Merge remote-tracking branch 'origin/refactor' into refactoring-2024-08

refactoring-2024-08-merged
kba 4 months ago
commit 8ec9fc6da2

@ -17,11 +17,12 @@
* Detection of reading order (left-to-right or right-to-left) * Detection of reading order (left-to-right or right-to-left)
* Output in [PAGE-XML](https://github.com/PRImA-Research-Lab/PAGE-XML) * Output in [PAGE-XML](https://github.com/PRImA-Research-Lab/PAGE-XML)
* [OCR-D](https://github.com/qurator-spk/eynollah#use-as-ocr-d-processor) interface * [OCR-D](https://github.com/qurator-spk/eynollah#use-as-ocr-d-processor) interface
* [Examples](https://github.com/qurator-spk/eynollah/wiki#examples)
:warning: Development is currently focused on achieving the best possible quality of results for a wide variety of historical documents and therefore processing can be very slow. We aim to improve this, but contributions are welcome. :warning: Development is currently focused on achieving the best possible quality of results for a wide variety of historical documents and therefore processing can be very slow. We aim to improve this, but contributions are welcome.
## Installation ## Installation
Python `3.8-3.11` with Tensorflow `2.12-2.15` on Linux are currently supported. Python versions `3.8-3.11` with Tensorflow versions `<2.16` on Linux are currently supported.
For (limited) GPU support the CUDA toolkit needs to be installed. For (limited) GPU support the CUDA toolkit needs to be installed.
@ -38,7 +39,7 @@ git clone git@github.com:qurator-spk/eynollah.git
cd eynollah; pip install -e . cd eynollah; pip install -e .
``` ```
Alternatively, you can run `make install` or `make install-dev` for editable installation. Alternatively, run `make install` or `make install-dev` for editable installation.
## Models ## Models
Pre-trained models can be downloaded from [qurator-data.de](https://qurator-data.de/eynollah/) or [huggingface](https://huggingface.co/SBB?search_models=eynollah). Pre-trained models can be downloaded from [qurator-data.de](https://qurator-data.de/eynollah/) or [huggingface](https://huggingface.co/SBB?search_models=eynollah).
@ -46,9 +47,9 @@ Pre-trained models can be downloaded from [qurator-data.de](https://qurator-data
## Train ## Train
🚧 **Work in progress** 🚧 **Work in progress**
In case you want to train your own model, have a look at [`sbb_pixelwise_segmentation`](https://github.com/qurator-spk/sbb_pixelwise_segmentation). In case you want to train your own model, have a look at [`train`](https://github.com/qurator-spk/eynollah/tree/main/eynollah/eynollah/train).
## Usage ## Use
The command-line interface can be called like this: The command-line interface can be called like this:
```sh ```sh
@ -82,7 +83,6 @@ If no option is set, the tool performs layout detection of main regions (backgro
The best output quality is produced when RGB images are used as input rather than greyscale or binarized images. The best output quality is produced when RGB images are used as input rather than greyscale or binarized images.
#### Use as OCR-D processor #### Use as OCR-D processor
🚧 **Work in progress**
Eynollah ships with a CLI interface to be used as [OCR-D](https://ocr-d.de) processor. Eynollah ships with a CLI interface to be used as [OCR-D](https://ocr-d.de) processor.
@ -104,7 +104,7 @@ uses the original (RGB) image despite any binarization that may have occured in
Please check the [wiki](https://github.com/qurator-spk/eynollah/wiki). Please check the [wiki](https://github.com/qurator-spk/eynollah/wiki).
