mirror of
https://github.com/qurator-spk/eynollah.git
synced 2025-11-09 22:24:13 +01:00
Merge remote-tracking branch 'origin/updating_docs' into docs_and_minor_fixes
This commit is contained in:
commit
8822da17cf
2 changed files with 129 additions and 27 deletions
83
README.md
83
README.md
|
|
@ -11,6 +11,11 @@
|
||||||
|
|
||||||

|

|
||||||
|
|
||||||
|
<p align="center">
|
||||||
|
<img src="https://github.com/user-attachments/assets/42df2582-4579-415e-92f1-54858a02c830" alt="Input Image" width="45%">
|
||||||
|
<img src="https://github.com/user-attachments/assets/77fc819e-6302-4fc9-967c-ee11d10d863e" alt="Output Image" width="45%">
|
||||||
|
</p>
|
||||||
|
|
||||||
## Features
|
## Features
|
||||||
* Document layout analysis using pixelwise segmentation models with support for 10 distinct segmentation classes:
|
* Document layout analysis using pixelwise segmentation models with support for 10 distinct segmentation classes:
|
||||||
* background, [page border](https://ocr-d.de/en/gt-guidelines/trans/lyRand.html), [text region](https://ocr-d.de/en/gt-guidelines/trans/lytextregion.html#textregionen__textregion_), [text line](https://ocr-d.de/en/gt-guidelines/pagexml/pagecontent_xsd_Complex_Type_pc_TextLineType.html), [header](https://ocr-d.de/en/gt-guidelines/trans/lyUeberschrift.html), [image](https://ocr-d.de/en/gt-guidelines/trans/lyBildbereiche.html), [separator](https://ocr-d.de/en/gt-guidelines/trans/lySeparatoren.html), [marginalia](https://ocr-d.de/en/gt-guidelines/trans/lyMarginalie.html), [initial](https://ocr-d.de/en/gt-guidelines/trans/lyInitiale.html), [table](https://ocr-d.de/en/gt-guidelines/trans/lyTabellen.html)
|
* background, [page border](https://ocr-d.de/en/gt-guidelines/trans/lyRand.html), [text region](https://ocr-d.de/en/gt-guidelines/trans/lytextregion.html#textregionen__textregion_), [text line](https://ocr-d.de/en/gt-guidelines/pagexml/pagecontent_xsd_Complex_Type_pc_TextLineType.html), [header](https://ocr-d.de/en/gt-guidelines/trans/lyUeberschrift.html), [image](https://ocr-d.de/en/gt-guidelines/trans/lyBildbereiche.html), [separator](https://ocr-d.de/en/gt-guidelines/trans/lySeparatoren.html), [marginalia](https://ocr-d.de/en/gt-guidelines/trans/lyMarginalie.html), [initial](https://ocr-d.de/en/gt-guidelines/trans/lyInitiale.html), [table](https://ocr-d.de/en/gt-guidelines/trans/lyTabellen.html)
|
||||||
|
|
@ -98,24 +103,35 @@ eynollah layout \
|
||||||
|
|
||||||
The following options can be used to further configure the processing:
|
The following options can be used to further configure the processing:
|
||||||
|
|
||||||
| option | description |
|
| option | description |
|
||||||
|-------------------|:-------------------------------------------------------------------------------|
|
|-------------------|:------------------------------------------------------------------------------- |
|
||||||
| `-fl` | full layout analysis including all steps and segmentation classes |
|
| `-fl` | full layout analysis including all steps and segmentation classes (recommended) |
|
||||||
| `-light` | lighter and faster but simpler method for main region detection and deskewing |
|
| `-light` | lighter and faster but simpler method for main region detection and deskewing (recommended) |
|
||||||
| `-tll` | this indicates the light textline and should be passed with light version |
|
| `-tll` | this indicates the light textline and should be passed with light version (recommended) |
|
||||||
| `-tab` | apply table detection |
|
| `-tab` | apply table detection |
|
||||||
| `-ae` | apply enhancement (the resulting image is saved to the output directory) |
