be_main_text.append(polygons_of_marginals[i])
text_regions_org=cv2.fillPoly(text_regions_org, pts =marginlas_should_be_main_text, color=(4,4))
text_regions_org = cv2.fillPoly(text_regions_org, pts=marginlas_should_be_main_text, color=(4, 4))
text_regions = np.copy(text_regions_org)
else:
text_regions[(mask_marginals_rotated[:,:]!=1) & (text_regions[:,:]==1)]=4
pixel_img=4
min_area_text=0.00001
text_regions[(mask_marginals_rotated[:, :] != 1) & (text_regions[:, :] == 1)] = 4
polygons_of_marginals=return_contours_of_interested_region(text_regions,pixel_img,min_area_text)
pixel_img = 4
min_area_text = 0.00001
cx_text_only,cy_text_only ,x_min_text_only,x_max_text_only, y_min_text_only ,y_max_text_only,y_cor_x_min_main=find_new_features_of_contours(polygons_of_marginals)
polygons_of_marginals = return_contours_of_interested_region(text_regions, pixel_img, min_area_text)
text_regions[(text_regions[:,:]==4)]=1
cx_text_only, cy_text_only, x_min_text_only, x_max_text_only, y_min_text_only, y_max_text_only, y_cor_x_min_main = find_new_features_of_contours(
polygons_of_marginals)
marginlas_should_be_main_text=[]
text_regions[(text_regions[:, :] == 4)] = 1
x_min_marginals_left=[]
x_min_marginals_right=[]
marginlas_should_be_main_text = []
x_min_marginals_left = []
x_min_marginals_right = []
for i in range(len(cx_text_only)):
x_width_mar=abs(x_min_text_only[i]-x_max_text_only[i])
y_height_mar=abs(y_min_text_only[i]-y_max_text_only[i])
x_width_mar = abs(x_min_text_only[i] - x_max_text_only[i])
y_height_mar = abs(y_min_text_only[i] - y_max_text_only[i])
if x_width_mar>16 and y_height_mar/x_width_mar<18:
if x_width_mar > 16 and y_height_mar / x_width_mar < 18:
marginlas_should_be_main_text.append(polygons_of_marginals[i])
if x_min_text_only[i]<(mid_point-one_third_left):
x_min_marginals_left_new=x_min_text_only[i]
if len(x_min_marginals_left)==0:
if x_min_text_only[i] < (mid_point - one_third_left):
x_min_marginals_left_new = x_min_text_only[i]
if len(x_min_marginals_left) == 0:
x_min_marginals_left.append(x_min_marginals_left_new)
else:
x_min_marginals_left[0]=min(x_min_marginals_left[0],x_min_marginals_left_new)
x_min_marginals_left[0] = min(x_min_marginals_left[0], x_min_marginals_left_new)
else:
x_min_marginals_right_new=x_min_text_only[i]
if len(x_min_marginals_right)==0:
x_min_marginals_right_new = x_min_text_only[i]
if len(x_min_marginals_right) == 0:
x_min_marginals_right.append(x_min_marginals_right_new)
else:
x_min_marginals_right[0]=min(x_min_marginals_right[0],x_min_marginals_right_new)
if len(x_min_marginals_left)==0:
x_min_marginals_left=[0]
if len(x_min_marginals_right)==0:
x_min_marginals_right=[text_regions.shape[1]-1]
x_min_marginals_right[0] = min(x_min_marginals_right[0], x_min_marginals_right_new)
text_regions=cv2.fillPoly(text_regions, pts =marginlas_should_be_main_text, color=(4,4))
if len(x_min_marginals_left) == 0:
x_min_marginals_left = [0]
if len(x_min_marginals_right) == 0:
x_min_marginals_right = [text_regions.shape[1] - 1]
text_regions = cv2.fillPoly(text_regions, pts=marginlas_should_be_main_text, color=(4, 4))
#text_regions[:,:int(x_min_marginals_left[0])][text_regions[:,:int(x_min_marginals_left[0])]==1]=0
#text_regions[:,int(x_min_marginals_right[0]):][text_regions[:,int(x_min_marginals_right[0]):]==1]=0
text_regions[:,:int(min_point_of_left_marginal)][text_regions[:,:int(min_point_of_left_marginal)]==1]=0
text_regions[:,int(max_point_of_right_marginal):][text_regions[:,int(max_point_of_right_marginal):]==1]=0
text_regions[:, :int(min_point_of_left_marginal)][
text_regions[:, :int(min_point_of_left_marginal)] == 1] = 0
text_regions[:, int(max_point_of_right_marginal):][
text_regions[:, int(max_point_of_right_marginal):] == 1] = 0
###text_regions[:,0:point_left][text_regions[:,0:point_left]==1]=4
@ -216,7 +206,6 @@ def get_marginals(text_with_lines, text_regions, num_col, slope_deskew, light_ve
#plt.plot(peaks,region_sum_0[peaks],'*')
#plt.show()
#plt.imshow(text_regions)
#plt.show()

@ -3,6 +3,7 @@ import numpy as np
from ocrd_models import OcrdExif
from cv2 import COLOR_GRAY2BGR, COLOR_RGB2BGR, COLOR_BGR2RGB, cvtColor, imread
# from sbb_binarization
@ -12,7 +13,7 @@ def cv2pil(img):
def pil2cv(img):
# from ocrd/workspace.py
color_conversion = COLOR_GRAY2BGR if img.mode in ('1', 'L') else COLOR_RGB2BGR
color_conversion = COLOR_GRAY2BGR if img.mode in ('1', 'L') else COLOR_RGB2BGR
pil_as_np_array = np.array(img).astype('uint8') if img.mode == '1' else np.array(img)
return cvtColor(pil_as_np_array, color_conversion)

@ -49,7 +49,7 @@ def rotate_image(img_patch, slope):
return cv2.warpAffine(img_patch, M, (w, h), flags=cv2.INTER_CUBIC, borderMode=cv2.BORDER_REPLICATE)
def rotate_image_different( img, slope):
def rotate_image_different(img, slope):
# img = cv2.imread('images/input.jpg')
num_rows, num_cols = img.shape[:2]
@ -65,7 +65,8 @@ def rotate_max_area(image, rotated, rotated_textline, rotated_layout, rotated_ta
y2 = y1 + int(hr)
x1 = w // 2 - int(wr / 2)
x2 = x1 + int(wr)
return rotated[y1:y2, x1:x2], rotated_textline[y1:y2, x1:x2], rotated_layout[y1:y2, x1:x2], rotated_table_prediction[y1:y2, x1:x2]
return rotated[y1:y2, x1:x2], rotated_textline[y1:y2, x1:x2], rotated_layout[y1:y2,
x1:x2], rotated_table_prediction[y1:y2, x1:x2]
def rotation_not_90_func(img, textline, text_regions_p_1, table_prediction, thetha):
@ -91,5 +92,5 @@ def rotate_max_area_full_layout(image, rotated, rotated_textline, rotated_layout
y2 = y1 + int(hr)
x1 = w // 2 - int(wr / 2)
x2 = x1 + int(wr)
return rotated[y1:y2, x1:x2], rotated_textline[y1:y2, x1:x2], rotated_layout[y1:y2, x1:x2], rotated_layout_full[y1:y2, x1:x2]
return rotated[y1:y2, x1:x2], rotated_textline[y1:y2, x1:x2], rotated_layout[y1:y2, x1:x2], rotated_layout_full[
y1:y2, x1:x2]

@ -47,7 +47,7 @@ def dedup_separate_lines(img_patch, contour_text_interest, thetha, axis):
y = textline_patch_sum_along_width[:] # [first_nonzero:last_nonzero]
y_padded = np.zeros(len(y) + 40)
y_padded[20 : len(y) + 20] = y
y_padded[20: len(y) + 20] = y
x = np.array(range(len(y)))
peaks_real, _ = find_peaks(gaussian_filter1d(y, 3), height=0)
@ -56,14 +56,15 @@ def dedup_separate_lines(img_patch, contour_text_interest, thetha, axis):
y_padded_smoothed_e = gaussian_filter1d(y_padded, 2)
y_padded_up_to_down_e = -y_padded + np.max(y_padded)
y_padded_up_to_down_padded_e = np.zeros(len(y_padded_up_to_down_e) + 40)
y_padded_up_to_down_padded_e[20 : len(y_padded_up_to_down_e) + 20] = y_padded_up_to_down_e
y_padded_up_to_down_padded_e[20: len(y_padded_up_to_down_e) + 20] = y_padded_up_to_down_e
y_padded_up_to_down_padded_e = gaussian_filter1d(y_padded_up_to_down_padded_e, 2)
peaks_e, _ = find_peaks(y_padded_smoothed_e, height=0)
peaks_neg_e, _ = find_peaks(y_padded_up_to_down_padded_e, height=0)
neg_peaks_max = np.max(y_padded_up_to_down_padded_e[peaks_neg_e])
arg_neg_must_be_deleted = np.arange(len(peaks_neg_e))[y_padded_up_to_down_padded_e[peaks_neg_e] / float(neg_peaks_max) < 0.3]
arg_neg_must_be_deleted = np.arange(len(peaks_neg_e))[
y_padded_up_to_down_padded_e[peaks_neg_e] / float(neg_peaks_max) < 0.3]
diff_arg_neg_must_be_deleted = np.diff(arg_neg_must_be_deleted)
arg_diff = np.array(range(len(diff_arg_neg_must_be_deleted)))
@ -74,11 +75,11 @@ def dedup_separate_lines(img_patch, contour_text_interest, thetha, axis):
clusters_to_be_deleted = []
if len(arg_diff_cluster) > 0:
clusters_to_be_deleted.append(arg_neg_must_be_deleted[0 : arg_diff_cluster[0] + 1])
clusters_to_be_deleted.append(arg_neg_must_be_deleted[0: arg_diff_cluster[0] + 1])
for i in range(len(arg_diff_cluster) - 1):
clusters_to_be_deleted.append(arg_neg_must_be_deleted[arg_diff_cluster[i] + 1 :
clusters_to_be_deleted.append(arg_neg_must_be_deleted[arg_diff_cluster[i] + 1:
arg_diff_cluster[i + 1] + 1])
clusters_to_be_deleted.append(arg_neg_must_be_deleted[arg_diff_cluster[len(arg_diff_cluster) - 1] + 1 :])
clusters_to_be_deleted.append(arg_neg_must_be_deleted[arg_diff_cluster[len(arg_diff_cluster) - 1] + 1:])
if len(clusters_to_be_deleted) > 0:
peaks_new_extra = []
for m in range(len(clusters_to_be_deleted)):
@ -115,7 +116,7 @@ def dedup_separate_lines(img_patch, contour_text_interest, thetha, axis):
y_padded_smoothed = gaussian_filter1d(y_padded, sigma_gaus)
y_padded_up_to_down = -y_padded + np.max(y_padded)
y_padded_up_to_down_padded = np.zeros(len(y_padded_up_to_down) + 40)
y_padded_up_to_down_padded[20 : len(y_padded_up_to_down) + 20] = y_padded_up_to_down
y_padded_up_to_down_padded[20: len(y_padded_up_to_down) + 20] = y_padded_up_to_down
y_padded_up_to_down_padded = gaussian_filter1d(y_padded_up_to_down_padded, sigma_gaus)
peaks, _ = find_peaks(y_padded_smoothed, height=0)
@ -139,7 +140,7 @@ def separate_lines(img_patch, contour_text_interest, thetha, x_help, y_help):