## How to cite ## How to cite
If you find this tool useful in your work, please consider citing our paper: If you find this useful in your work, please consider citing our paper:
```bibtex ```bibtex
@inproceedings{hip23rezanezhad, @inproceedings{hip23rezanezhad,

@ -0,0 +1 @@
__import__("pkg_resources").declare_namespace(__name__)

@ -1,8 +1,8 @@
import sys import sys
import click import click
from ocrd_utils import getLogger, initLogging, setOverrideLogLevel from ocrd_utils import getLogger, initLogging, setOverrideLogLevel
from qurator.eynollah.eynollah import Eynollah from eynollah.eynollah.eynollah import Eynollah
from qurator.eynollah.utils.dirs import EynollahDirs from eynollah.eynollah.utils.dirs import EynollahDirs
@click.command() @click.command()
@ -11,6 +11,7 @@ from qurator.eynollah.utils.dirs import EynollahDirs
"-i", "-i",
help="image filename", help="image filename",
type=click.Path(exists=True, dir_okay=False), type=click.Path(exists=True, dir_okay=False),
# required=True,
) )
@click.option( @click.option(
"--out", "--out",

@ -2,10 +2,12 @@ from .processor import EynollahProcessor
from click import command from click import command
from ocrd.decorators import ocrd_cli_options, ocrd_cli_wrap_processor from ocrd.decorators import ocrd_cli_options, ocrd_cli_wrap_processor
@command() @command()
@ocrd_cli_options @ocrd_cli_options
def main(*args, **kwargs): def main(*args, **kwargs):
return ocrd_cli_wrap_processor(EynollahProcessor, *args, **kwargs) return ocrd_cli_wrap_processor(EynollahProcessor, *args, **kwargs)
if __name__ == '__main__': if __name__ == '__main__':
main() main()

@ -10,6 +10,7 @@ from .utils.rotate import rotate_image_different
from .utils.resize import resize_image from .utils.resize import resize_image
from .utils.dirs import EynollahDirs from .utils.dirs import EynollahDirs
class EynollahPlotter(): class EynollahPlotter():
""" """
Class collecting all the plotting and image writing methods Class collecting all the plotting and image writing methods
@ -40,7 +41,9 @@ class EynollahPlotter():
plt.rcParams["font.size"] = "40" plt.rcParams["font.size"] = "40"
im = plt.imshow(text_regions_p[:, :]) im = plt.imshow(text_regions_p[:, :])
colors = [im.cmap(im.norm(value)) for value in values] colors = [im.cmap(im.norm(value)) for value in values]
patches = [mpatches.Patch(color=colors[np.where(values == i)[0][0]], label="{l}".format(l=pixels[int(np.where(values_indexes == i)[0][0])])) for i in values] patches = [mpatches.Patch(color=colors[np.where(values == i)[0][0]],
label="{l}".format(l=pixels[int(np.where(values_indexes == i)[0][0])])) for i in
values]
plt.legend(handles=patches, bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.0, fontsize=40) plt.legend(handles=patches, bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.0, fontsize=40)
plt.savefig(os.path.join(self.dirs.dir_of_layout, self.image_filename_stem + "_layout_main.png")) plt.savefig(os.path.join(self.dirs.dir_of_layout, self.image_filename_stem + "_layout_main.png"))
@ -58,7 +61,9 @@ class EynollahPlotter():
plt.subplot(1, 2, 2) plt.subplot(1, 2, 2)
im = plt.imshow(text_regions_p[:, :]) im = plt.imshow(text_regions_p[:, :])
colors = [im.cmap(im.norm(value)) for value in values] colors = [im.cmap(im.norm(value)) for value in values]
patches = [mpatches.Patch(color=colors[np.where(values == i)[0][0]], label="{l}".format(l=pixels[int(np.where(values_indexes == i)[0][0])])) for i in values] patches = [mpatches.Patch(color=colors[np.where(values == i)[0][0]],
label="{l}".format(l=pixels[int(np.where(values_indexes == i)[0][0])])) for i in
values]
plt.legend(handles=patches, bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.0, fontsize=60) plt.legend(handles=patches, bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.0, fontsize=60)
plt.savefig(os.path.join(self.dirs.dir_of_all, self.image_filename_stem + "_layout_main_and_page.png")) plt.savefig(os.path.join(self.dirs.dir_of_all, self.image_filename_stem + "_layout_main_and_page.png"))
@ -72,7 +77,9 @@ class EynollahPlotter():
plt.rcParams["font.size"] = "40" plt.rcParams["font.size"] = "40"
im = plt.imshow(text_regions_p[:, :]) im = plt.imshow(text_regions_p[:, :])
colors = [im.cmap(im.norm(value)) for value in values] colors = [im.cmap(im.norm(value)) for value in values]
patches = [mpatches.Patch(color=colors[np.where(values == i)[0][0]], label="{l}".format(l=pixels[int(np.where(values_indexes == i)[0][0])])) for i in values] patches = [mpatches.Patch(color=colors[np.where(values == i)[0][0]],
label="{l}".format(l=pixels[int(np.where(values_indexes == i)[0][0])])) for i in