|
| `-ae` | apply enhancement (the resulting image is saved to the output directory) |
|
||||||
| `-as` | apply scaling |
|
| `-as` | apply scaling |
|
||||||
| `-cl` | apply contour detection for curved text lines instead of bounding boxes |
|
| `-cl` | apply contour detection for curved text lines instead of bounding boxes |
|
||||||
| `-ib` | apply binarization (the resulting image is saved to the output directory) |
|
| `-ib` | apply binarization (the resulting image is saved to the output directory) |
|
||||||
| `-ep` | enable plotting (MUST always be used with `-sl`, `-sd`, `-sa`, `-si` or `-ae`) |
|
| `-ep` | enable plotting (MUST always be used with `-sl`, `-sd`, `-sa`, `-si` or `-ae`) |
|
||||||
| `-eoi` | extract only images to output directory (other processing will not be done) |
|
| `-eoi` | extract only images to output directory (other processing will not be done) |
|
||||||
| `-ho` | ignore headers for reading order dectection |
|
| `-ho` | ignore headers for reading order dectection |
|
||||||
| `-si <directory>` | save image regions detected to this directory |
|
| `-si <directory>` | save image regions detected to this directory |
|
||||||
| `-sd <directory>` | save deskewed image to this directory |
|
| `-sd <directory>` | save deskewed image to this directory |
|
||||||
| `-sl <directory>` | save layout prediction as plot to this directory |
|
| `-sl <directory>` | save layout prediction as plot to this directory |
|
||||||
| `-sp <directory>` | save cropped page image to this directory |
|
| `-sp <directory>` | save cropped page image to this directory |
|
||||||
| `-sa <directory>` | save all (plot, enhanced/binary image, layout) to this directory |
|
| `-sa <directory>` | save all (plot, enhanced/binary image, layout) to this directory |
|
||||||
|
| `-thart` | threshold of artifical class in the case of textline detection. The default value is 0.1 |
|
||||||
|
| `-tharl` | threshold of artifical class in the case of layout detection. The default value is 0.1 |
|
||||||
|
| `-ocr` | do ocr |
|
||||||
|
| `-tr` | apply transformer ocr. Default model is a CNN-RNN model |
|
||||||
|
| `-bs_ocr` | ocr inference batch size. Default bs for trocr and cnn_rnn models are 2 and 8 respectively |
|
||||||
|
| `-ncu` | upper limit of columns in document image |
|
||||||
|
| `-ncl` | lower limit of columns in document image |
|
||||||
|
| `-slro` | skip layout detection and reading order |
|
||||||
|
| `-romb` | apply machine based reading order detection |
|
||||||
|
| `-ipe` | ignore page extraction |
|
||||||
|
|
||||||
|
|
||||||
If no further option is set, the tool performs layout detection of main regions (background, text, images, separators
|
If no further option is set, the tool performs layout detection of main regions (background, text, images, separators
|
||||||
and marginals).
|
and marginals).
|
||||||
|
|
@ -133,7 +149,7 @@ The command-line interface for binarization can be called like this:
|
||||||
eynollah binarization \
|
eynollah binarization \
|
||||||
-i <single image file> | -di <directory containing image files> \
|
-i <single image file> | -di <directory containing image files> \
|
||||||
-o <output directory> \
|
-o <output directory> \
|
||||||
-m <directory containing model files> \
|
-m <directory containing model files>
|
||||||
```
|
```
|
||||||
|
|
||||||
### Image Enhancement
|
### Image Enhancement
|
||||||
|
|
@ -141,7 +157,17 @@ TODO
|
||||||
|
|
||||||
### OCR
|
### OCR
|
||||||
|
|
||||||
The OCR module performs text recognition using either CNN-RNN or TrOCR models.
