more outsourcing of utils
parent
8d2227b04b
commit
87ef313502
@ -0,0 +1,252 @@
|
|||||||
|
import numpy as np
|
||||||
|
import cv2
|
||||||
|
from scipy.signal import find_peaks
|
||||||
|
from scipy.ndimage import gaussian_filter1d
|
||||||
|
|
||||||
|
|
||||||
|
from .contour import find_new_features_of_contoures, return_contours_of_interested_region
|
||||||
|
from .resize import resize_image
|
||||||
|
from .rotate import rotate_image
|
||||||
|
|
||||||
|
def get_marginals(text_with_lines, text_regions, num_col, slope_deskew, kernel=None):
|
||||||
|
mask_marginals=np.zeros((text_with_lines.shape[0],text_with_lines.shape[1]))
|
||||||
|
mask_marginals=mask_marginals.astype(np.uint8)
|
||||||
|
|
||||||
|
|
||||||
|
text_with_lines=text_with_lines.astype(np.uint8)
|
||||||
|
##text_with_lines=cv2.erode(text_with_lines,self.kernel,iterations=3)
|
||||||
|
|
||||||
|
text_with_lines_eroded=cv2.erode(text_with_lines,kernel,iterations=5)
|
||||||
|
|
||||||
|
if text_with_lines.shape[0]<=1500:
|
||||||
|
pass
|
||||||
|
elif text_with_lines.shape[0]>1500 and text_with_lines.shape[0]<=1800:
|
||||||
|
text_with_lines=resize_image(text_with_lines,int(text_with_lines.shape[0]*1.5),text_with_lines.shape[1])
|
||||||
|
text_with_lines=cv2.erode(text_with_lines,kernel,iterations=5)
|
||||||
|
text_with_lines=resize_image(text_with_lines,text_with_lines_eroded.shape[0],text_with_lines_eroded.shape[1])
|
||||||
|
else:
|
||||||
|
text_with_lines=resize_image(text_with_lines,int(text_with_lines.shape[0]*1.8),text_with_lines.shape[1])
|
||||||
|
text_with_lines=cv2.erode(text_with_lines,kernel,iterations=7)
|
||||||
|
text_with_lines=resize_image(text_with_lines,text_with_lines_eroded.shape[0],text_with_lines_eroded.shape[1])
|
||||||
|
|
||||||
|
|
||||||
|
text_with_lines_y=text_with_lines.sum(axis=0)
|
||||||
|
text_with_lines_y_eroded=text_with_lines_eroded.sum(axis=0)
|
||||||
|
|
||||||
|
thickness_along_y_percent=text_with_lines_y_eroded.max()/(float(text_with_lines.shape[0]))*100
|
||||||
|
|
||||||
|
#print(thickness_along_y_percent,'thickness_along_y_percent')
|
||||||
|
|
||||||
|
if thickness_along_y_percent<30:
|
||||||
|
min_textline_thickness=8
|
||||||
|
elif thickness_along_y_percent>=30 and thickness_along_y_percent<50:
|
||||||
|
min_textline_thickness=20
|
||||||
|
else:
|
||||||
|
min_textline_thickness=40
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
if thickness_along_y_percent>=14:
|
||||||
|
|
||||||
|
text_with_lines_y_rev=-1*text_with_lines_y[:]
|
||||||
|
#print(text_with_lines_y)
|
||||||
|
#print(text_with_lines_y_rev)
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
#plt.plot(text_with_lines_y)
|
||||||
|
#plt.show()
|
||||||
|
|
||||||
|
|
||||||
|
text_with_lines_y_rev=text_with_lines_y_rev-np.min(text_with_lines_y_rev)
|
||||||
|
|
||||||
|
#plt.plot(text_with_lines_y_rev)
|
||||||
|
#plt.show()
|
||||||
|
sigma_gaus=1
|
||||||
|
region_sum_0= gaussian_filter1d(text_with_lines_y, sigma_gaus)
|
||||||
|
|
||||||
|
region_sum_0_rev=gaussian_filter1d(text_with_lines_y_rev, sigma_gaus)
|
||||||
|
|
||||||
|
#plt.plot(region_sum_0_rev)
|
||||||
|
#plt.show()
|
||||||
|
region_sum_0_updown=region_sum_0[len(region_sum_0)::-1]
|
||||||
|
|
||||||
|
first_nonzero=(next((i for i, x in enumerate(region_sum_0) if x), None))
|
||||||
|
last_nonzero=(next((i for i, x in enumerate(region_sum_0_updown) if x), None))
|
||||||
|
|
||||||
|
|
||||||
|
last_nonzero=len(region_sum_0)-last_nonzero
|
||||||
|
|
||||||
|
##img_sum_0_smooth_rev=-region_sum_0
|
||||||
|
|
||||||
|
|
||||||
|
mid_point=(last_nonzero+first_nonzero)/2.