values]
plt.legend(handles=patches, bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.0, fontsize=40) plt.legend(handles=patches, bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.0, fontsize=40)
plt.savefig(os.path.join(self.dirs.dir_of_layout, self.image_filename_stem + "_layout.png")) plt.savefig(os.path.join(self.dirs.dir_of_layout, self.image_filename_stem + "_layout.png"))
@ -89,7 +96,9 @@ class EynollahPlotter():
plt.subplot(1, 2, 2) plt.subplot(1, 2, 2)
im = plt.imshow(text_regions_p[:, :]) im = plt.imshow(text_regions_p[:, :])
colors = [im.cmap(im.norm(value)) for value in values] colors = [im.cmap(im.norm(value)) for value in values]
patches = [mpatches.Patch(color=colors[np.where(values == i)[0][0]], label="{l}".format(l=pixels[int(np.where(values_indexes == i)[0][0])])) for i in values] patches = [mpatches.Patch(color=colors[np.where(values == i)[0][0]],
label="{l}".format(l=pixels[int(np.where(values_indexes == i)[0][0])])) for i in
values]
plt.legend(handles=patches, bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.0, fontsize=60) plt.legend(handles=patches, bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.0, fontsize=60)
plt.savefig(os.path.join(self.dirs.dir_of_all, self.image_filename_stem + "_layout_and_page.png")) plt.savefig(os.path.join(self.dirs.dir_of_all, self.image_filename_stem + "_layout_and_page.png"))
@ -105,7 +114,9 @@ class EynollahPlotter():
plt.subplot(1, 2, 2) plt.subplot(1, 2, 2)
im = plt.imshow(textline_mask_tot_ea[:, :]) im = plt.imshow(textline_mask_tot_ea[:, :])
colors = [im.cmap(im.norm(value)) for value in values] colors = [im.cmap(im.norm(value)) for value in values]
patches = [mpatches.Patch(color=colors[np.where(values == i)[0][0]], label="{l}".format(l=pixels[int(np.where(values_indexes == i)[0][0])])) for i in values] patches = [mpatches.Patch(color=colors[np.where(values == i)[0][0]],
label="{l}".format(l=pixels[int(np.where(values_indexes == i)[0][0])])) for i in
values]
plt.legend(handles=patches, bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.0, fontsize=60) plt.legend(handles=patches, bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.0, fontsize=60)
plt.savefig(os.path.join(self.dirs.dir_of_all, self.image_filename_stem + "_textline_and_page.png")) plt.savefig(os.path.join(self.dirs.dir_of_all, self.image_filename_stem + "_textline_and_page.png"))
@ -131,7 +142,8 @@ class EynollahPlotter():
plt.subplot(1,2,1) plt.subplot(1,2,1)
plt.imshow(img_patch_org) plt.imshow(img_patch_org)
plt.subplot(1, 2, 2) plt.subplot(1, 2, 2)
plt.plot(gaussian_filter1d(img_patch_org.sum(axis=1), 3),np.array(range(len(gaussian_filter1d(img_patch_org.sum(axis=1), 3)))),linewidth=8) plt.plot(gaussian_filter1d(img_patch_org.sum(axis=1), 3),
np.array(range(len(gaussian_filter1d(img_patch_org.sum(axis=1), 3)))), linewidth=8)
plt.xlabel('Density of textline prediction in direction of X axis', fontsize=60) plt.xlabel('Density of textline prediction in direction of X axis', fontsize=60)
plt.ylabel('Height', fontsize=60) plt.ylabel('Height', fontsize=60)
plt.yticks([0, len(gaussian_filter1d(img_patch_org.sum(axis=1), 3))]) plt.yticks([0, len(gaussian_filter1d(img_patch_org.sum(axis=1), 3))])
@ -157,9 +169,9 @@ class EynollahPlotter():
box = [x, y, w, h] box = [x, y, w, h]
croped_page, page_coord = crop_image_inside_box(box, image_page) croped_page, page_coord = crop_image_inside_box(box, image_page)
croped_page = resize_image(croped_page, int(croped_page.shape[0] / self.scale_y), int(croped_page.shape[1] / self.scale_x)) croped_page = resize_image(croped_page, int(croped_page.shape[0] / self.scale_y),
int(croped_page.shape[1] / self.scale_x))
path = os.path.join(self.dirs.dir_of_cropped_images, self.image_filename_stem + "_" + str(index) + ".jpg") path = os.path.join(self.dirs.dir_of_cropped_images, self.image_filename_stem + "_" + str(index) + ".jpg")
cv2.imwrite(path, croped_page) cv2.imwrite(path, croped_page)
index += 1 index += 1

@ -7,6 +7,7 @@ from qurator.eynollah.utils.dirs import EynollahDirs
from .eynollah import Eynollah from .eynollah import Eynollah
class EynollahProcessor(Processor): class EynollahProcessor(Processor):
@property @property

@ -0,0 +1,67 @@
# Pixelwise Segmentation
> Pixelwise segmentation for document images
## Introduction
This repository contains the source code for training an encoder model for document image segmentation.
## Installation
Either clone the repository via `git clone https://github.com/qurator-spk/sbb_pixelwise_segmentation.git` or download and unpack the [ZIP](https://github.com/qurator-spk/sbb_pixelwise_segmentation/archive/master.zip).