M = cv2.getRotationMatrix2D(center, -thetha, 1.0)
x_d = M[0, 2]
y_d = M[1, 2]
thetha = thetha / 180. * np.pi
rotation_matrix = np.array([[np.cos(thetha), -np.sin(thetha)], [np.sin(thetha), np.cos(thetha)]])
contour_text_interest_copy = contour_text_interest.copy()
@ -164,147 +165,148 @@ def separate_lines(img_patch, contour_text_interest, thetha, x_help, y_help):
x = np.array(range(len(y)))
peaks_real, _ = find_peaks(gaussian_filter1d(y, 3), height=0)
if 1>0:
if 1 > 0:
try:
y_padded_smoothed_e= gaussian_filter1d(y_padded, 2)
y_padded_up_to_down_e=-y_padded+np.max(y_padded)
y_padded_up_to_down_padded_e=np.zeros(len(y_padded_up_to_down_e)+40)
y_padded_up_to_down_padded_e[20:len(y_padded_up_to_down_e)+20]=y_padded_up_to_down_e
y_padded_up_to_down_padded_e= gaussian_filter1d(y_padded_up_to_down_padded_e, 2)
y_padded_smoothed_e = gaussian_filter1d(y_padded, 2)
y_padded_up_to_down_e = -y_padded + np.max(y_padded)
y_padded_up_to_down_padded_e = np.zeros(len(y_padded_up_to_down_e) + 40)
y_padded_up_to_down_padded_e[20:len(y_padded_up_to_down_e) + 20] = y_padded_up_to_down_e
y_padded_up_to_down_padded_e = gaussian_filter1d(y_padded_up_to_down_padded_e, 2)
peaks_e, _ = find_peaks(y_padded_smoothed_e, height=0)
peaks_neg_e, _ = find_peaks(y_padded_up_to_down_padded_e, height=0)
neg_peaks_max=np.max(y_padded_up_to_down_padded_e[peaks_neg_e])
arg_neg_must_be_deleted= np.arange(len(peaks_neg_e))[y_padded_up_to_down_padded_e[peaks_neg_e]/float(neg_peaks_max)<0.3]
diff_arg_neg_must_be_deleted=np.diff(arg_neg_must_be_deleted)
arg_diff=np.array(range(len(diff_arg_neg_must_be_deleted)))
arg_diff_cluster=arg_diff[diff_arg_neg_must_be_deleted>1]
peaks_new=peaks_e[:]
peaks_neg_new=peaks_neg_e[:]
clusters_to_be_deleted=[]
if len(arg_diff_cluster)>0:
clusters_to_be_deleted.append(arg_neg_must_be_deleted[0:arg_diff_cluster[0]+1])
for i in range(len(arg_diff_cluster)-1):
clusters_to_be_deleted.append(arg_neg_must_be_deleted[arg_diff_cluster[i]+1:
arg_diff_cluster[i+1]+1])
clusters_to_be_deleted.append(arg_neg_must_be_deleted[arg_diff_cluster[len(arg_diff_cluster)-1]+1:])
if len(clusters_to_be_deleted)>0:
peaks_new_extra=[]
neg_peaks_max = np.max(y_padded_up_to_down_padded_e[peaks_neg_e])
arg_neg_must_be_deleted = np.arange(len(peaks_neg_e))[
y_padded_up_to_down_padded_e[peaks_neg_e] / float(neg_peaks_max) < 0.3]
diff_arg_neg_must_be_deleted = np.diff(arg_neg_must_be_deleted)
arg_diff = np.array(range(len(diff_arg_neg_must_be_deleted)))
arg_diff_cluster = arg_diff[diff_arg_neg_must_be_deleted > 1]
peaks_new = peaks_e[:]
peaks_neg_new = peaks_neg_e[:]
clusters_to_be_deleted = []
if len(arg_diff_cluster) > 0:
clusters_to_be_deleted.append(arg_neg_must_be_deleted[0:arg_diff_cluster[0] + 1])
for i in range(len(arg_diff_cluster) - 1):
clusters_to_be_deleted.append(arg_neg_must_be_deleted[arg_diff_cluster[i] + 1:
arg_diff_cluster[i + 1] + 1])
clusters_to_be_deleted.append(arg_neg_must_be_deleted[arg_diff_cluster[len(arg_diff_cluster) - 1] + 1:])
if len(clusters_to_be_deleted) > 0:
peaks_new_extra = []
for m in range(len(clusters_to_be_deleted)):
min_cluster=np.min(peaks_e[clusters_to_be_deleted[m]])
max_cluster=np.max(peaks_e[clusters_to_be_deleted[m]])
peaks_new_extra.append( int( (min_cluster+max_cluster)/2.0) )
min_cluster = np.min(peaks_e[clusters_to_be_deleted[m]])
max_cluster = np.max(peaks_e[clusters_to_be_deleted[m]])
peaks_new_extra.append(int((min_cluster + max_cluster) / 2.0))
for m1 in range(len(clusters_to_be_deleted[m])):
peaks_new=peaks_new[peaks_new!=peaks_e[clusters_to_be_deleted[m][m1]-1]]
peaks_new=peaks_new[peaks_new!=peaks_e[clusters_to_be_deleted[m][m1]]]
peaks_neg_new=peaks_neg_new[peaks_neg_new!=peaks_neg_e[clusters_to_be_deleted[m][m1]]]
peaks_new_tot=[]
peaks_new = peaks_new[peaks_new != peaks_e[clusters_to_be_deleted[m][m1] - 1]]
peaks_new = peaks_new[peaks_new != peaks_e[clusters_to_be_deleted[m][m1]]]
peaks_neg_new = peaks_neg_new[peaks_neg_new != peaks_neg_e[clusters_to_be_deleted[m][m1]]]
peaks_new_tot = []
for i1 in peaks_new:
peaks_new_tot.append(i1)
for i1 in peaks_new_extra:
peaks_new_tot.append(i1)
peaks_new_tot=np.sort(peaks_new_tot)
peaks_new_tot = np.sort(peaks_new_tot)
else:
peaks_new_tot=peaks_e[:]
textline_con,hierarchy=return_contours_of_image(img_patch)
textline_con_fil=filter_contours_area_of_image(img_patch,
textline_con, hierarchy,
max_area=1, min_area=0.0008)
y_diff_mean=np.mean(np.diff(peaks_new_tot))#self.find_contours_mean_y_diff(textline_con_fil)
sigma_gaus=int( y_diff_mean * (7./40.0) )
peaks_new_tot = peaks_e[:]
textline_con, hierarchy = return_contours_of_image(img_patch)
textline_con_fil = filter_contours_area_of_image(img_patch,
textline_con, hierarchy,
max_area=1, min_area=0.0008)
y_diff_mean = np.mean(np.diff(peaks_new_tot)) #self.find_contours_mean_y_diff(textline_con_fil)
sigma_gaus = int(y_diff_mean * (7. / 40.0))
#print(sigma_gaus,'sigma_gaus')
except:
sigma_gaus=12
if sigma_gaus<3:
sigma_gaus=3
sigma_gaus = 12
if sigma_gaus < 3:
sigma_gaus = 3
#print(sigma_gaus,'sigma')
y_padded_smoothed= gaussian_filter1d(y_padded, sigma_gaus)
y_padded_up_to_down=-y_padded+np.max(y_padded)
y_padded_up_to_down_padded=np.zeros(len(y_padded_up_to_down)+40)
y_padded_up_to_down_padded[20:len(y_padded_up_to_down)+20]=y_padded_up_to_down
y_padded_up_to_down_padded= gaussian_filter1d(y_padded_up_to_down_padded, sigma_gaus)
y_padded_smoothed = gaussian_filter1d(y_padded, sigma_gaus)
y_padded_up_to_down = -y_padded + np.max(y_padded)
y_padded_up_to_down_padded = np.zeros(len(y_padded_up_to_down) + 40)
y_padded_up_to_down_padded[20:len(y_padded_up_to_down) + 20] = y_padded_up_to_down
y_padded_up_to_down_padded = gaussian_filter1d(y_padded_up_to_down_padded, sigma_gaus)
peaks, _ = find_peaks(y_padded_smoothed, height=0)
peaks_neg, _ = find_peaks(y_padded_up_to_down_padded, height=0)
try:
neg_peaks_max=np.max(y_padded_smoothed[peaks])
arg_neg_must_be_deleted= np.arange(len(peaks_neg))[y_padded_up_to_down_padded[peaks_neg]/float(neg_peaks_max)<0.42]
diff_arg_neg_must_be_deleted=np.diff(arg_neg_must_be_deleted)
arg_diff=np.array(range(len(diff_arg_neg_must_be_deleted)))
arg_diff_cluster=arg_diff[diff_arg_neg_must_be_deleted>1]
neg_peaks_max = np.max(y_padded_smoothed[peaks])
arg_neg_must_be_deleted = np.arange(len(peaks_neg))[
y_padded_up_to_down_padded[peaks_neg] / float(neg_peaks_max) < 0.42]
diff_arg_neg_must_be_deleted = np.diff(arg_neg_must_be_deleted)
arg_diff = np.array(range(len(diff_arg_neg_must_be_deleted)))
arg_diff_cluster = arg_diff[diff_arg_neg_must_be_deleted > 1]
except:
arg_neg_must_be_deleted=[]
arg_diff_cluster=[]
arg_neg_must_be_deleted = []
arg_diff_cluster = []
try:
peaks_new=peaks[:]
peaks_neg_new=peaks_neg[:]
clusters_to_be_deleted=[]
if len(arg_diff_cluster)>=2 and len(arg_diff_cluster)>0:
clusters_to_be_deleted.append(arg_neg_must_be_deleted[0:arg_diff_cluster[0]+1])
for i in range(len(arg_diff_cluster)-1):
clusters_to_be_deleted.append(arg_neg_must_be_deleted[arg_diff_cluster[i]+1:
arg_diff_cluster[i+1]+1])
clusters_to_be_deleted.append(arg_neg_must_be_deleted[arg_diff_cluster[len(arg_diff_cluster)-1]+1:])
elif len(arg_neg_must_be_deleted)>=2 and len(arg_diff_cluster)==0:
peaks_new = peaks[:]
peaks_neg_new = peaks_neg[:]
clusters_to_be_deleted = []
if len(arg_diff_cluster) >= 2 and len(arg_diff_cluster) > 0:
clusters_to_be_deleted.append(arg_neg_must_be_deleted[0:arg_diff_cluster[0] + 1])
for i in range(len(arg_diff_cluster) - 1):
clusters_to_be_deleted.append(arg_neg_must_be_deleted[arg_diff_cluster[i] + 1:
arg_diff_cluster[i + 1] + 1])
clusters_to_be_deleted.append(arg_neg_must_be_deleted[arg_diff_cluster[len(arg_diff_cluster) - 1] + 1:])
elif len(arg_neg_must_be_deleted) >= 2 and len(arg_diff_cluster) == 0:
clusters_to_be_deleted.append(arg_neg_must_be_deleted[:])
if len(arg_neg_must_be_deleted)==1:
if len(arg_neg_must_be_deleted) == 1:
clusters_to_be_deleted.append(arg_neg_must_be_deleted)
if len(clusters_to_be_deleted)>0:
peaks_new_extra=[]
if len(clusters_to_be_deleted) > 0:
peaks_new_extra = []
for m in range(len(clusters_to_be_deleted)):
min_cluster=np.min(peaks[clusters_to_be_deleted[m]])
max_cluster=np.max(peaks[clusters_to_be_deleted[m]])
peaks_new_extra.append( int( (min_cluster+max_cluster)/2.0) )
min_cluster = np.min(peaks[clusters_to_be_deleted[m]])
max_cluster = np.max(peaks[clusters_to_be_deleted[m]])
peaks_new_extra.append(int((min_cluster + max_cluster) / 2.0))
for m1 in range(len(clusters_to_be_deleted[m])):
peaks_new=peaks_new[peaks_new!=peaks[clusters_to_be_deleted[m][m1]-1]]
peaks_new=peaks_new[peaks_new!=peaks[clusters_to_be_deleted[m][m1]]]
peaks_neg_new=peaks_neg_new[peaks_neg_new!=peaks_neg[clusters_to_be_deleted[m][m1]]]
peaks_new_tot=[]
peaks_new = peaks_new[peaks_new != peaks[clusters_to_be_deleted[m][m1] - 1]]
