|
|
@ -8,11 +8,10 @@ document layout analysis (segmentation) with output in PAGE-XML
|
|
|
|
|
|
|
|
|
|
|
|
from logging import Logger
|
|
|
|
from logging import Logger
|
|
|
|
import math
|
|
|
|
import math
|
|
|
|
import os
|
|
|
|
from os import listdir
|
|
|
|
import sys
|
|
|
|
from os.path import join
|
|
|
|
import time
|
|
|
|
import time
|
|
|
|
from typing import Optional
|
|
|
|
from typing import Optional
|
|
|
|
import warnings
|
|
|
|
|
|
|
|
from pathlib import Path
|
|
|
|
from pathlib import Path
|
|
|
|
from multiprocessing import Process, Queue, cpu_count
|
|
|
|
from multiprocessing import Process, Queue, cpu_count
|
|
|
|
from PIL.Image import Image
|
|
|
|
from PIL.Image import Image
|
|
|
@ -23,19 +22,7 @@ from scipy.signal import find_peaks
|
|
|
|
import matplotlib.pyplot as plt
|
|
|
|
import matplotlib.pyplot as plt
|
|
|
|
from scipy.ndimage import gaussian_filter1d
|
|
|
|
from scipy.ndimage import gaussian_filter1d
|
|
|
|
|
|
|
|
|
|
|
|
from qurator.eynollah.utils.keras import PatchEncoder, Patches
|
|
|
|
from qurator.eynollah.utils.tf import tf, PatchEncoder, Patches
|
|
|
|
|
|
|
|
|
|
|
|
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "3"
|
|
|
|
|
|
|
|
stderr = sys.stderr
|
|
|
|
|
|
|
|
sys.stderr = open(os.devnull, "w")
|
|
|
|
|
|
|
|
import tensorflow as tf
|
|
|
|
|
|
|
|
sys.stderr = stderr
|
|
|
|
|
|
|
|
tf.get_logger().setLevel("ERROR")
|
|
|
|
|
|
|
|
warnings.filterwarnings("ignore")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
load_model = tf.keras.models.load_model
|
|
|
|
|
|
|
|
# use tf1 compatibility for keras backend
|
|
|
|
|
|
|
|
set_session = tf.compat.v1.keras.backend.set_session
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from .utils.contour import (
|
|
|
|
from .utils.contour import (
|
|
|
|
filter_contours_area_of_image,
|
|
|
|
filter_contours_area_of_image,
|
|
|
@ -182,7 +169,7 @@ class Eynollah():
|
|
|
|
self.model_textline_dir = dir_models + "/eynollah-textline_20210425"
|
|
|
|
self.model_textline_dir = dir_models + "/eynollah-textline_20210425"
|
|
|
|
self.model_tables = dir_models + "/eynollah-tables_20210319"
|
|
|
|
self.model_tables = dir_models + "/eynollah-tables_20210319"
|
|
|
|
|
|
|
|
|
|
|
|
self.models = {}
|
|
|
|
self.models : dict[str, tf.keras.Model] = {}
|
|
|
|
|
|
|
|
|
|
|
|
if dir_in and light_version:
|
|
|
|
if dir_in and light_version:
|
|
|
|
config = tf.compat.v1.ConfigProto()
|
|
|
|
config = tf.compat.v1.ConfigProto()
|
|
|
@ -198,7 +185,7 @@ class Eynollah():
|
|
|
|
self.model_region_fl_np = self.our_load_model(self.model_region_dir_fully_np)
|
|
|
|
self.model_region_fl_np = self.our_load_model(self.model_region_dir_fully_np)
|
|
|
|
self.model_region_fl = self.our_load_model(self.model_region_dir_fully)
|
|
|
|
self.model_region_fl = self.our_load_model(self.model_region_dir_fully)
|
|
|
|
|
|
|
|
|
|
|
|
self.ls_imgs = os.listdir(self.dir_in)
|
|
|
|
self.ls_imgs = listdir(self.dir_in)
|
|
|
|
|
|
|
|
|
|
|
|
if dir_in and not light_version:
|
|
|
|
if dir_in and not light_version:
|
|
|
|
config = tf.compat.v1.ConfigProto()
|
|
|
|
config = tf.compat.v1.ConfigProto()
|
|
|
@ -216,7 +203,7 @@ class Eynollah():
|
|
|
|
self.model_region_fl = self.our_load_model(self.model_region_dir_fully)
|
|
|
|
self.model_region_fl = self.our_load_model(self.model_region_dir_fully)
|
|
|
|
self.model_enhancement = self.our_load_model(self.model_dir_of_enhancement)
|
|
|
|
self.model_enhancement = self.our_load_model(self.model_dir_of_enhancement)
|
|
|
|
|
|
|
|
|
|
|
|
self.ls_imgs = os.listdir(self.dir_in)
|
|
|
|
self.ls_imgs = listdir(self.dir_in)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def _cache_images(self, image_filename=None, image_pil=None):