### Pretrained encoder
Download our pretrained weights and add them to a ``pretrained_model`` folder:
https://qurator-data.de/sbb_pixelwise_segmentation/pretrained_encoder/
## Usage
### Train
To train a model, run: ``python train.py with config_params.json``
### Ground truth format
Lables for each pixel are identified by a number. So if you have a
binary case, ``n_classes`` should be set to ``2`` and labels should
be ``0`` and ``1`` for each class and pixel.
In the case of multiclass, just set ``n_classes`` to the number of classes
you have and the try to produce the labels by pixels set from ``0 , 1 ,2 .., n_classes-1``.
The labels format should be png.
Our lables are 3 channel png images but only information of first channel is used.
If you have an image label with height and width of 10, for a binary case the first channel should look like this:
Label: [ [1, 0, 0, 1, 1, 0, 0, 1, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
...,
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
This means that you have an image by `10*10*3` and `pixel[0,0]` belongs
to class `1` and `pixel[0,1]` belongs to class `0`.
A small sample of training data for binarization experiment can be found here, [Training data sample](https://qurator-data.de/~vahid.rezanezhad/binarization_training_data_sample/), which contains images and lables folders.
### Training , evaluation and output
The train and evaluation folders should contain subfolders of images and labels.
The output folder should be an empty folder where the output model will be written to.
### Parameter configuration
* patches: If you want to break input images into smaller patches (input size of the model) you need to set this parameter to ``true``. In the case that the model should see the image once, like page extraction, patches should be set to ``false``.
* n_batch: Number of batches at each iteration.
* n_classes: Number of classes. In the case of binary classification this should be 2.
* n_epochs: Number of epochs.
* input_height: This indicates the height of model's input.
* input_width: This indicates the width of model's input.
* weight_decay: Weight decay of l2 regularization of model layers.
* augmentation: If you want to apply any kind of augmentation this parameter should first set to ``true``.
* flip_aug: If ``true``, different types of filp will be applied on image. Type of flips is given with "flip_index" in train.py file.
* blur_aug: If ``true``, different types of blurring will be applied on image. Type of blurrings is given with "blur_k" in train.py file.
* scaling: If ``true``, scaling will be applied on image. Scale of scaling is given with "scales" in train.py file.
* rotation_not_90: If ``true``, rotation (not 90 degree) will be applied on image. Rothation angles are given with "thetha" in train.py file.
* rotation: If ``true``, 90 degree rotation will be applied on image.
* binarization: If ``true``,Otsu thresholding will be applied to augment the input data with binarized images.
* scaling_bluring: If ``true``, combination of scaling and blurring will be applied on image.
* scaling_binarization: If ``true``, combination of scaling and binarization will be applied on image.
* scaling_flip: If ``true``, combination of scaling and flip will be applied on image.
* continue_training: If ``true``, it means that you have already trained a model and you would like to continue the training. So it is needed to provide the dir of trained model with "dir_of_start_model" and index for naming the models. For example if you have already trained for 3 epochs then your last index is 2 and if you want to continue from model_1.h5, you can set "index_start" to 3 to start naming model with index 3.
* weighted_loss: If ``true``, this means that you want to apply weighted categorical_crossentropy as loss fucntion. Be carefull if you set to ``true``the parameter "is_loss_soft_dice" should be ``false``
* data_is_provided: If you have already provided the input data you can set this to ``true``. Be sure that the train and eval data are in "dir_output". Since when once we provide training data we resize and augment them and then we write them in sub-directories train and eval in "dir_output".
* dir_train: This is the directory of "images" and "labels" (dir_train should include two subdirectories with names of images and labels ) for raw images and labels. Namely they are not prepared (not resized and not augmented) yet for training the model. When we run this tool these raw data will be transformed to suitable size needed for the model and they will be written in "dir_output" in train and eval directories. Each of train and eval include "images" and "labels" sub-directories.