|
<p align="center">
|
||||||
|
<img src="https://github.com/user-attachments/assets/71054636-51c6-4117-b3cf-361c5cda3528" alt="Input Image" width="45%">
|
||||||
|
<img src="https://github.com/user-attachments/assets/cfb3ce38-007a-4037-b547-21324a7d56dd" alt="Output Image" width="45%">
|
||||||
|
</p>
|
||||||
|
|
||||||
|
<p align="center">
|
||||||
|
<img src="https://github.com/user-attachments/assets/343b2ed8-d818-4d4a-b301-f304cbbebfcd" alt="Input Image" width="45%">
|
||||||
|
<img src="https://github.com/user-attachments/assets/accb5ba7-e37f-477e-84aa-92eafa0d136e" alt="Output Image" width="45%">
|
||||||
|
</p>
|
||||||
|
|
||||||
|
The OCR module performs text recognition using either a CNN-RNN model or a Transformer model.
|
||||||
|
|
||||||
The command-line interface for OCR can be called like this:
|
The command-line interface for OCR can be called like this:
|
||||||
|
|
||||||
|
|
@ -150,9 +176,24 @@ eynollah ocr \
|
||||||
-i <single image file> | -di <directory containing image files> \
|
-i <single image file> | -di <directory containing image files> \
|
||||||
-dx <directory of xmls> \
|
-dx <directory of xmls> \
|
||||||
-o <output directory> \
|
-o <output directory> \
|
||||||
-m <directory containing model files> | --model_name <path to specific model> \
|
-m <directory containing model files> | --model_name <path to specific model>
|
||||||
```
|
```
|
||||||
|
|
||||||
|
The following options can be used to further configure the ocr processing:
|
||||||
|
|
||||||
|
| option | description |
|
||||||
|
|-------------------|:------------------------------------------------------------------------------- |
|
||||||
|
| `-dib` | directory of bins(files type must be '.png'). Prediction with both RGB and bins. |
|
||||||
|
| `-doit` | Directory containing output images rendered with the predicted text |
|
||||||
|
| `--model_name` | Specific model file path to use for OCR |
|
||||||
|
| `-trocr` | transformer ocr will be applied, otherwise cnn_rnn model |
|
||||||
|
| `-etit` | textlines images and text in xml will be exported into output dir (OCR training data) |
|
||||||
|
| `-nmtc` | cropped textline images will not be masked with textline contour |
|
||||||
|
| `-bs` | ocr inference batch size. Default bs for trocr and cnn_rnn models are 2 and 8 respectively |
|
||||||
|
| `-ds_pref` | add an abbrevation of dataset name to generated training data |
|
||||||
|
| `-min_conf` | minimum OCR confidence value. OCRs with textline conf lower than this will be ignored |
|
||||||
|
|
||||||
|
|
||||||
### Reading Order Detection
|
### Reading Order Detection
|
||||||
Reading order detection can be performed either as part of layout analysis based on image input, or, currently under
|
Reading order detection can be performed either as part of layout analysis based on image input, or, currently under
|
||||||
development, based on pre-existing layout analysis data in PAGE-XML format as input.
|
development, based on pre-existing layout analysis data in PAGE-XML format as input.
|
||||||
|
|
|
||||||
|
|
@ -18,7 +18,8 @@ Two Arabic/Persian terms form the name of the model suite: عين الله, whic
|
||||||
|
|
||||||
See the flowchart below for the different stages and how they interact:
|
See the flowchart below for the different stages and how they interact:
|
||||||
|
|
||||||

|
<img width="810" height="691" alt="eynollah_flowchart" src="https://github.com/user-attachments/assets/42dd55bc-7b85-4b46-9afe-15ff712607f0" />
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
## Models
|
## Models
|
||||||
|
|
@ -151,15 +152,75 @@ This model is used for the task of illustration detection only.
|
||||||
|
|
||||||
Model card: [Reading Order Detection]()
|
Model card: [Reading Order Detection]()
|
||||||
|
|
||||||
TODO
|
The model extracts the reading order of text regions from the layout by classifying pairwise relationships between them. A sorting algorithm then determines the overall reading sequence.