|
|
|
|
def _cache_images(self, image_filename=None, image_pil=None):
|
|
|
@ -586,9 +573,8 @@ class Eynollah():
|
|
|
|
self.writer.scale_x = self.scale_x
|
|
|
|
self.writer.scale_x = self.scale_x
|
|
|
|
self.writer.height_org = self.height_org
|
|
|
|
self.writer.height_org = self.height_org
|
|
|
|
self.writer.width_org = self.width_org
|
|
|
|
self.writer.width_org = self.width_org
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def start_new_session_and_model(self, model_dir):
|
|
|
|
def start_new_session_and_model(self, model_dir) -> tf.keras.Model:
|
|
|
|
self.logger.debug("enter start_new_session_and_model (model_dir=%s)", model_dir)
|
|
|
|
self.logger.debug("enter start_new_session_and_model (model_dir=%s)", model_dir)
|
|
|
|
#gpu_options = tf.compat.v1.GPUOptions(allow_growth=True)
|
|
|
|
#gpu_options = tf.compat.v1.GPUOptions(allow_growth=True)
|
|
|
|
#gpu_options = tf.compat.v1.GPUOptions(per_process_gpu_memory_fraction=7.7, allow_growth=True)
|
|
|
|
#gpu_options = tf.compat.v1.GPUOptions(per_process_gpu_memory_fraction=7.7, allow_growth=True)
|
|
|
@ -613,8 +599,7 @@ class Eynollah():
|
|
|
|
model = load_model(model_dir , compile=False, custom_objects = {"PatchEncoder": PatchEncoder, "Patches": Patches})
|
|
|
|
model = load_model(model_dir , compile=False, custom_objects = {"PatchEncoder": PatchEncoder, "Patches": Patches})
|
|
|
|
self.models[model_dir] = model
|
|
|
|
self.models[model_dir] = model
|
|
|
|
|
|
|
|
|
|
|
|
# FIXME: why?
|
|
|
|
return model
|
|
|
|
return model, None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def do_prediction(self, patches, img, model, marginal_of_patch_percent=0.1):
|
|
|
|
def do_prediction(self, patches, img, model, marginal_of_patch_percent=0.1):
|
|
|
|
self.logger.debug("enter do_prediction")
|
|
|
|
self.logger.debug("enter do_prediction")
|
|
|
@ -910,7 +895,7 @@ class Eynollah():
|
|
|
|
img = cv2.GaussianBlur(self.image, (5, 5), 0)
|
|
|
|
img = cv2.GaussianBlur(self.image, (5, 5), 0)
|
|
|
|
|
|
|
|
|
|
|
|
if not self.dir_in:
|
|
|
|
if not self.dir_in:
|
|
|
|
model_page, session_page = self.start_new_session_and_model(self.model_page_dir)
|
|
|
|
model_page = self.start_new_session_and_model(self.model_page_dir)
|
|
|
|
|
|
|
|
|
|
|
|
if not self.dir_in:
|
|
|
|
if not self.dir_in:
|
|
|
|
img_page_prediction = self.do_prediction(False, img, model_page)
|
|
|
|
img_page_prediction = self.do_prediction(False, img, model_page)
|
|
|
@ -958,7 +943,7 @@ class Eynollah():
|
|
|
|
else:
|
|
|
|
else:
|
|
|
|
img = self.imread()
|
|
|
|
img = self.imread()
|
|
|
|
if not self.dir_in:
|
|
|
|
if not self.dir_in:
|
|
|
|
model_page, session_page = self.start_new_session_and_model(self.model_page_dir)
|
|
|
|
model_page = self.start_new_session_and_model(self.model_page_dir)
|
|
|
|
img = cv2.GaussianBlur(img, (5, 5), 0)
|
|
|
|
img = cv2.GaussianBlur(img, (5, 5), 0)
|
|
|
|
|
|
|
|
|
|
|
|
if self.dir_in:
|
|
|
|
if self.dir_in:
|
|
|
@ -2774,7 +2759,7 @@ class Eynollah():
|
|
|
|
for img_name in self.ls_imgs:
|
|
|
|
for img_name in self.ls_imgs:
|
|
|
|
t0 = time.time()
|
|
|
|
t0 = time.time()
|
|
|
|
if self.dir_in:
|
|
|
|
if self.dir_in:
|
|
|
|
self.reset_file_name_dir(os.path.join(self.dir_in,img_name))
|
|
|
|
self.reset_file_name_dir(join(self.dir_in,img_name))
|
|
|
|
|
|
|
|
|
|
|
|
img_res, is_image_enhanced, num_col_classifier, num_column_is_classified = self.run_enhancement(self.light_version)
|
|
|
|
img_res, is_image_enhanced, num_col_classifier, num_column_is_classified = self.run_enhancement(self.light_version)
|
|
|
|
self.logger.info("Enhancing took %.1fs ", time.time() - t0)
|
|
|
|
self.logger.info("Enhancing took %.1fs ", time.time() - t0)
|
|
|
|