@ -0,0 +1,29 @@
import os
import sys
import tensorflow as tf
import keras, warnings
from keras.optimizers import *
from sacred import Experiment
from models import *
from utils import *
from metrics import *
def configuration():
gpu_options = tf.compat.v1.GPUOptions(allow_growth=True)
session = tf.compat.v1.Session(config=tf.compat.v1.ConfigProto(gpu_options=gpu_options))
if __name__ == '__main__':
n_classes = 2
input_height = 224
input_width = 448
weight_decay = 1e-6
pretraining = False
dir_of_weights = 'model_bin_sbb_ens.h5'
# configuration()
model = resnet50_unet(n_classes, input_height, input_width, weight_decay, pretraining)
model.load_weights(dir_of_weights)
model.save('./name_in_another_python_version.h5')

@ -0,0 +1,30 @@
{
"n_classes" : 3,
"n_epochs" : 2,
"input_height" : 448,
"input_width" : 672,
"weight_decay" : 1e-6,
"n_batch" : 2,
"learning_rate": 1e-4,
"patches" : true,
"pretraining" : true,
"augmentation" : false,
"flip_aug" : false,
"blur_aug" : false,
"scaling" : true,
"binarization" : false,
"scaling_bluring" : false,
"scaling_binarization" : false,
"scaling_flip" : false,
"rotation": false,
"rotation_not_90": false,
"continue_training": false,
"index_start": 0,
"dir_of_start_model": " ",
"weighted_loss": false,
"is_loss_soft_dice": false,
"data_is_provided": false,
"dir_train": "/path/to/training/files/train",
"dir_eval": "/path/to/training/files/eval",
"dir_output": "/path/to/training/files/output"
}

@ -0,0 +1,357 @@
from keras import backend as K
import tensorflow as tf
import numpy as np
def focal_loss(gamma=2., alpha=4.):
gamma = float(gamma)
alpha = float(alpha)
def focal_loss_fixed(y_true, y_pred):
"""Focal loss for multi-classification
FL(p_t)=-alpha(1-p_t)^{gamma}ln(p_t)
Notice: y_pred is probability after softmax
gradient is d(Fl)/d(p_t) not d(Fl)/d(x) as described in paper
d(Fl)/d(p_t) * [p_t(1-p_t)] = d(Fl)/d(x)
Focal Loss for Dense Object Detection
https://arxiv.org/abs/1708.02002
Arguments:
y_true {tensor} -- ground truth labels, shape of [batch_size, num_cls]
y_pred {tensor} -- model's output, shape of [batch_size, num_cls]
Keyword Arguments:
gamma {float} -- (default: {2.0})
alpha {float} -- (default: {4.0})
Returns:
[tensor] -- loss.
"""
epsilon = 1.e-9
y_true = tf.convert_to_tensor(y_true, tf.float32)
y_pred = tf.convert_to_tensor(y_pred, tf.float32)
model_out = tf.add(y_pred, epsilon)
ce = tf.multiply(y_true, -tf.log(model_out))
weight = tf.multiply(y_true, tf.pow(tf.subtract(1., model_out), gamma))
fl = tf.multiply(alpha, tf.multiply(weight, ce))
reduced_fl = tf.reduce_max(fl, axis=1)
return tf.reduce_mean(reduced_fl)
return focal_loss_fixed
def weighted_categorical_crossentropy(weights=None):
""" weighted_categorical_crossentropy
Args:
* weights<ktensor|nparray|list>: crossentropy weights
Returns:
* weighted categorical crossentropy function
"""
def loss(y_true, y_pred):
labels_floats = tf.cast(y_true, tf.float32)
per_pixel_loss = tf.nn.sigmoid_cross_entropy_with_logits(labels=labels_floats, logits=y_pred)
if weights is not None:
weight_mask = tf.maximum(tf.reduce_max(tf.constant(
np.array(weights, dtype=np.float32)[None, None, None])
* labels_floats, axis=-1), 1.0)
per_pixel_loss = per_pixel_loss * weight_mask[:, :, :, None]
return tf.reduce_mean(per_pixel_loss)
return loss
def image_categorical_cross_entropy(y_true, y_pred, weights=None):
"""
:param y_true: tensor of shape (batch_size, height, width) representing the ground truth.
:param y_pred: tensor of shape (batch_size, height, width) representing the prediction.
:return: The mean cross-entropy on softmaxed tensors.