|
||||||
|
|
||||||
|
### OCR
|
||||||
|
|
||||||
|
We have trained three OCR models: two CNN-RNN–based models and one transformer-based TrOCR model. The CNN-RNN models are generally faster and provide better results in most cases, though their performance decreases with heavily degraded images. The TrOCR model, on the other hand, is computationally expensive and slower during inference, but it can possibly produce better results on strongly degraded images.
|
||||||
|
|
||||||
|
#### CNN-RNN model: model_eynollah_ocr_cnnrnn_20250805
|
||||||
|
|
||||||
|
This model is trained on data where most of the samples are in Fraktur german script.
|
||||||
|
|
||||||
|
| Dataset | Input | CER | WER |
|
||||||
|
|-----------------------|:-------|:-----------|:----------|
|
||||||
|
| OCR-D-GT-Archiveform | BIN | 0.02147 | 0.05685 |
|
||||||
|
| OCR-D-GT-Archiveform | RGB | 0.01636 | 0.06285 |
|
||||||
|
|
||||||
|
#### CNN-RNN model: model_eynollah_ocr_cnnrnn_20250904 (Default)
|
||||||
|
|
||||||
|
Compared to the model_eynollah_ocr_cnnrnn_20250805 model, this model is trained on a larger proportion of Antiqua data and achieves superior performance.
|
||||||
|
|
||||||
|
| Dataset | Input | CER | WER |
|
||||||
|
|-----------------------|:------------|:-----------|:----------|
|
||||||
|
| OCR-D-GT-Archiveform | BIN | 0.01635 | 0.05410 |
|
||||||
|
| OCR-D-GT-Archiveform | RGB | 0.01471 | 0.05813 |
|
||||||
|
| BLN600 | RGB | 0.04409 | 0.08879 |
|
||||||
|
| BLN600 | Enhanced | 0.03599 | 0.06244 |
|
||||||
|
|
||||||
|
|
||||||
|
#### Transformer OCR model: model_eynollah_ocr_trocr_20250919
|
||||||
|
|
||||||
|
This transformer OCR model is trained on the same data as model_eynollah_ocr_trocr_20250919.
|
||||||
|
|
||||||
|
| Dataset | Input | CER | WER |
|
||||||
|
|-----------------------|:------------|:-----------|:----------|
|
||||||
|
| OCR-D-GT-Archiveform | BIN | 0.01841 | 0.05589 |
|
||||||
|
| OCR-D-GT-Archiveform | RGB | 0.01552 | 0.06177 |
|
||||||
|
| BLN600 | RGB | 0.06347 | 0.13853 |
|
||||||
|
|
||||||
|
##### Qualitative evaluation of the models
|
||||||
|
|
||||||
|
| <img width="1600" src="https://github.com/user-attachments/assets/120fec0c-c370-46a6-b132-b0af800607cf"> | <img width="1000" src="https://github.com/user-attachments/assets/d84e6819-0a2a-4b3a-bb7d-ceac941babc4"> | <img width="1000" src="https://github.com/user-attachments/assets/bdd27cdb-bbec-4223-9a86-de7a27c6d018"> | <img width="1000" src="https://github.com/user-attachments/assets/1a507c75-75de-4da3-9545-af3746b9a207"> |
|
||||||
|
|:---:|:---:|:---:|:---:|
|
||||||
|
| Image | cnnrnn_20250805 | cnnrnn_20250904 | trocr_20250919 |
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
| <img width="2000" src="https://github.com/user-attachments/assets/9bc13d48-2a92-45fc-88db-c07ffadba067"> | <img width="1000" src="https://github.com/user-attachments/assets/2b294aeb-1362-4d6e-b70f-8aeffd94c5e7"> | <img width="1000" src="https://github.com/user-attachments/assets/9911317e-632e-4e6a-8839-1fb7e783da11"> | <img width="1000" src="https://github.com/user-attachments/assets/2c5626d9-0d23-49d3-80f5-a95f629c9c76"> |
|
||||||
|
|:---:|:---:|:---:|:---:|
|
||||||
|
| Image | cnnrnn_20250805 | cnnrnn_20250904 | trocr_20250919 |
|
||||||
|
|
||||||
|
|
||||||
|
| <img width="2000" src="https://github.com/user-attachments/assets/d54d8510-5c6a-4ab0-9ba7-f6ec4ad452c6"> | <img width="1000" src="https://github.com/user-attachments/assets/a418b25b-00dc-493a-b3a3-b325b9b0cb85"> | <img width="1000" src="https://github.com/user-attachments/assets/df6e2b9e-a821-4b4c-8868-0c765700c341"> | <img width="1000" src="https://github.com/user-attachments/assets/b90277f5-40f4-4c99-80a2-da400f7d3640"> |