|
||||||
|
|
||||||
|
|
||||||
|
one_third_right=(last_nonzero-mid_point)/3.0
|
||||||
|
one_third_left=(mid_point-first_nonzero)/3.0
|
||||||
|
|
||||||
|
#img_sum_0_smooth_rev=img_sum_0_smooth_rev-np.min(img_sum_0_smooth_rev)
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
peaks, _ = find_peaks(text_with_lines_y_rev, height=0)
|
||||||
|
|
||||||
|
|
||||||
|
peaks=np.array(peaks)
|
||||||
|
|
||||||
|
|
||||||
|
#print(region_sum_0[peaks])
|
||||||
|
##plt.plot(region_sum_0)
|
||||||
|
##plt.plot(peaks,region_sum_0[peaks],'*')
|
||||||
|
##plt.show()
|
||||||
|
#print(first_nonzero,last_nonzero,peaks)
|
||||||
|
peaks=peaks[(peaks>first_nonzero) & ((peaks<last_nonzero))]
|
||||||
|
|
||||||
|
#print(first_nonzero,last_nonzero,peaks)
|
||||||
|
|
||||||
|
|
||||||
|
#print(region_sum_0[peaks]<10)
|
||||||
|
####peaks=peaks[region_sum_0[peaks]<25 ]
|
||||||
|
|
||||||
|
#print(region_sum_0[peaks])
|
||||||
|
peaks=peaks[region_sum_0[peaks]<min_textline_thickness ]
|
||||||
|
#print(peaks)
|
||||||
|
#print(first_nonzero,last_nonzero,one_third_right,one_third_left)
|
||||||
|
|
||||||
|
if num_col==1:
|
||||||
|
peaks_right=peaks[peaks>mid_point]
|
||||||
|
peaks_left=peaks[peaks<mid_point]
|
||||||
|
if num_col==2:
|
||||||
|
peaks_right=peaks[peaks>(mid_point+one_third_right)]
|
||||||
|
peaks_left=peaks[peaks<(mid_point-one_third_left)]
|
||||||
|
|
||||||
|
|
||||||
|
try:
|
||||||
|
point_right=np.min(peaks_right)
|
||||||
|
except:
|
||||||
|
point_right=last_nonzero
|
||||||
|
|
||||||
|
|
||||||
|
try:
|
||||||
|
point_left=np.max(peaks_left)
|
||||||
|
except:
|
||||||
|
point_left=first_nonzero
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
#print(point_left,point_right)
|
||||||
|
#print(text_regions.shape)
|
||||||
|
if point_right>=mask_marginals.shape[1]:
|
||||||
|
point_right=mask_marginals.shape[1]-1
|
||||||
|
|
||||||
|
try:
|
||||||
|
mask_marginals[:,point_left:point_right]=1
|
||||||
|
except:
|
||||||
|
mask_marginals[:,:]=1
|
||||||
|
|
||||||
|
#print(mask_marginals.shape,point_left,point_right,'nadosh')
|
||||||
|
mask_marginals_rotated=rotate_image(mask_marginals,-slope_deskew)
|
||||||
|
|
||||||
|
#print(mask_marginals_rotated.shape,'nadosh')
|
||||||
|
mask_marginals_rotated_sum=mask_marginals_rotated.sum(axis=0)
|
||||||
|
|
||||||
|
mask_marginals_rotated_sum[mask_marginals_rotated_sum!=0]=1
|
||||||
|
index_x=np.array(range(len(mask_marginals_rotated_sum)))+1
|
||||||
|
|
||||||
|
index_x_interest=index_x[mask_marginals_rotated_sum==1]
|
||||||
|
|
||||||
|
min_point_of_left_marginal=np.min(index_x_interest)-16
|
||||||
|
max_point_of_right_marginal=np.max(index_x_interest)+16
|
||||||
|
|
||||||
|
if min_point_of_left_marginal<0:
|
||||||
|
min_point_of_left_marginal=0
|
||||||
|
if max_point_of_right_marginal>=text_regions.shape[1]:
|
||||||
|
max_point_of_right_marginal=text_regions.shape[1]-1
|
||||||
|
|
||||||
|
|
||||||
|
#print(np.min(index_x_interest) ,np.max(index_x_interest),'minmaxnew')
|
||||||
|
#print(mask_marginals_rotated.shape,text_regions.shape,'mask_marginals_rotated')
|
||||||
|
#plt.imshow(mask_marginals)
|
||||||
|
#plt.show()
|
||||||
|
|
||||||
|
#plt.imshow(mask_marginals_rotated)
|
||||||
|
#plt.show()
|
||||||
|
|
||||||
|
text_regions[(mask_marginals_rotated[:,:]!=1) & (text_regions[:,:]==1)]=4
|
||||||
|
|
||||||
|
#plt.imshow(text_regions)
|