"""
labels_floats = tf.cast(y_true, tf.float32)
per_pixel_loss = tf.nn.sigmoid_cross_entropy_with_logits(labels=labels_floats, logits=y_pred)
if weights is not None:
weight_mask = tf.maximum(
tf.reduce_max(tf.constant(
np.array(weights, dtype=np.float32)[None, None, None])
* labels_floats, axis=-1), 1.0)
per_pixel_loss = per_pixel_loss * weight_mask[:, :, :, None]
return tf.reduce_mean(per_pixel_loss)
def class_tversky(y_true, y_pred):
smooth = 1.0 # 1.00
y_true = K.permute_dimensions(y_true, (3, 1, 2, 0))
y_pred = K.permute_dimensions(y_pred, (3, 1, 2, 0))
y_true_pos = K.batch_flatten(y_true)
y_pred_pos = K.batch_flatten(y_pred)
true_pos = K.sum(y_true_pos * y_pred_pos, 1)
false_neg = K.sum(y_true_pos * (1 - y_pred_pos), 1)
false_pos = K.sum((1 - y_true_pos) * y_pred_pos, 1)
alpha = 0.2 # 0.5
beta = 0.8
return (true_pos + smooth) / (true_pos + alpha * false_neg + (beta) * false_pos + smooth)
def focal_tversky_loss(y_true, y_pred):
pt_1 = class_tversky(y_true, y_pred)
gamma = 1.3 # 4./3.0#1.3#4.0/3.00# 0.75
return K.sum(K.pow((1 - pt_1), gamma))
def generalized_dice_coeff2(y_true, y_pred):
n_el = 1
for dim in y_true.shape:
n_el *= int(dim)
n_cl = y_true.shape[-1]
w = K.zeros(shape=(n_cl,))
w = (K.sum(y_true, axis=(0, 1, 2))) / (n_el)
w = 1 / (w ** 2 + 0.000001)
numerator = y_true * y_pred
numerator = w * K.sum(numerator, (0, 1, 2))
numerator = K.sum(numerator)
denominator = y_true + y_pred
denominator = w * K.sum(denominator, (0, 1, 2))
denominator = K.sum(denominator)
return 2 * numerator / denominator
def generalized_dice_coeff(y_true, y_pred):
axes = tuple(range(1, len(y_pred.shape) - 1))
Ncl = y_pred.shape[-1]
w = K.zeros(shape=(Ncl,))
w = K.sum(y_true, axis=axes)
w = 1 / (w ** 2 + 0.000001)
# Compute gen dice coef:
numerator = y_true * y_pred
numerator = w * K.sum(numerator, axes)
numerator = K.sum(numerator)
denominator = y_true + y_pred
denominator = w * K.sum(denominator, axes)
denominator = K.sum(denominator)
gen_dice_coef = 2 * numerator / denominator
return gen_dice_coef
def generalized_dice_loss(y_true, y_pred):
return 1 - generalized_dice_coeff2(y_true, y_pred)
def soft_dice_loss(y_true, y_pred, epsilon=1e-6):
'''
Soft dice loss calculation for arbitrary batch size, number of classes, and number of spatial dimensions.
Assumes the `channels_last` format.
# Arguments
y_true: b x X x Y( x Z...) x c One hot encoding of ground truth
y_pred: b x X x Y( x Z...) x c Network output, must sum to 1 over c channel (such as after softmax)
epsilon: Used for numerical stability to avoid divide by zero errors
# References
V-Net: Fully Convolutional Neural Networks for Volumetric Medical Image Segmentation
https://arxiv.org/abs/1606.04797
More details on Dice loss formulation
https://mediatum.ub.tum.de/doc/1395260/1395260.pdf (page 72)
Adapted from https://github.com/Lasagne/Recipes/issues/99#issuecomment-347775022
'''
# skip the batch and class axis for calculating Dice score
axes = tuple(range(1, len(y_pred.shape) - 1))
numerator = 2. * K.sum(y_pred * y_true, axes)
denominator = K.sum(K.square(y_pred) + K.square(y_true), axes)
return 1.00 - K.mean(numerator / (denominator + epsilon)) # average over classes and batch
def seg_metrics(y_true, y_pred, metric_name, metric_type='standard', drop_last=True, mean_per_class=False,
verbose=False):
"""
Compute mean metrics of two segmentation masks, via Keras.
IoU(A,B) = |A & B| / (| A U B|)
Dice(A,B) = 2*|A & B| / (|A| + |B|)
Args:
y_true: true masks, one-hot encoded.
y_pred: predicted masks, either softmax outputs, or one-hot encoded.
metric_name: metric to be computed, either 'iou' or 'dice'.
metric_type: one of 'standard' (default), 'soft', 'naive'.
In the standard version, y_pred is one-hot encoded and the mean
is taken only over classes that are present (in y_true or y_pred).
The 'soft' version of the metrics are computed without one-hot
encoding y_pred.
The 'naive' version return mean metrics where absent classes contribute
to the class mean as 1.0 (instead of being dropped from the mean).
drop_last = True: boolean flag to drop last class (usually reserved
for background class in semantic segmentation)
mean_per_class = False: return mean along batch axis for each class.
verbose = False: print intermediate results such as intersection, union
(as number of pixels).
Returns:
IoU/Dice of y_true and y_pred, as a float, unless mean_per_class == True
in which case it returns the per-class metric, averaged over the batch.