|
||||||
|
|:---:|:---:|:---:|:---:|
|
||||||
|
| Image | cnnrnn_20250805 | cnnrnn_20250904 | trocr_20250919 |
|
||||||
|
|
||||||
|
|
||||||
|
| <img width="2000" src="https://github.com/user-attachments/assets/7ec49211-099f-4c21-9e60-47bfdf21f1b6"> | <img width="1000" src="https://github.com/user-attachments/assets/00ef9785-8885-41b3-bf6e-21eab743df71"> | <img width="1000" src="https://github.com/user-attachments/assets/13eb9f62-4d5a-46dc-befc-b02eb4f31fc1"> | <img width="1000" src="https://github.com/user-attachments/assets/a5c078d1-6d15-4d12-9040-526d7063d459"> |
|
||||||
|
|:---:|:---:|:---:|:---:|
|
||||||
|
| Image | cnnrnn_20250805 | cnnrnn_20250904 | trocr_20250919 |
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
## Heuristic methods
|
## Heuristic methods
|
||||||
|
|
||||||
Additionally, some heuristic methods are employed to further improve the model predictions:
|
Additionally, some heuristic methods are employed to further improve the model predictions:
|
||||||
|
|
||||||
* After border detection, the largest contour is determined by a bounding box, and the image cropped to these coordinates.
|
* After border detection, the largest contour is determined by a bounding box, and the image cropped to these coordinates.
|
||||||
* For text region detection, the image is scaled up to make it easier for the model to detect background space between text regions.
|
* Unlike the non-light version, where the image is scaled up to help the model better detect the background spaces between text regions, the light version uses down-scaled images. In this case, introducing an artificial class along the boundaries of text regions and text lines has helped to isolate and separate the text regions more effectively.
|
||||||
* A minimum area is defined for text regions in relation to the overall image dimensions, so that very small regions that are noise can be filtered out.
|
* A minimum area is defined for text regions in relation to the overall image dimensions, so that very small regions that are noise can be filtered out.
|
||||||
* Deskewing is applied on the text region level (due to regions having different degrees of skew) in order to improve the textline segmentation result.
|
* In the non-light version, deskewing is applied at the text-region level (since regions may have different degrees of skew) to improve text-line segmentation results. In contrast, the light version performs deskewing only at the page level to enhance margin detection and heuristic reading-order estimation.
|
||||||
* After deskewing, a calculation of the pixel distribution on the X-axis allows the separation of textlines (foreground) and background pixels.
|
* After deskewing, a calculation of the pixel distribution on the X-axis allows the separation of textlines (foreground) and background pixels (only in non-light version).
|
||||||
* Finally, using the derived coordinates, bounding boxes are determined for each textline.
|
* Finally, using the derived coordinates, bounding boxes are determined for each textline (only in non-light version).
|
||||||
|
* As mentioned above, the reading order can be determined using a model; however, this approach is computationally expensive, time-consuming, and less accurate due to the limited amount of ground-truth data available for training. Therefore, our tool uses a heuristic reading-order detection method as the default. The heuristic approach relies on headers and separators to determine the reading order of text regions.
|
||||||
|
|
|
||||||
Loading…
Add table
Add a link
Reference in a new issue