peaks_new = peaks_new[peaks_new != peaks[clusters_to_be_deleted[m][m1]]]
peaks_neg_new = peaks_neg_new[peaks_neg_new != peaks_neg[clusters_to_be_deleted[m][m1]]]
peaks_new_tot = []
for i1 in peaks_new:
peaks_new_tot.append(i1)
for i1 in peaks_new_extra:
peaks_new_tot.append(i1)
peaks_new_tot=np.sort(peaks_new_tot)
peaks_new_tot = np.sort(peaks_new_tot)
##plt.plot(y_padded_up_to_down_padded)
##plt.plot(peaks_neg,y_padded_up_to_down_padded[peaks_neg],'*')
##plt.show()
##plt.plot(y_padded_up_to_down_padded)
##plt.plot(peaks_neg_new,y_padded_up_to_down_padded[peaks_neg_new],'*')
##plt.show()
##plt.plot(y_padded_smoothed)
##plt.plot(peaks,y_padded_smoothed[peaks],'*')
##plt.show()
##plt.plot(y_padded_smoothed)
##plt.plot(peaks_new_tot,y_padded_smoothed[peaks_new_tot],'*')
##plt.show()
peaks=peaks_new_tot[:]
peaks_neg=peaks_neg_new[:]
peaks = peaks_new_tot[:]
peaks_neg = peaks_neg_new[:]
else:
peaks_new_tot=peaks[:]
peaks=peaks_new_tot[:]
peaks_neg=peaks_neg_new[:]
peaks_new_tot = peaks[:]
peaks = peaks_new_tot[:]
peaks_neg = peaks_neg_new[:]
except:
pass
mean_value_of_peaks=np.mean(y_padded_smoothed[peaks])
std_value_of_peaks=np.std(y_padded_smoothed[peaks])
peaks_values=y_padded_smoothed[peaks]
mean_value_of_peaks = np.mean(y_padded_smoothed[peaks])
std_value_of_peaks = np.std(y_padded_smoothed[peaks])
peaks_values = y_padded_smoothed[peaks]
peaks_neg = peaks_neg - 20 - 20
peaks = peaks - 20
for jj in range(len(peaks_neg)):
@ -316,44 +318,46 @@ def separate_lines(img_patch, contour_text_interest, thetha, x_help, y_help):
textline_boxes = []
textline_boxes_rot = []
if len(peaks_neg) == len(peaks) + 1 and len(peaks) >= 3:
for jj in range(len(peaks)):
if jj==(len(peaks)-1):
if jj == (len(peaks) - 1):
dis_to_next_up = abs(peaks[jj] - peaks_neg[jj])
dis_to_next_down = abs(peaks[jj] - peaks_neg[jj + 1])
if peaks_values[jj]>mean_value_of_peaks-std_value_of_peaks/2.:
if peaks_values[jj] > mean_value_of_peaks - std_value_of_peaks / 2.:
point_up = peaks[jj] + first_nonzero - int(1.3 * dis_to_next_up) ##+int(dis_to_next_up*1./4.0)
point_down =y_max_cont-1##peaks[jj] + first_nonzero + int(1.3 * dis_to_next_down) #point_up# np.max(y_cont)#peaks[jj] + first_nonzero + int(1.4 * dis_to_next_down) ###-int(dis_to_next_down*1./4.0)
point_down = y_max_cont - 1 ##peaks[jj] + first_nonzero + int(1.3 * dis_to_next_down) #point_up# np.max(y_cont)#peaks[jj] + first_nonzero + int(1.4 * dis_to_next_down) ###-int(dis_to_next_down*1./4.0)
else:
point_up = peaks[jj] + first_nonzero - int(1.4 * dis_to_next_up) ##+int(dis_to_next_up*1./4.0)
point_down =y_max_cont-1##peaks[jj] + first_nonzero + int(1.6 * dis_to_next_down) #point_up# np.max(y_cont)#peaks[jj] + first_nonzero + int(1.4 * dis_to_next_down) ###-int(dis_to_next_down*1./4.0)
point_down = y_max_cont - 1 ##peaks[jj] + first_nonzero + int(1.6 * dis_to_next_down) #point_up# np.max(y_cont)#peaks[jj] + first_nonzero + int(1.4 * dis_to_next_down) ###-int(dis_to_next_down*1./4.0)
point_down_narrow = peaks[jj] + first_nonzero + int(
1.4 * dis_to_next_down) ###-int(dis_to_next_down*1./2)
else:
dis_to_next_up = abs(peaks[jj] - peaks_neg[jj])
dis_to_next_down = abs(peaks[jj] - peaks_neg[jj + 1])
if peaks_values[jj]>mean_value_of_peaks-std_value_of_peaks/2.:
if peaks_values[jj] > mean_value_of_peaks - std_value_of_peaks / 2.:
point_up = peaks[jj] + first_nonzero - int(1.1 * dis_to_next_up) ##+int(dis_to_next_up*1./4.0)
point_down = peaks[jj] + first_nonzero + int(1.1 * dis_to_next_down) ###-int(dis_to_next_down*1./4.0)
point_down = peaks[jj] + first_nonzero + int(
1.1 * dis_to_next_down) ###-int(dis_to_next_down*1./4.0)
else:
point_up = peaks[jj] + first_nonzero - int(1.23 * dis_to_next_up) ##+int(dis_to_next_up*1./4.0)
point_down = peaks[jj] + first_nonzero + int(1.33 * dis_to_next_down) ###-int(dis_to_next_down*1./4.0)
point_down = peaks[jj] + first_nonzero + int(
1.33 * dis_to_next_down) ###-int(dis_to_next_down*1./4.0)
point_down_narrow = peaks[jj] + first_nonzero + int(
1.1 * dis_to_next_down) ###-int(dis_to_next_down*1./2)
if point_down_narrow >= img_patch.shape[0]:
point_down_narrow = img_patch.shape[0] - 2
distances = [cv2.pointPolygonTest(contour_text_interest_copy, tuple(int(x) for x in np.array([xv[mj], peaks[jj] + first_nonzero])), True)
for mj in range(len(xv))]
distances = [cv2.pointPolygonTest(contour_text_interest_copy,
tuple(int(x) for x in np.array([xv[mj], peaks[jj] + first_nonzero])),
True)
for mj in range(len(xv))]
distances = np.array(distances)
xvinside = xv[distances >= 0]
@ -374,25 +378,25 @@ def separate_lines(img_patch, contour_text_interest, thetha, x_help, y_help):
x_max_rot2, point_up_rot2 = p2[0] + x_d, p2[1] + y_d
x_max_rot3, point_down_rot3 = p3[0] + x_d, p3[1] + y_d
x_min_rot4, point_down_rot4 = p4[0] + x_d, p4[1] + y_d
if x_min_rot1<0:
x_min_rot1=0
if x_min_rot4<0:
x_min_rot4=0
if point_up_rot1<0:
point_up_rot1=0
if point_up_rot2<0:
point_up_rot2=0
x_min_rot1=x_min_rot1-x_help
x_max_rot2=x_max_rot2-x_help
x_max_rot3=x_max_rot3-x_help
x_min_rot4=x_min_rot4-x_help
point_up_rot1=point_up_rot1-y_help
point_up_rot2=point_up_rot2-y_help
point_down_rot3=point_down_rot3-y_help
point_down_rot4=point_down_rot4-y_help
if x_min_rot1 < 0:
x_min_rot1 = 0
if x_min_rot4 < 0:
x_min_rot4 = 0
if point_up_rot1 < 0:
point_up_rot1 = 0
if point_up_rot2 < 0:
point_up_rot2 = 0
x_min_rot1 = x_min_rot1 - x_help
x_max_rot2 = x_max_rot2 - x_help
x_max_rot3 = x_max_rot3 - x_help
x_min_rot4 = x_min_rot4 - x_help
point_up_rot1 = point_up_rot1 - y_help
point_up_rot2 = point_up_rot2 - y_help
point_down_rot3 = point_down_rot3 - y_help
point_down_rot4 = point_down_rot4 - y_help
textline_boxes_rot.append(np.array([[int(x_min_rot1), int(point_up_rot1)],
[int(x_max_rot2), int(point_up_rot2)],
@ -433,25 +437,25 @@ def separate_lines(img_patch, contour_text_interest, thetha, x_help, y_help):
x_max_rot2, point_up_rot2 = p2[0] + x_d, p2[1] + y_d
x_max_rot3, point_down_rot3 = p3[0] + x_d, p3[1] + y_d
x_min_rot4, point_down_rot4 = p4[0] + x_d, p4[1] + y_d
if x_min_rot1<0:
x_min_rot1=0
if x_min_rot4<0:
x_min_rot4=0
if point_up_rot1<0:
point_up_rot1=0
if point_up_rot2<0:
point_up_rot2=0
x_min_rot1=x_min_rot1-x_help
x_max_rot2=x_max_rot2-x_help
x_max_rot3=x_max_rot3-x_help
x_min_rot4=x_min_rot4-x_help
point_up_rot1=point_up_rot1-y_help
point_up_rot2=point_up_rot2-y_help
point_down_rot3=point_down_rot3-y_help
point_down_rot4=point_down_rot4-y_help
if x_min_rot1 < 0:
x_min_rot1 = 0
if x_min_rot4 < 0:
x_min_rot4 = 0
if point_up_rot1 < 0:
point_up_rot1 = 0
if point_up_rot2 < 0:
point_up_rot2 = 0
x_min_rot1 = x_min_rot1 - x_help
x_max_rot2 = x_max_rot2 - x_help
x_max_rot3 = x_max_rot3 - x_help
x_min_rot4 = x_min_rot4 - x_help
point_up_rot1 = point_up_rot1 - y_help
point_up_rot2 = point_up_rot2 - y_help
point_down_rot3 = point_down_rot3 - y_help
point_down_rot4 = point_down_rot4 - y_help
textline_boxes_rot.append(np.array([[int(x_min_rot1), int(point_up_rot1)],
[int(x_max_rot2), int(point_up_rot2)],
@ -465,21 +469,22 @@ def separate_lines(img_patch, contour_text_interest, thetha, x_help, y_help):
dis_to_next = np.abs(peaks[1] - peaks[0])
for jj in range(len(peaks)):
if jj == 0:
point_up = 0#peaks[jj] + first_nonzero - int(1. / 1.7 * dis_to_next)
point_up = 0 #peaks[jj] + first_nonzero - int(1. / 1.7 * dis_to_next)
if point_up < 0:
point_up = 1
point_down = peaks_neg[1] + first_nonzero# peaks[jj] + first_nonzero + int(1. / 1.8 * dis_to_next)
point_down = peaks_neg[1] + first_nonzero # peaks[jj] + first_nonzero + int(1. / 1.8 * dis_to_next)
elif jj == 1:
point_down =peaks_neg[1] + first_nonzero# peaks[jj] + first_nonzero + int(1. / 1.8 * dis_to_next)
point_down = peaks_neg[1] + first_nonzero # peaks[jj] + first_nonzero + int(1. / 1.8 * dis_to_next)
if point_down >= img_patch.shape[0]:
point_down = img_patch.shape[0] - 2
try:
point_up = peaks_neg[2] + first_nonzero#peaks[jj] + first_nonzero - int(1. / 1.8 * dis_to_next)
point_up = peaks_neg[2] + first_nonzero #peaks[jj] + first_nonzero - int(1. / 1.8 * dis_to_next)
except:
point_up =peaks[jj] + first_nonzero - int(1. / 1.8 * dis_to_next)
point_up = peaks[jj] + first_nonzero - int(1. / 1.8 * dis_to_next)
distances = [cv2.pointPolygonTest(contour_text_interest_copy,
tuple(int(x) for x in np.array([xv[mj], peaks[jj] + first_nonzero])), True)
tuple(int(x) for x in np.array([xv[mj], peaks[jj] + first_nonzero])),
True)
for mj in range(len(xv))]
distances = np.array(distances)
@ -500,25 +505,25 @@ def separate_lines(img_patch, contour_text_interest, thetha, x_help, y_help):
x_max_rot2, point_up_rot2 = p2[0] + x_d, p2[1] + y_d
x_max_rot3, point_down_rot3 = p3[0] + x_d, p3[1] + y_d
x_min_rot4, point_down_rot4 = p4[0] + x_d, p4[1] + y_d
if x_min_rot1<0:
x_min_rot1=0
if x_min_rot4<0:
x_min_rot4=0
if point_up_rot1<0:
point_up_rot1=0