Inputs are B*W*H*N tensors, with
B = batch size,
W = width,
H = height,
N = number of classes
"""
flag_soft = (metric_type == 'soft')
flag_naive_mean = (metric_type == 'naive')
# always assume one or more classes
num_classes = K.shape(y_true)[-1]
if not flag_soft:
# get one-hot encoded masks from y_pred (true masks should already be one-hot)
y_pred = K.one_hot(K.argmax(y_pred), num_classes)
y_true = K.one_hot(K.argmax(y_true), num_classes)
# if already one-hot, could have skipped above command
# keras uses float32 instead of float64, would give error down (but numpy arrays or keras.to_categorical gives float64)
y_true = K.cast(y_true, 'float32')
y_pred = K.cast(y_pred, 'float32')
# intersection and union shapes are batch_size * n_classes (values = area in pixels)
axes = (1, 2) # W,H axes of each image
intersection = K.sum(K.abs(y_true * y_pred), axis=axes)
mask_sum = K.sum(K.abs(y_true), axis=axes) + K.sum(K.abs(y_pred), axis=axes)
union = mask_sum - intersection # or, np.logical_or(y_pred, y_true) for one-hot
smooth = .001
iou = (intersection + smooth) / (union + smooth)
dice = 2 * (intersection + smooth) / (mask_sum + smooth)
metric = {'iou': iou, 'dice': dice}[metric_name]
# define mask to be 0 when no pixels are present in either y_true or y_pred, 1 otherwise
mask = K.cast(K.not_equal(union, 0), 'float32')
if drop_last:
metric = metric[:, :-1]
mask = mask[:, :-1]
if verbose:
print('intersection, union')
print(K.eval(intersection), K.eval(union))
print(K.eval(intersection / union))
# return mean metrics: remaining axes are (batch, classes)
if flag_naive_mean:
return K.mean(metric)
# take mean only over non-absent classes
class_count = K.sum(mask, axis=0)
non_zero = tf.greater(class_count, 0)
non_zero_sum = tf.boolean_mask(K.sum(metric * mask, axis=0), non_zero)
non_zero_count = tf.boolean_mask(class_count, non_zero)
if verbose:
print('Counts of inputs with class present, metrics for non-absent classes')
print(K.eval(class_count), K.eval(non_zero_sum / non_zero_count))
return K.mean(non_zero_sum / non_zero_count)
def mean_iou(y_true, y_pred, **kwargs):
"""
Compute mean Intersection over Union of two segmentation masks, via Keras.
Calls metrics_k(y_true, y_pred, metric_name='iou'), see there for allowed kwargs.
"""
return seg_metrics(y_true, y_pred, metric_name='iou', **kwargs)
def Mean_IOU(y_true, y_pred):
nb_classes = K.int_shape(y_pred)[-1]
iou = []
true_pixels = K.argmax(y_true, axis=-1)
pred_pixels = K.argmax(y_pred, axis=-1)
void_labels = K.equal(K.sum(y_true, axis=-1), 0)
for i in range(0, nb_classes): # exclude first label (background) and last label (void)
true_labels = K.equal(true_pixels, i) # & ~void_labels
pred_labels = K.equal(pred_pixels, i) # & ~void_labels
inter = tf.to_int32(true_labels & pred_labels)
union = tf.to_int32(true_labels | pred_labels)
legal_batches = K.sum(tf.to_int32(true_labels), axis=1) > 0
ious = K.sum(inter, axis=1) / K.sum(union, axis=1)
iou.append(K.mean(tf.gather(ious, indices=tf.where(legal_batches)))) # returns average IoU of the same objects
iou = tf.stack(iou)
legal_labels = ~tf.debugging.is_nan(iou)
iou = tf.gather(iou, indices=tf.where(legal_labels))
return K.mean(iou)
def iou_vahid(y_true, y_pred):
nb_classes = tf.shape(y_true)[-1] + tf.to_int32(1)
true_pixels = K.argmax(y_true, axis=-1)
pred_pixels = K.argmax(y_pred, axis=-1)
iou = []
for i in tf.range(nb_classes):
tp = K.sum(tf.to_int32(K.equal(true_pixels, i) & K.equal(pred_pixels, i)))
fp = K.sum(tf.to_int32(K.not_equal(true_pixels, i) & K.equal(pred_pixels, i)))
fn = K.sum(tf.to_int32(K.equal(true_pixels, i) & K.not_equal(pred_pixels, i)))
iouh = tp / (tp + fp + fn)
iou.append(iouh)
return K.mean(iou)
def IoU_metric(Yi, y_predi):
# mean Intersection over Union
# Mean IoU = TP/(FN + TP + FP)
y_predi = np.argmax(y_predi, axis=3)
y_testi = np.argmax(Yi, axis=3)
IoUs = []
Nclass = int(np.max(Yi)) + 1
for c in range(Nclass):
TP = np.sum((Yi == c) & (y_predi == c))
FP = np.sum((Yi != c) & (y_predi == c))
FN = np.sum((Yi == c) & (y_predi != c))
IoU = TP / float(TP + FP + FN)
IoUs.append(IoU)
return K.cast(np.mean(IoUs), dtype='float32')
def IoU_metric_keras(y_true, y_pred):
# mean Intersection over Union
# Mean IoU = TP/(FN + TP + FP)
init = tf.global_variables_initializer()
sess = tf.Session()
sess.run(init)
return IoU_metric(y_true.eval(session=sess), y_pred.eval(session=sess))
def jaccard_distance_loss(y_true, y_pred, smooth=100):
"""
Jaccard = (|X & Y|)/ (|X|+ |Y| - |X & Y|)
= sum(|A*B|)/(sum(|A|)+sum(|B|)-sum(|A*B|))
The jaccard distance loss is usefull for unbalanced datasets. This has been
shifted so it converges on 0 and is smoothed to avoid exploding or disapearing
gradient.