||||||
|
#plt.show()
|
||||||
|
|
||||||
|
pixel_img=4
|
||||||
|
min_area_text=0.00001
|
||||||
|
polygons_of_marginals=return_contours_of_interested_region(text_regions,pixel_img,min_area_text)
|
||||||
|
|
||||||
|
cx_text_only,cy_text_only ,x_min_text_only,x_max_text_only, y_min_text_only ,y_max_text_only,y_cor_x_min_main=find_new_features_of_contoures(polygons_of_marginals)
|
||||||
|
|
||||||
|
text_regions[(text_regions[:,:]==4)]=1
|
||||||
|
|
||||||
|
marginlas_should_be_main_text=[]
|
||||||
|
|
||||||
|
x_min_marginals_left=[]
|
||||||
|
x_min_marginals_right=[]
|
||||||
|
|
||||||
|
for i in range(len(cx_text_only)):
|
||||||
|
|
||||||
|
x_width_mar=abs(x_min_text_only[i]-x_max_text_only[i])
|
||||||
|
y_height_mar=abs(y_min_text_only[i]-y_max_text_only[i])
|
||||||
|
#print(x_width_mar,y_height_mar,y_height_mar/x_width_mar,'y_height_mar')
|
||||||
|
if x_width_mar>16 and y_height_mar/x_width_mar<18:
|
||||||
|
marginlas_should_be_main_text.append(polygons_of_marginals[i])
|
||||||
|
if x_min_text_only[i]<(mid_point-one_third_left):
|
||||||
|
x_min_marginals_left_new=x_min_text_only[i]
|
||||||
|
if len(x_min_marginals_left)==0:
|
||||||
|
x_min_marginals_left.append(x_min_marginals_left_new)
|
||||||
|
else:
|
||||||
|
x_min_marginals_left[0]=min(x_min_marginals_left[0],x_min_marginals_left_new)
|
||||||
|
else:
|
||||||
|
x_min_marginals_right_new=x_min_text_only[i]
|
||||||
|
if len(x_min_marginals_right)==0:
|
||||||
|
x_min_marginals_right.append(x_min_marginals_right_new)
|
||||||
|
else:
|
||||||
|
x_min_marginals_right[0]=min(x_min_marginals_right[0],x_min_marginals_right_new)
|
||||||
|
|
||||||
|
if len(x_min_marginals_left)==0:
|
||||||
|
x_min_marginals_left=[0]
|
||||||
|
if len(x_min_marginals_right)==0:
|
||||||
|
x_min_marginals_right=[text_regions.shape[1]-1]
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
#print(x_min_marginals_left[0],x_min_marginals_right[0],'margo')
|
||||||
|
|
||||||
|
#print(marginlas_should_be_main_text,'marginlas_should_be_main_text')
|
||||||
|
text_regions=cv2.fillPoly(text_regions, pts =marginlas_should_be_main_text, color=(4,4))
|
||||||
|
|
||||||
|
#print(np.unique(text_regions))
|
||||||
|
|
||||||
|
#text_regions[:,:int(x_min_marginals_left[0])][text_regions[:,:int(x_min_marginals_left[0])]==1]=0
|
||||||
|
#text_regions[:,int(x_min_marginals_right[0]):][text_regions[:,int(x_min_marginals_right[0]):]==1]=0
|
||||||
|
|
||||||
|
text_regions[:,:int(min_point_of_left_marginal)][text_regions[:,:int(min_point_of_left_marginal)]==1]=0
|
||||||
|
text_regions[:,int(max_point_of_right_marginal):][text_regions[:,int(max_point_of_right_marginal):]==1]=0
|
||||||
|
|
||||||
|
###text_regions[:,0:point_left][text_regions[:,0:point_left]==1]=4
|
||||||
|
|
||||||
|
###text_regions[:,point_right:][ text_regions[:,point_right:]==1]=4
|
||||||
|
#plt.plot(region_sum_0)
|
||||||
|
#plt.plot(peaks,region_sum_0[peaks],'*')
|
||||||
|
#plt.show()
|
||||||
|
|
||||||
|
|
||||||
|
#plt.imshow(text_regions)
|
||||||
|
#plt.show()
|
||||||
|
|
||||||
|
#sys.exit()
|
||||||
|
else:
|
||||||
|
pass
|
||||||
|
return text_regions
|
@ -0,0 +1,4 @@
|
|||||||
|
import cv2
|
||||||
|
|
||||||
|
def resize_image(img_in, input_height, input_width):
|
||||||
|
return cv2.resize(img_in, (input_width, input_height), interpolation=cv2.INTER_NEAREST)
|
Loading…
Reference in New Issue