if point_up_rot2<0:
point_up_rot2=0
x_min_rot1=x_min_rot1-x_help
x_max_rot2=x_max_rot2-x_help
x_max_rot3=x_max_rot3-x_help
x_min_rot4=x_min_rot4-x_help
point_up_rot1=point_up_rot1-y_help
point_up_rot2=point_up_rot2-y_help
point_down_rot3=point_down_rot3-y_help
point_down_rot4=point_down_rot4-y_help
if x_min_rot1 < 0:
x_min_rot1 = 0
if x_min_rot4 < 0:
x_min_rot4 = 0
if point_up_rot1 < 0:
point_up_rot1 = 0
if point_up_rot2 < 0:
point_up_rot2 = 0
x_min_rot1 = x_min_rot1 - x_help
x_max_rot2 = x_max_rot2 - x_help
x_max_rot3 = x_max_rot3 - x_help
x_min_rot4 = x_min_rot4 - x_help
point_up_rot1 = point_up_rot1 - y_help
point_up_rot2 = point_up_rot2 - y_help
point_down_rot3 = point_down_rot3 - y_help
point_down_rot4 = point_down_rot4 - y_help
textline_boxes_rot.append(np.array([[int(x_min_rot1), int(point_up_rot1)],
[int(x_max_rot2), int(point_up_rot2)],
@ -552,9 +557,10 @@ def separate_lines(img_patch, contour_text_interest, thetha, x_help, y_help):
point_up = peaks[jj] + first_nonzero - int(1. / 1.9 * dis_to_next_up)
point_down = peaks[jj] + first_nonzero + int(1. / 1.9 * dis_to_next_down)
distances = [cv2.pointPolygonTest(contour_text_interest_copy,
tuple(int(x) for x in np.array([xv[mj], peaks[jj] + first_nonzero])), True)
tuple(int(x) for x in np.array([xv[mj], peaks[jj] + first_nonzero])),
True)
for mj in range(len(xv))]
distances = np.array(distances)
@ -575,25 +581,25 @@ def separate_lines(img_patch, contour_text_interest, thetha, x_help, y_help):
x_max_rot2, point_up_rot2 = p2[0] + x_d, p2[1] + y_d
x_max_rot3, point_down_rot3 = p3[0] + x_d, p3[1] + y_d
x_min_rot4, point_down_rot4 = p4[0] + x_d, p4[1] + y_d
if x_min_rot1<0:
x_min_rot1=0
if x_min_rot4<0:
x_min_rot4=0
if point_up_rot1<0:
point_up_rot1=0
if point_up_rot2<0:
point_up_rot2=0
x_min_rot1=x_min_rot1-x_help
x_max_rot2=x_max_rot2-x_help
x_max_rot3=x_max_rot3-x_help
x_min_rot4=x_min_rot4-x_help
point_up_rot1=point_up_rot1-y_help
point_up_rot2=point_up_rot2-y_help
point_down_rot3=point_down_rot3-y_help
point_down_rot4=point_down_rot4-y_help
if x_min_rot1 < 0:
x_min_rot1 = 0
if x_min_rot4 < 0:
x_min_rot4 = 0
if point_up_rot1 < 0:
point_up_rot1 = 0
if point_up_rot2 < 0:
point_up_rot2 = 0
x_min_rot1 = x_min_rot1 - x_help
x_max_rot2 = x_max_rot2 - x_help
x_max_rot3 = x_max_rot3 - x_help
x_min_rot4 = x_min_rot4 - x_help
point_up_rot1 = point_up_rot1 - y_help
point_up_rot2 = point_up_rot2 - y_help
point_down_rot3 = point_down_rot3 - y_help
point_down_rot4 = point_down_rot4 - y_help
textline_boxes_rot.append(np.array([[int(x_min_rot1), int(point_up_rot1)],
[int(x_max_rot2), int(point_up_rot2)],
@ -626,7 +632,8 @@ def separate_lines_vertical(img_patch, contour_text_interest, thetha):
neg_peaks_max = np.max(y_padded_up_to_down_padded[peaks_neg])
arg_neg_must_be_deleted = np.arange(len(peaks_neg))[y_padded_up_to_down_padded[peaks_neg] / float(neg_peaks_max) < 0.42]
arg_neg_must_be_deleted = np.arange(len(peaks_neg))[
y_padded_up_to_down_padded[peaks_neg] / float(neg_peaks_max) < 0.42]
diff_arg_neg_must_be_deleted = np.diff(arg_neg_must_be_deleted)
arg_diff = np.array(range(len(diff_arg_neg_must_be_deleted)))
@ -637,11 +644,11 @@ def separate_lines_vertical(img_patch, contour_text_interest, thetha):
clusters_to_be_deleted = []
if len(arg_diff_cluster) >= 2 and len(arg_diff_cluster) > 0:
clusters_to_be_deleted.append(arg_neg_must_be_deleted[0 : arg_diff_cluster[0] + 1])
clusters_to_be_deleted.append(arg_neg_must_be_deleted[0: arg_diff_cluster[0] + 1])
for i in range(len(arg_diff_cluster) - 1):
clusters_to_be_deleted.append(arg_neg_must_be_deleted[arg_diff_cluster[i] + 1 :
clusters_to_be_deleted.append(arg_neg_must_be_deleted[arg_diff_cluster[i] + 1:
arg_diff_cluster[i + 1] + 1])
clusters_to_be_deleted.append(arg_neg_must_be_deleted[arg_diff_cluster[len(arg_diff_cluster) - 1] + 1 :])
clusters_to_be_deleted.append(arg_neg_must_be_deleted[arg_diff_cluster[len(arg_diff_cluster) - 1] + 1:])
elif len(arg_neg_must_be_deleted) >= 2 and len(arg_diff_cluster) == 0:
clusters_to_be_deleted.append(arg_neg_must_be_deleted[:])
if len(arg_neg_must_be_deleted) == 1:
@ -704,24 +711,30 @@ def separate_lines_vertical(img_patch, contour_text_interest, thetha):
point_up = peaks[jj] + first_nonzero - int(1.4 * dis_to_next_up) ##+int(dis_to_next_up*1./4.0)
point_down = x_max_cont - 1 ##peaks[jj] + first_nonzero + int(1.6 * dis_to_next_down) #point_up# np.max(y_cont)#peaks[jj] + first_nonzero + int(1.4 * dis_to_next_down) ###-int(dis_to_next_down*1./4.0)
point_down_narrow = peaks[jj] + first_nonzero + int(1.4 * dis_to_next_down) ###-int(dis_to_next_down*1./2)
point_down_narrow = peaks[jj] + first_nonzero + int(
1.4 * dis_to_next_down) ###-int(dis_to_next_down*1./2)
else:
dis_to_next_up = abs(peaks[jj] - peaks_neg[jj])
dis_to_next_down = abs(peaks[jj] - peaks_neg[jj + 1])
if peaks_values[jj] > mean_value_of_peaks - std_value_of_peaks / 2.0:
point_up = peaks[jj] + first_nonzero - int(1.1 * dis_to_next_up) ##+int(dis_to_next_up*1./4.0)
point_down = peaks[jj] + first_nonzero + int(1.1 * dis_to_next_down) ###-int(dis_to_next_down*1./4.0)
point_down = peaks[jj] + first_nonzero + int(
1.1 * dis_to_next_down) ###-int(dis_to_next_down*1./4.0)
else:
point_up = peaks[jj] + first_nonzero - int(1.23 * dis_to_next_up) ##+int(dis_to_next_up*1./4.0)
point_down = peaks[jj] + first_nonzero + int(1.33 * dis_to_next_down) ###-int(dis_to_next_down*1./4.0)
point_down = peaks[jj] + first_nonzero + int(
1.33 * dis_to_next_down) ###-int(dis_to_next_down*1./4.0)
point_down_narrow = peaks[jj] + first_nonzero + int(1.1 * dis_to_next_down) ###-int(dis_to_next_down*1./2)
point_down_narrow = peaks[jj] + first_nonzero + int(
1.1 * dis_to_next_down) ###-int(dis_to_next_down*1./2)
if point_down_narrow >= img_patch.shape[0]:
point_down_narrow = img_patch.shape[0] - 2
distances = [cv2.pointPolygonTest(contour_text_interest_copy, tuple(int(x) for x in np.array([xv[mj], peaks[jj] + first_nonzero])), True) for mj in range(len(xv))]
distances = [cv2.pointPolygonTest(contour_text_interest_copy,
tuple(int(x) for x in np.array([xv[mj], peaks[jj] + first_nonzero])),
True) for mj in range(len(xv))]
distances = np.array(distances)
xvinside = xv[distances >= 0]
@ -808,9 +821,10 @@ def separate_lines_vertical(img_patch, contour_text_interest, thetha):
if point_down >= img_patch.shape[0]:
point_down = img_patch.shape[0] - 2
point_up = peaks[jj] + first_nonzero - int(1.0 / 1.8 * dis_to_next)
distances = [cv2.pointPolygonTest(contour_text_interest_copy,
tuple(int(x) for x in np.array([xv[mj], peaks[jj] + first_nonzero])), True)
tuple(int(x) for x in np.array([xv[mj], peaks[jj] + first_nonzero])),
True)
for mj in range(len(xv))]
distances = np.array(distances)
@ -873,9 +887,10 @@ def separate_lines_vertical(img_patch, contour_text_interest, thetha):
point_up = peaks[jj] + first_nonzero - int(1.0 / 1.9 * dis_to_next_up)
point_down = peaks[jj] + first_nonzero + int(1.0 / 1.9 * dis_to_next_down)
distances = [cv2.pointPolygonTest(contour_text_interest_copy,
tuple(int(x) for x in np.array([xv[mj], peaks[jj] + first_nonzero])), True)
tuple(int(x) for x in np.array([xv[mj], peaks[jj] + first_nonzero])),
True)
for mj in range(len(xv))]
distances = np.array(distances)
@ -944,7 +959,7 @@ def separate_lines_new_inside_tiles2(img_patch, thetha):
y = textline_patch_sum_along_width[:] # [first_nonzero:last_nonzero]
y_padded = np.zeros(len(y) + 40)
y_padded[20 : len(y) + 20] = y
y_padded[20: len(y) + 20] = y
x = np.array(range(len(y)))
peaks_real, _ = find_peaks(gaussian_filter1d(y, 3), height=0)
@ -953,14 +968,15 @@ def separate_lines_new_inside_tiles2(img_patch, thetha):
y_padded_smoothed_e = gaussian_filter1d(y_padded, 2)
y_padded_up_to_down_e = -y_padded + np.max(y_padded)
y_padded_up_to_down_padded_e = np.zeros(len(y_padded_up_to_down_e) + 40)
y_padded_up_to_down_padded_e[20 : len(y_padded_up_to_down_e) + 20] = y_padded_up_to_down_e
y_padded_up_to_down_padded_e[20: len(y_padded_up_to_down_e) + 20] = y_padded_up_to_down_e
y_padded_up_to_down_padded_e = gaussian_filter1d(y_padded_up_to_down_padded_e, 2)
peaks_e, _ = find_peaks(y_padded_smoothed_e, height=0)
peaks_neg_e, _ = find_peaks(y_padded_up_to_down_padded_e, height=0)
neg_peaks_max = np.max(y_padded_up_to_down_padded_e[peaks_neg_e])
arg_neg_must_be_deleted = np.arange(len(peaks_neg_e))[y_padded_up_to_down_padded_e[peaks_neg_e] / float(neg_peaks_max) < 0.3]
arg_neg_must_be_deleted = np.arange(len(peaks_neg_e))[
y_padded_up_to_down_padded_e[peaks_neg_e] / float(neg_peaks_max) < 0.3]
diff_arg_neg_must_be_deleted = np.diff(arg_neg_must_be_deleted)
arg_diff = np.array(range(len(diff_arg_neg_must_be_deleted)))
@ -971,10 +987,11 @@ def separate_lines_new_inside_tiles2(img_patch, thetha):
clusters_to_be_deleted = []
if len(arg_diff_cluster) > 0:
clusters_to_be_deleted.append(arg_neg_must_be_deleted[0 : arg_diff_cluster[0] + 1])
clusters_to_be_deleted.append(arg_neg_must_be_deleted[0: arg_diff_cluster[0] + 1])
for i in range(len(arg_diff_cluster) - 1):
clusters_to_be_deleted.append(arg_neg_must_be_deleted[arg_diff_cluster[i] + 1 : arg_diff_cluster[i + 1] + 1])
clusters_to_be_deleted.append(arg_neg_must_be_deleted[arg_diff_cluster[len(arg_diff_cluster) - 1] + 1 :])
clusters_to_be_deleted.append(
arg_neg_must_be_deleted[arg_diff_cluster[i] + 1: arg_diff_cluster[i + 1] + 1])
clusters_to_be_deleted.append(arg_neg_must_be_deleted[arg_diff_cluster[len(arg_diff_cluster) - 1] + 1:])
if len(clusters_to_be_deleted) > 0:
peaks_new_extra = []
for m in range(len(clusters_to_be_deleted)):
@ -1011,7 +1028,7 @@ def separate_lines_new_inside_tiles2(img_patch, thetha):
y_padded_smoothed = gaussian_filter1d(y_padded, sigma_gaus)
y_padded_up_to_down = -y_padded + np.max(y_padded)
y_padded_up_to_down_padded = np.zeros(len(y_padded_up_to_down) + 40)
y_padded_up_to_down_padded[20 : len(y_padded_up_to_down) + 20] = y_padded_up_to_down
y_padded_up_to_down_padded[20: len(y_padded_up_to_down) + 20] = y_padded_up_to_down
y_padded_up_to_down_padded = gaussian_filter1d(y_padded_up_to_down_padded, sigma_gaus)
peaks, _ = find_peaks(y_padded_smoothed, height=0)
@ -1023,7 +1040,8 @@ def separate_lines_new_inside_tiles2(img_patch, thetha):
try:
neg_peaks_max = np.max(y_padded_smoothed[peaks])
arg_neg_must_be_deleted = np.arange(len(peaks_neg))[y_padded_up_to_down_padded[peaks_neg] / float(neg_peaks_max) < 0.24]
arg_neg_must_be_deleted = np.arange(len(peaks_neg))[
y_padded_up_to_down_padded[peaks_neg] / float(neg_peaks_max) < 0.24]
diff_arg_neg_must_be_deleted = np.diff(arg_neg_must_be_deleted)
arg_diff = np.array(range(len(diff_arg_neg_must_be_deleted)))
@ -1031,11 +1049,11 @@ def separate_lines_new_inside_tiles2(img_patch, thetha):
clusters_to_be_deleted = []
if len(arg_diff_cluster) >= 2 and len(arg_diff_cluster) > 0:
clusters_to_be_deleted.append(arg_neg_must_be_deleted[0 : arg_diff_cluster[0] + 1])
clusters_to_be_deleted.append(arg_neg_must_be_deleted[0: arg_diff_cluster[0] + 1])
for i in range(len(arg_diff_cluster) - 1):
clusters_to_be_deleted.append(arg_neg_must_be_deleted[arg_diff_cluster[i] + 1 :
clusters_to_be_deleted.append(arg_neg_must_be_deleted[arg_diff_cluster[i] + 1:
arg_diff_cluster[i + 1] + 1])
clusters_to_be_deleted.append(arg_neg_must_be_deleted[arg_diff_cluster[len(arg_diff_cluster) - 1] + 1 :])
clusters_to_be_deleted.append(arg_neg_must_be_deleted[arg_diff_cluster[len(arg_diff_cluster) - 1] + 1:])
elif len(arg_neg_must_be_deleted) >= 2 and len(arg_diff_cluster) == 0:
clusters_to_be_deleted.append(arg_neg_must_be_deleted[:])
if len(arg_neg_must_be_deleted) == 1:
@ -1098,7 +1116,7 @@ def separate_lines_new_inside_tiles2(img_patch, thetha):
# print(peaks_neg_true)
for i in range(len(peaks_neg_true)):
img_patch[peaks_neg_true[i] - 6 : peaks_neg_true[i] + 6, :] = 0
img_patch[peaks_neg_true[i] - 6: peaks_neg_true[i] + 6, :] = 0
else:
pass
@ -1108,7 +1126,7 @@ def separate_lines_new_inside_tiles2(img_patch, thetha):
for i in range(len(peaks_pos_true)):
##img_patch[peaks_pos_true[i]-8:peaks_pos_true[i]+8,:]=1
img_patch[peaks_pos_true[i] - 6 : peaks_pos_true[i] + 6, :] = 1
img_patch[peaks_pos_true[i] - 6: peaks_pos_true[i] + 6, :] = 1
else:
pass
kernel = np.ones((5, 5), np.uint8)
@ -1118,6 +1136,7 @@ def separate_lines_new_inside_tiles2(img_patch, thetha):
img_patch = cv2.erode(img_patch, kernel, iterations=1)
return img_patch
def separate_lines_new_inside_tiles(img_path, thetha):
(h, w) = img_path.shape[:2]
center = (w // 2, h // 2)
@ -1144,7 +1163,7 @@ def separate_lines_new_inside_tiles(img_path, thetha):
y = mada_n[:] # [first_nonzero:last_nonzero]
y_help = np.zeros(len(y) + 40)
y_help[20 : len(y) + 20] = y
y_help[20: len(y) + 20] = y
x = np.array(range(len(y)))
peaks_real, _ = find_peaks(gaussian_filter1d(y, 3), height=0)
@ -1156,7 +1175,7 @@ def separate_lines_new_inside_tiles(img_path, thetha):
z = gaussian_filter1d(y_help, sigma_gaus)
zneg_rev = -y_help + np.max(y_help)
zneg = np.zeros(len(zneg_rev) + 40)
zneg[20 : len(zneg_rev) + 20] = zneg_rev
zneg[20: len(zneg_rev) + 20] = zneg_rev
zneg = gaussian_filter1d(zneg, sigma_gaus)
peaks, _ = find_peaks(z, height=0)
@ -1240,7 +1259,7 @@ def separate_lines_new_inside_tiles(img_path, thetha):
# print(peaks_neg_true)
for i in range(len(peaks_neg_true)):
img_path[peaks_neg_true[i] - 6 : peaks_neg_true[i] + 6, :] = 0
img_path[peaks_neg_true[i] - 6: peaks_neg_true[i] + 6, :] = 0
else:
pass
@ -1250,7 +1269,7 @@ def separate_lines_new_inside_tiles(img_path, thetha):
peaks_pos_true = peaks_pos_true - 20
for i in range(len(peaks_pos_true)):
img_path[peaks_pos_true[i] - 8 : peaks_pos_true[i] + 8, :] = 1
img_path[peaks_pos_true[i] - 8: peaks_pos_true[i] + 8, :] = 1
else:
pass
kernel = np.ones((5, 5), np.uint8)
@ -1305,7 +1324,8 @@ def separate_lines_vertical_cont(img_patch, contour_text_interest, thetha, box_i
return None, cont_final
def textline_contours_postprocessing(textline_mask, slope, contour_text_interest, box_ind, add_boxes_coor_into_textlines=False):
def textline_contours_postprocessing(textline_mask, slope, contour_text_interest, box_ind,
add_boxes_coor_into_textlines=False):
textline_mask = np.repeat(textline_mask[:, :, np.newaxis], 3, axis=2) * 255
textline_mask = textline_mask.astype(np.uint8)
kernel = np.ones((5, 5), np.uint8)
@ -1332,8 +1352,8 @@ def textline_contours_postprocessing(textline_mask, slope, contour_text_interest
textline_mask_help = np.zeros((textline_mask.shape[0] + int(2 * y_help),
textline_mask.shape[1] + int(2 * x_help), 3))
textline_mask_help[y_help : y_help + textline_mask.shape[0],
x_help : x_help + textline_mask.shape[1], :] = np.copy(textline_mask[:, :, :])
textline_mask_help[y_help: y_help + textline_mask.shape[0],
x_help: x_help + textline_mask.shape[1], :] = np.copy(textline_mask[:, :, :])
dst = rotate_image(textline_mask_help, slope)
dst = dst[:, :, 0]
@ -1356,8 +1376,8 @@ def textline_contours_postprocessing(textline_mask, slope, contour_text_interest
img_contour_help = np.zeros((img_contour.shape[0] + int(2 * y_help),
img_contour.shape[1] + int(2 * x_help), 3))
img_contour_help[y_help : y_help + img_contour.shape[0],
x_help : x_help + img_contour.shape[1], :] = np.copy(img_contour[:, :, :])
img_contour_help[y_help: y_help + img_contour.shape[0],
x_help: x_help + img_contour.shape[1], :] = np.copy(img_contour[:, :, :])
img_contour_rot = rotate_image(img_contour_help, slope)
# plt.imshow(img_contour_rot_help)
@ -1497,11 +1517,13 @@ def separate_lines_new2(img_path, thetha, num_col, slope_region, logger=None, pl
img_patch_separated_returned[:, :][img_patch_separated_returned[:, :] != 0] = 1
img_patch_separated_returned_true_size = img_patch_separated_returned[
int(img_int.shape[0] * 0.1): int(img_int.shape[0] * 0.1) + img_int.shape[0],
int(img_int.shape[1] * 1.0): int(img_int.shape[1] * 1.0) + img_int.shape[1]]
int(img_int.shape[0] * 0.1): int(img_int.shape[0] * 0.1) +
img_int.shape[0],
int(img_int.shape[1] * 1.0): int(img_int.shape[1] * 1.0) +
img_int.shape[1]]
img_patch_separated_returned_true_size = img_patch_separated_returned_true_size[:, margin : length_x - margin]
img_patch_ineterst_revised[:, index_x_d + margin : index_x_u - margin] = img_patch_separated_returned_true_size
img_patch_separated_returned_true_size = img_patch_separated_returned_true_size[:, margin: length_x - margin]
img_patch_ineterst_revised[:, index_x_d + margin: index_x_u - margin] = img_patch_separated_returned_true_size
# plt.imshow(img_patch_ineterst_revised)
# plt.show()
@ -1512,7 +1534,7 @@ def do_image_rotation(angle, img, sigma_des, logger=None):
if logger is None:
logger = getLogger(__package__)
img_rot = rotate_image(img, angle)
img_rot[img_rot!=0] = 1
img_rot[img_rot != 0] = 1
try:
var = find_num_col_deskew(img_rot, sigma_des, 20.3)
except:
@ -1521,23 +1543,23 @@ def do_image_rotation(angle, img, sigma_des, logger=None):
return var
def return_deskew_slop(img_patch_org, sigma_des,n_tot_angles=100,
def return_deskew_slop(img_patch_org, sigma_des, n_tot_angles=100,
main_page=False, logger=None, plotter=None, map=map):
if main_page and plotter:
plotter.save_plot_of_textline_density(img_patch_org)
img_int=np.zeros((img_patch_org.shape[0],img_patch_org.shape[1]))
img_int[:,:]=img_patch_org[:,:]#img_patch_org[:,:,0]
img_int = np.zeros((img_patch_org.shape[0], img_patch_org.shape[1]))
img_int[:, :] = img_patch_org[:, :] #img_patch_org[:,:,0]
max_shape=np.max(img_int.shape)
img_resized=np.zeros((int(max_shape * 1.1) , int(max_shape * 1.1)))
max_shape = np.max(img_int.shape)
img_resized = np.zeros((int(max_shape * 1.1), int(max_shape * 1.1)))
onset_x=int((img_resized.shape[1]-img_int.shape[1])/2.)
onset_y=int((img_resized.shape[0]-img_int.shape[0])/2.)
onset_x = int((img_resized.shape[1] - img_int.shape[1]) / 2.)
onset_y = int((img_resized.shape[0] - img_int.shape[0]) / 2.)
#img_resized=np.zeros((int( img_int.shape[0]*(1.8) ) , int( img_int.shape[1]*(2.6) ) ))
#img_resized[ int( img_int.shape[0]*(.4)):int( img_int.shape[0]*(.4))+img_int.shape[0] , int( img_int.shape[1]*(.8)):int( img_int.shape[1]*(.8))+img_int.shape[1] ]=img_int[:,:]
img_resized[ onset_y:onset_y+img_int.shape[0] , onset_x:onset_x+img_int.shape[1] ]=img_int[:,:]
img_resized[onset_y:onset_y + img_int.shape[0], onset_x:onset_x + img_int.shape[1]] = img_int[:, :]
#print(img_resized.shape,'img_resizedshape')
#plt.imshow(img_resized)
@ -1545,7 +1567,7 @@ def return_deskew_slop(img_patch_org, sigma_des,n_tot_angles=100,
if main_page and img_patch_org.shape[1] > img_patch_org.shape[0]:
#plt.imshow(img_resized)
#plt.show()
angles = np.array([-45, 0, 45, 90,])
angles = np.array([-45, 0, 45, 90, ])
angle = get_smallest_skew(img_resized, sigma_des, angles, map=map, logger=logger, plotter=plotter)
angles = np.linspace(angle - 22.5, angle + 22.5, n_tot_angles)
@ -1553,10 +1575,10 @@ def return_deskew_slop(img_patch_org, sigma_des,n_tot_angles=100,
elif main_page:
#plt.imshow(img_resized)
#plt.show()
angles = np.linspace(-12, 12, n_tot_angles)#np.array([0 , 45 , 90 , -45])
angles = np.linspace(-12, 12, n_tot_angles) #np.array([0 , 45 , 90 , -45])
angle = get_smallest_skew(img_resized, sigma_des, angles, map=map, logger=logger, plotter=plotter)
early_slope_edge=11
early_slope_edge = 11
if abs(angle) > early_slope_edge:
if angle < 0:
angles = np.linspace(-90, -12, n_tot_angles)
@ -1567,7 +1589,7 @@ def return_deskew_slop(img_patch_org, sigma_des,n_tot_angles=100,
angles = np.linspace(-25, 25, int(0.5 * n_tot_angles) + 10)
angle = get_smallest_skew(img_resized, sigma_des, angles, map=map, logger=logger, plotter=plotter)
early_slope_edge=22
early_slope_edge = 22
if abs(angle) > early_slope_edge:
if angle < 0:
angles = np.linspace(-90, -25, int(0.5 * n_tot_angles) + 10)
@ -1608,13 +1630,13 @@ def do_work_of_slopes_new(
x, y, w, h = box_text
_, crop_coor = crop_image_inside_box(box_text, image_page_rotated)
mask_textline = np.zeros(textline_mask_tot_ea.shape)
mask_textline = cv2.fillPoly(mask_textline, pts=[contour], color=(1,1,1))
mask_textline = cv2.fillPoly(mask_textline, pts=[contour], color=(1, 1, 1))
all_text_region_raw = textline_mask_tot_ea * mask_textline
all_text_region_raw = all_text_region_raw[y: y + h, x: x + w].astype(np.uint8)
img_int_p = all_text_region_raw[:,:]
img_int_p = all_text_region_raw[:, :]
img_int_p = cv2.erode(img_int_p, KERNEL, iterations=2)
if img_int_p.shape[0] /img_int_p.shape[1] < 0.1:
if img_int_p.shape[0] / img_int_p.shape[1] < 0.1:
slope = 0
slope_for_all = slope_deskew
all_text_region_raw = textline_mask_tot_ea[y: y + h, x: x + w]
@ -1715,11 +1737,11 @@ def do_work_of_slopes_new_curved(
x, y, w, h = cv2.boundingRect(contour_par)
mask_biggest = np.zeros(mask_texts_only.shape)
mask_biggest = cv2.fillPoly(mask_biggest, pts=[contour_par], color=(1, 1, 1))
mask_region_in_patch_region = mask_biggest[y : y + h, x : x + w]
mask_region_in_patch_region = mask_biggest[y: y + h, x: x + w]
textline_biggest_region = mask_biggest * textline_mask_tot_ea
# print(slope_for_all,'slope_for_all')
textline_rotated_separated = separate_lines_new2(textline_biggest_region[y: y+h, x: x+w], 0,
textline_rotated_separated = separate_lines_new2(textline_biggest_region[y: y + h, x: x + w], 0,
num_col, slope_for_all,
logger=logger, plotter=plotter)
@ -1728,7 +1750,7 @@ def do_work_of_slopes_new_curved(
textline_rotated_separated[mask_region_in_patch_region[:, :] != 1] = 0
# till here
textline_region_in_image[y : y + h, x : x + w] = textline_rotated_separated
textline_region_in_image[y: y + h, x: x + w] = textline_rotated_separated
# plt.imshow(textline_region_in_image)
# plt.show()
@ -1746,14 +1768,16 @@ def do_work_of_slopes_new_curved(
mask_biggest2 = cv2.dilate(mask_biggest2, KERNEL, iterations=4)
pixel_img = 1
mask_biggest2 = resize_image(mask_biggest2, int(mask_biggest2.shape[0] * scale_par), int(mask_biggest2.shape[1] * scale_par))
mask_biggest2 = resize_image(mask_biggest2, int(mask_biggest2.shape[0] * scale_par),
int(mask_biggest2.shape[1] * scale_par))
cnt_textlines_in_image_ind = return_contours_of_interested_textline(mask_biggest2, pixel_img)
try:
textlines_cnt_per_region.append(cnt_textlines_in_image_ind[0])
except Exception as why:
logger.error(why)
else:
textlines_cnt_per_region = textline_contours_postprocessing(all_text_region_raw, slope_for_all, contour_par, box_text, True)
textlines_cnt_per_region = textline_contours_postprocessing(all_text_region_raw, slope_for_all, contour_par,
box_text, True)
# print(np.shape(textlines_cnt_per_region),'textlines_cnt_per_region')
return textlines_cnt_per_region[::-1], box_text, contour, contour_par, crop_coor, index_r_con, slope
@ -1771,7 +1795,7 @@ def do_work_of_slopes_new_light(
x, y, w, h = box_text
_, crop_coor = crop_image_inside_box(box_text, image_page_rotated)
mask_textline = np.zeros(textline_mask_tot_ea.shape)
mask_textline = cv2.fillPoly(mask_textline, pts=[contour], color=(1,1,1))
mask_textline = cv2.fillPoly(mask_textline, pts=[contour], color=(1, 1, 1))
all_text_region_raw = textline_mask_tot_ea * mask_textline
all_text_region_raw = all_text_region_raw[y: y + h, x: x + w].astype(np.uint8)

@ -8,23 +8,23 @@ from .utils.counter import EynollahIdCounter
from ocrd_utils import getLogger
from ocrd_models.ocrd_page import (
BorderType,
CoordsType,
PcGtsType,
TextLineType,
TextEquivType,
TextRegionType,
ImageRegionType,
TableRegionType,
SeparatorRegionType,
to_xml
)
BorderType,
CoordsType,
PcGtsType,
TextLineType,
TextEquivType,
TextRegionType,
ImageRegionType,
TableRegionType,
SeparatorRegionType,
to_xml
)
import numpy as np
class EynollahXmlWriter:
def __init__(self, *, dir_out, image_filename, curved_line,textline_light, pcgts=None):
def __init__(self, *, dir_out, image_filename, curved_line, textline_light, pcgts=None):
self.logger = getLogger('eynollah.writer')
self.counter = EynollahIdCounter()
self.dir_out = dir_out
@ -33,10 +33,10 @@ class EynollahXmlWriter:
self.curved_line = curved_line
self.textline_light = textline_light
self.pcgts = pcgts
self.scale_x = None # XXX set outside __init__
self.scale_y = None # XXX set outside __init__
self.height_org = None # XXX set outside __init__
self.width_org = None # XXX set outside __init__
self.scale_x = None # XXX set outside __init__
self.scale_y = None # XXX set outside __init__
self.height_org = None # XXX set outside __init__
self.width_org = None # XXX set outside __init__
@property
def image_filename_stem(self):
@ -53,11 +53,12 @@ class EynollahXmlWriter:
else:
points_page_print += str(int((contour[0][0]) / self.scale_x))
points_page_print += ','
points_page_print += str(int((contour[0][1] ) / self.scale_y))
points_page_print += str(int((contour[0][1]) / self.scale_y))
points_page_print = points_page_print + ' '
return points_page_print[:-1]
def serialize_lines_in_marginal(self, marginal_region, all_found_textline_polygons_marginals, marginal_idx, page_coord, all_box_coord_marginals, slopes_marginals, counter):
def serialize_lines_in_marginal(self, marginal_region, all_found_textline_polygons_marginals, marginal_idx,
page_coord, all_box_coord_marginals, slopes_marginals, counter):
for j in range(len(all_found_textline_polygons_marginals[marginal_idx])):
coords = CoordsType()
textline = TextLineType(id=counter.next_line_id, Coords=coords)
@ -67,43 +68,60 @@ class EynollahXmlWriter:
for l in range(len(all_found_textline_polygons_marginals[marginal_idx][j])):
if not (self.curved_line or self.textline_light):
if len(all_found_textline_polygons_marginals[marginal_idx][j][l]) == 2:
textline_x_coord = max(0, int((all_found_textline_polygons_marginals[marginal_idx][j][l][0] + all_box_coord_marginals[marginal_idx][2] + page_coord[2]) / self.scale_x) )
textline_y_coord = max(0, int((all_found_textline_polygons_marginals[marginal_idx][j][l][1] + all_box_coord_marginals[marginal_idx][0] + page_coord[0]) / self.scale_y) )
textline_x_coord = max(0, int((all_found_textline_polygons_marginals[marginal_idx][j][l][0] +
all_box_coord_marginals[marginal_idx][2] + page_coord[
2]) / self.scale_x))
textline_y_coord = max(0, int((all_found_textline_polygons_marginals[marginal_idx][j][l][1] +
all_box_coord_marginals[marginal_idx][0] + page_coord[
0]) / self.scale_y))
else:
textline_x_coord = max(0, int((all_found_textline_polygons_marginals[marginal_idx][j][l][0][0] + all_box_coord_marginals[marginal_idx][2] + page_coord[2]) / self.scale_x) )
textline_y_coord = max(0, int((all_found_textline_polygons_marginals[marginal_idx][j][l][0][1] + all_box_coord_marginals[marginal_idx][0] + page_coord[0]) / self.scale_y) )
textline_x_coord = max(0, int((all_found_textline_polygons_marginals[marginal_idx][j][l][0][0] +
all_box_coord_marginals[marginal_idx][2] + page_coord[
2]) / self.scale_x))
textline_y_coord = max(0, int((all_found_textline_polygons_marginals[marginal_idx][j][l][0][1] +
all_box_coord_marginals[marginal_idx][0] + page_coord[
0]) / self.scale_y))
points_co += str(textline_x_coord)
points_co += ','
points_co += str(textline_y_coord)
if (self.curved_line or self.textline_light) and np.abs(slopes_marginals[marginal_idx]) <= 45:
if len(all_found_textline_polygons_marginals[marginal_idx][j][l]) == 2:
points_co += str(int((all_found_textline_polygons_marginals[marginal_idx][j][l][0] + page_coord[2]) / self.scale_x))
points_co += str(int((all_found_textline_polygons_marginals[marginal_idx][j][l][0] + page_coord[
2]) / self.scale_x))
points_co += ','
points_co += str(int((all_found_textline_polygons_marginals[marginal_idx][j][l][1] + page_coord[0]) / self.scale_y))
points_co += str(int((all_found_textline_polygons_marginals[marginal_idx][j][l][1] + page_coord[
0]) / self.scale_y))
else:
points_co += str(int((all_found_textline_polygons_marginals[marginal_idx][j][l][0][0] + page_coord[2]) / self.scale_x))
points_co += str(int((all_found_textline_polygons_marginals[marginal_idx][j][l][0][0] +
page_coord[2]) / self.scale_x))
points_co += ','
points_co += str(int((all_found_textline_polygons_marginals[marginal_idx][j][l][0][1] + page_coord[0]) / self.scale_y))
points_co += str(int((all_found_textline_polygons_marginals[marginal_idx][j][l][0][1] +
page_coord[0]) / self.scale_y))
elif (self.curved_line or self.textline_light) and np.abs(slopes_marginals[marginal_idx]) > 45:
if len(all_found_textline_polygons_marginals[marginal_idx][j][l]) == 2:
points_co += str(int((all_found_textline_polygons_marginals[marginal_idx][j][l][0] + all_box_coord_marginals[marginal_idx][2] + page_coord[2]) / self.scale_x))
points_co += str(int((all_found_textline_polygons_marginals[marginal_idx][j][l][0] +
all_box_coord_marginals[marginal_idx][2] + page_coord[2]) / self.scale_x))
points_co += ','
points_co += str(int((all_found_textline_polygons_marginals[marginal_idx][j][l][1] + all_box_coord_marginals[marginal_idx][0] + page_coord[0]) / self.scale_y))
points_co += str(int((all_found_textline_polygons_marginals[marginal_idx][j][l][1] +
all_box_coord_marginals[marginal_idx][0] + page_coord[0]) / self.scale_y))
else:
points_co += str(int((all_found_textline_polygons_marginals[marginal_idx][j][l][0][0] + all_box_coord_marginals[marginal_idx][2] + page_coord[2]) / self.scale_x))
points_co += str(int((all_found_textline_polygons_marginals[marginal_idx][j][l][0][0] +
all_box_coord_marginals[marginal_idx][2] + page_coord[2]) / self.scale_x))
points_co += ','
points_co += str(int((all_found_textline_polygons_marginals[marginal_idx][j][l][0][1] + all_box_coord_marginals[marginal_idx][0] + page_coord[0]) / self.scale_y))
points_co += str(int((all_found_textline_polygons_marginals[marginal_idx][j][l][0][1] +
all_box_coord_marginals[marginal_idx][0] + page_coord[0]) / self.scale_y))
points_co += ' '
coords.set_points(points_co[:-1])
def serialize_lines_in_region(self, text_region, all_found_textline_polygons, region_idx, page_coord, all_box_coord, slopes, counter, ocr_all_textlines_textregion):
def serialize_lines_in_region(self, text_region, all_found_textline_polygons, region_idx, page_coord, all_box_coord,
slopes, counter, ocr_all_textlines_textregion):
self.logger.debug('enter serialize_lines_in_region')
for j in range(len(all_found_textline_polygons[region_idx])):
coords = CoordsType()
textline = TextLineType(id=counter.next_line_id, Coords=coords)
if ocr_all_textlines_textregion:
textline.set_TextEquiv( [ TextEquivType(Unicode=ocr_all_textlines_textregion[j]) ] )
textline.set_TextEquiv([TextEquivType(Unicode=ocr_all_textlines_textregion[j])])
text_region.add_TextLine(textline)
text_region.set_orientation(-slopes[region_idx])
region_bboxes = all_box_coord[region_idx]
@ -111,11 +129,15 @@ class EynollahXmlWriter:
for idx_contour_textline, contour_textline in enumerate(all_found_textline_polygons[region_idx][j]):
if not (self.curved_line or self.textline_light):
if len(contour_textline) == 2:
textline_x_coord = max(0, int((contour_textline[0] + region_bboxes[2] + page_coord[2]) / self.scale_x))
textline_y_coord = max(0, int((contour_textline[1] + region_bboxes[0] + page_coord[0]) / self.scale_y))
textline_x_coord = max(0, int((contour_textline[0] + region_bboxes[2] + page_coord[
2]) / self.scale_x))
textline_y_coord = max(0, int((contour_textline[1] + region_bboxes[0] + page_coord[
0]) / self.scale_y))
else:
textline_x_coord = max(0, int((contour_textline[0][0] + region_bboxes[2] + page_coord[2]) / self.scale_x))
textline_y_coord = max(0, int((contour_textline[0][1] + region_bboxes[0] + page_coord[0]) / self.scale_y))
textline_x_coord = max(0, int((contour_textline[0][0] + region_bboxes[2] + page_coord[
2]) / self.scale_x))
textline_y_coord = max(0, int((contour_textline[0][1] + region_bboxes[0] + page_coord[
0]) / self.scale_y))
points_co += str(textline_x_coord)
points_co += ','
points_co += str(textline_y_coord)
@ -128,26 +150,29 @@ class EynollahXmlWriter:
else:
points_co += str(int((contour_textline[0][0] + page_coord[2]) / self.scale_x))
points_co += ','
points_co += str(int((contour_textline[0][1] + page_coord[0])/self.scale_y))
points_co += str(int((contour_textline[0][1] + page_coord[0]) / self.scale_y))
elif (self.curved_line or self.textline_light) and np.abs(slopes[region_idx]) > 45:
if len(contour_textline)==2:
points_co += str(int((contour_textline[0] + region_bboxes[2] + page_coord[2])/self.scale_x))
if len(contour_textline) == 2:
points_co += str(int((contour_textline[0] + region_bboxes[2] + page_coord[2]) / self.scale_x))
points_co += ','
points_co += str(int((contour_textline[1] + region_bboxes[0] + page_coord[0])/self.scale_y))
points_co += str(int((contour_textline[1] + region_bboxes[0] + page_coord[0]) / self.scale_y))
else:
points_co += str(int((contour_textline[0][0] + region_bboxes[2]+page_coord[2])/self.scale_x))
points_co += str(
int((contour_textline[0][0] + region_bboxes[2] + page_coord[2]) / self.scale_x))
points_co += ','
points_co += str(int((contour_textline[0][1] + region_bboxes[0]+page_coord[0])/self.scale_y))
points_co += str(
int((contour_textline[0][1] + region_bboxes[0] + page_coord[0]) / self.scale_y))
points_co += ' '
coords.set_points(points_co[:-1])
def serialize_lines_in_dropcapital(self, text_region, all_found_textline_polygons, region_idx, page_coord, all_box_coord, slopes, counter, ocr_all_textlines_textregion):
def serialize_lines_in_dropcapital(self, text_region, all_found_textline_polygons, region_idx, page_coord,
all_box_coord, slopes, counter, ocr_all_textlines_textregion):
self.logger.debug('enter serialize_lines_in_region')
for j in range(1):
coords = CoordsType()
textline = TextLineType(id=counter.next_line_id, Coords=coords)
if ocr_all_textlines_textregion:
textline.set_TextEquiv( [ TextEquivType(Unicode=ocr_all_textlines_textregion[j]) ] )
textline.set_TextEquiv([TextEquivType(Unicode=ocr_all_textlines_textregion[j])])
text_region.add_TextLine(textline)
#region_bboxes = all_box_coord[region_idx]
points_co = ''
@ -159,7 +184,7 @@ class EynollahXmlWriter:
else:
points_co += str(int((contour_textline[0][0] + page_coord[2]) / self.scale_x))
points_co += ','
points_co += str(int((contour_textline[0][1] + page_coord[0])/self.scale_y))
points_co += str(int((contour_textline[0][1] + page_coord[0]) / self.scale_y))
points_co += ' '
coords.set_points(points_co[:-1])
@ -169,7 +194,11 @@ class EynollahXmlWriter:
with open(self.output_filename, 'w') as f:
f.write(to_xml(pcgts))
def build_pagexml_no_full_layout(self, found_polygons_text_region, page_coord, order_of_texts, id_of_texts, all_found_textline_polygons, all_box_coord, found_polygons_text_region_img, found_polygons_marginals, all_found_textline_polygons_marginals, all_box_coord_marginals, slopes, slopes_marginals, cont_page, polygons_lines_to_be_written_in_xml, found_polygons_tables, ocr_all_textlines):
def build_pagexml_no_full_layout(self, found_polygons_text_region, page_coord, order_of_texts, id_of_texts,
all_found_textline_polygons, all_box_coord, found_polygons_text_region_img,
found_polygons_marginals, all_found_textline_polygons_marginals,
all_box_coord_marginals, slopes, slopes_marginals, cont_page,
polygons_lines_to_be_written_in_xml, found_polygons_tables, ocr_all_textlines):
self.logger.debug('enter build_pagexml_no_full_layout')
# create the file structure
@ -185,20 +214,26 @@ class EynollahXmlWriter:
for mm in range(len(found_polygons_text_region)):
textregion = TextRegionType(id=counter.next_region_id, type_='paragraph',
Coords=CoordsType(points=self.calculate_polygon_coords(found_polygons_text_region[mm], page_coord)),
)
Coords=CoordsType(
points=self.calculate_polygon_coords(found_polygons_text_region[mm],
page_coord)),
)
page.add_TextRegion(textregion)
if ocr_all_textlines:
ocr_textlines = ocr_all_textlines[mm]
else:
ocr_textlines = None
self.serialize_lines_in_region(textregion, all_found_textline_polygons, mm, page_coord, all_box_coord, slopes, counter, ocr_textlines)
self.serialize_lines_in_region(textregion, all_found_textline_polygons, mm, page_coord, all_box_coord,
slopes, counter, ocr_textlines)
for mm in range(len(found_polygons_marginals)):
marginal = TextRegionType(id=counter.next_region_id, type_='marginalia',
Coords=CoordsType(points=self.calculate_polygon_coords(found_polygons_marginals[mm], page_coord)))
Coords=CoordsType(
points=self.calculate_polygon_coords(found_polygons_marginals[mm],
page_coord)))
page.add_TextRegion(marginal)
self.serialize_lines_in_marginal(marginal, all_found_textline_polygons_marginals, mm, page_coord, all_box_coord_marginals, slopes_marginals, counter)
self.serialize_lines_in_marginal(marginal, all_found_textline_polygons_marginals, mm, page_coord,
all_box_coord_marginals, slopes_marginals, counter)
for mm in range(len(found_polygons_text_region_img)):
img_region = ImageRegionType(id=counter.next_region_id, Coords=CoordsType())
@ -206,27 +241,29 @@ class EynollahXmlWriter:
points_co = ''
for lmm in range(len(found_polygons_text_region_img[mm])):
try:
points_co += str(int((found_polygons_text_region_img[mm][lmm,0,0] + page_coord[2]) / self.scale_x))
points_co += str(
int((found_polygons_text_region_img[mm][lmm, 0, 0] + page_coord[2]) / self.scale_x))
points_co += ','
points_co += str(int((found_polygons_text_region_img[mm][lmm,0,1] + page_coord[0]) / self.scale_y))
points_co += str(
int((found_polygons_text_region_img[mm][lmm, 0, 1] + page_coord[0]) / self.scale_y))
points_co += ' '
except:
points_co += str(int((found_polygons_text_region_img[mm][lmm][0] + page_coord[2])/ self.scale_x ))
points_co += str(int((found_polygons_text_region_img[mm][lmm][0] + page_coord[2]) / self.scale_x))
points_co += ','
points_co += str(int((found_polygons_text_region_img[mm][lmm][1] + page_coord[0])/ self.scale_y ))
points_co += str(int((found_polygons_text_region_img[mm][lmm][1] + page_coord[0]) / self.scale_y))
points_co += ' '
img_region.get_Coords().set_points(points_co[:-1])
for mm in range(len(polygons_lines_to_be_written_in_xml)):
sep_hor = SeparatorRegionType(id=counter.next_region_id, Coords=CoordsType())
page.add_SeparatorRegion(sep_hor)
points_co = ''
for lmm in range(len(polygons_lines_to_be_written_in_xml[mm])):
points_co += str(int((polygons_lines_to_be_written_in_xml[mm][lmm,0,0] ) / self.scale_x))
points_co += str(int((polygons_lines_to_be_written_in_xml[mm][lmm, 0, 0]) / self.scale_x))
points_co += ','
points_co += str(int((polygons_lines_to_be_written_in_xml[mm][lmm,0,1] ) / self.scale_y))
points_co += str(int((polygons_lines_to_be_written_in_xml[mm][lmm, 0, 1]) / self.scale_y))
points_co += ' '
sep_hor.get_Coords().set_points(points_co[:-1])
for mm in range(len(found_polygons_tables)):
@ -234,15 +271,21 @@ class EynollahXmlWriter:
page.add_TableRegion(tab_region)
points_co = ''
for lmm in range(len(found_polygons_tables[mm])):
points_co += str(int((found_polygons_tables[mm][lmm,0,0] + page_coord[2]) / self.scale_x))
points_co += str(int((found_polygons_tables[mm][lmm, 0, 0] + page_coord[2]) / self.scale_x))
points_co += ','
points_co += str(int((found_polygons_tables[mm][lmm,0,1] + page_coord[0]) / self.scale_y))
points_co += str(int((found_polygons_tables[mm][lmm, 0, 1] + page_coord[0]) / self.scale_y))
points_co += ' '
tab_region.get_Coords().set_points(points_co[:-1])
return pcgts
def build_pagexml_full_layout(self, found_polygons_text_region, found_polygons_text_region_h, page_coord, order_of_texts, id_of_texts, all_found_textline_polygons, all_found_textline_polygons_h, all_box_coord, all_box_coord_h, found_polygons_text_region_img, found_polygons_tables, found_polygons_drop_capitals, found_polygons_marginals, all_found_textline_polygons_marginals, all_box_coord_marginals, slopes, slopes_h, slopes_marginals, cont_page, polygons_lines_to_be_written_in_xml, ocr_all_textlines):
def build_pagexml_full_layout(self, found_polygons_text_region, found_polygons_text_region_h, page_coord,
order_of_texts, id_of_texts, all_found_textline_polygons,
all_found_textline_polygons_h, all_box_coord, all_box_coord_h,
found_polygons_text_region_img, found_polygons_tables, found_polygons_drop_capitals,
found_polygons_marginals, all_found_textline_polygons_marginals,
all_box_coord_marginals, slopes, slopes_h, slopes_marginals, cont_page,
polygons_lines_to_be_written_in_xml, ocr_all_textlines):
self.logger.debug('enter build_pagexml_full_layout')
# create the file structure
@ -257,49 +300,63 @@ class EynollahXmlWriter:
for mm in range(len(found_polygons_text_region)):
textregion = TextRegionType(id=counter.next_region_id, type_='paragraph',
Coords=CoordsType(points=self.calculate_polygon_coords(found_polygons_text_region[mm], page_coord)))
Coords=CoordsType(
points=self.calculate_polygon_coords(found_polygons_text_region[mm],
page_coord)))
page.add_TextRegion(textregion)
if ocr_all_textlines:
ocr_textlines = ocr_all_textlines[mm]
else:
ocr_textlines = None
self.serialize_lines_in_region(textregion, all_found_textline_polygons, mm, page_coord, all_box_coord, slopes, counter, ocr_textlines)
self.serialize_lines_in_region(textregion, all_found_textline_polygons, mm, page_coord, all_box_coord,
slopes, counter, ocr_textlines)
self.logger.debug('len(found_polygons_text_region_h) %s', len(found_polygons_text_region_h))
for mm in range(len(found_polygons_text_region_h)):
textregion = TextRegionType(id=counter.next_region_id, type_='header',
Coords=CoordsType(points=self.calculate_polygon_coords(found_polygons_text_region_h[mm], page_coord)))
Coords=CoordsType(
points=self.calculate_polygon_coords(found_polygons_text_region_h[mm],
page_coord)))
page.add_TextRegion(textregion)
if ocr_all_textlines:
ocr_textlines = ocr_all_textlines[mm]
else:
ocr_textlines = None
self.serialize_lines_in_region(textregion, all_found_textline_polygons_h, mm, page_coord, all_box_coord_h, slopes_h, counter, ocr_textlines)
self.serialize_lines_in_region(textregion, all_found_textline_polygons_h, mm, page_coord, all_box_coord_h,
slopes_h, counter, ocr_textlines)
for mm in range(len(found_polygons_marginals)):
marginal = TextRegionType(id=counter.next_region_id, type_='marginalia',
Coords=CoordsType(points=self.calculate_polygon_coords(found_polygons_marginals[mm], page_coord)))
Coords=CoordsType(
points=self.calculate_polygon_coords(found_polygons_marginals[mm],
page_coord)))
page.add_TextRegion(marginal)
self.serialize_lines_in_marginal(marginal, all_found_textline_polygons_marginals, mm, page_coord, all_box_coord_marginals, slopes_marginals, counter)
self.serialize_lines_in_marginal(marginal, all_found_textline_polygons_marginals, mm, page_coord,
all_box_coord_marginals, slopes_marginals, counter)
for mm in range(len(found_polygons_drop_capitals)):
dropcapital = TextRegionType(id=counter.next_region_id, type_='drop-capital',
Coords=CoordsType(points=self.calculate_polygon_coords(found_polygons_drop_capitals[mm], page_coord)))
Coords=CoordsType(
points=self.calculate_polygon_coords(found_polygons_drop_capitals[mm],
page_coord)))
page.add_TextRegion(dropcapital)
###all_box_coord_drop = None
###slopes_drop = None
###self.serialize_lines_in_dropcapital(dropcapital, [found_polygons_drop_capitals[mm]], mm, page_coord, all_box_coord_drop, slopes_drop, counter, ocr_all_textlines_textregion=None)
for mm in range(len(found_polygons_text_region_img)):
page.add_ImageRegion(ImageRegionType(id=counter.next_region_id, Coords=CoordsType(points=self.calculate_polygon_coords(found_polygons_text_region_img[mm], page_coord))))
page.add_ImageRegion(ImageRegionType(id=counter.next_region_id, Coords=CoordsType(
points=self.calculate_polygon_coords(found_polygons_text_region_img[mm], page_coord))))
for mm in range(len(polygons_lines_to_be_written_in_xml)):
page.add_SeparatorRegion(ImageRegionType(id=counter.next_region_id, Coords=CoordsType(points=self.calculate_polygon_coords(polygons_lines_to_be_written_in_xml[mm], [0 , 0, 0, 0]))))
page.add_SeparatorRegion(ImageRegionType(id=counter.next_region_id, Coords=CoordsType(
points=self.calculate_polygon_coords(polygons_lines_to_be_written_in_xml[mm], [0, 0, 0, 0]))))
for mm in range(len(found_polygons_tables)):
page.add_TableRegion(TableRegionType(id=counter.next_region_id, Coords=CoordsType(points=self.calculate_polygon_coords(found_polygons_tables[mm], page_coord))))
page.add_TableRegion(TableRegionType(id=counter.next_region_id, Coords=CoordsType(
points=self.calculate_polygon_coords(found_polygons_tables[mm], page_coord))))
return pcgts
@ -315,6 +372,5 @@ class EynollahXmlWriter:
coords += str(int((value_bbox[0][0] + page_coord[2]) / self.scale_x))
coords += ','
coords += str(int((value_bbox[0][1] + page_coord[0]) / self.scale_y))
coords=coords + ' '
coords = coords + ' '
return coords[:-1]

Loading…
Cancel
Save