Ref: https://en.wikipedia.org/wiki/Jaccard_index
@url: https://gist.github.com/wassname/f1452b748efcbeb4cb9b1d059dce6f96
@author: wassname
"""
intersection = K.sum(K.abs(y_true * y_pred), axis=-1)
sum_ = K.sum(K.abs(y_true) + K.abs(y_pred), axis=-1)
jac = (intersection + smooth) / (sum_ - intersection + smooth)
return (1 - jac) * smooth

@ -0,0 +1,294 @@
from keras.models import *
from keras.layers import *
from keras import layers
from keras.regularizers import l2
resnet50_Weights_path = './pretrained_model/resnet50_weights_tf_dim_ordering_tf_kernels_notop.h5'
IMAGE_ORDERING = 'channels_last'
MERGE_AXIS = -1
def one_side_pad(x):
x = ZeroPadding2D((1, 1), data_format=IMAGE_ORDERING)(x)
if IMAGE_ORDERING == 'channels_first':
x = Lambda(lambda x: x[:, :, :-1, :-1])(x)
elif IMAGE_ORDERING == 'channels_last':
x = Lambda(lambda x: x[:, :-1, :-1, :])(x)
return x
def identity_block(input_tensor, kernel_size, filters, stage, block):
"""The identity block is the block that has no conv layer at shortcut.
# Arguments
input_tensor: input tensor
kernel_size: defualt 3, the kernel size of middle conv layer at main path
filters: list of integers, the filterss of 3 conv layer at main path
stage: integer, current stage label, used for generating layer names
block: 'a','b'..., current block label, used for generating layer names
# Returns
Output tensor for the block.
"""
filters1, filters2, filters3 = filters
if IMAGE_ORDERING == 'channels_last':
bn_axis = 3
else:
bn_axis = 1
conv_name_base = 'res' + str(stage) + block + '_branch'
bn_name_base = 'bn' + str(stage) + block + '_branch'
x = Conv2D(filters1, (1, 1), data_format=IMAGE_ORDERING, name=conv_name_base + '2a')(input_tensor)
x = BatchNormalization(axis=bn_axis, name=bn_name_base + '2a')(x)
x = Activation('relu')(x)
x = Conv2D(filters2, kernel_size, data_format=IMAGE_ORDERING,
padding='same', name=conv_name_base + '2b')(x)
x = BatchNormalization(axis=bn_axis, name=bn_name_base + '2b')(x)
x = Activation('relu')(x)
x = Conv2D(filters3, (1, 1), data_format=IMAGE_ORDERING, name=conv_name_base + '2c')(x)
x = BatchNormalization(axis=bn_axis, name=bn_name_base + '2c')(x)
x = layers.add([x, input_tensor])
x = Activation('relu')(x)
return x
def conv_block(input_tensor, kernel_size, filters, stage, block, strides=(2, 2)):
"""conv_block is the block that has a conv layer at shortcut
# Arguments
input_tensor: input tensor
kernel_size: defualt 3, the kernel size of middle conv layer at main path
filters: list of integers, the filterss of 3 conv layer at main path
stage: integer, current stage label, used for generating layer names
block: 'a','b'..., current block label, used for generating layer names
# Returns
Output tensor for the block.
Note that from stage 3, the first conv layer at main path is with strides=(2,2)
And the shortcut should have strides=(2,2) as well
"""
filters1, filters2, filters3 = filters
if IMAGE_ORDERING == 'channels_last':
bn_axis = 3
else:
bn_axis = 1
conv_name_base = 'res' + str(stage) + block + '_branch'
bn_name_base = 'bn' + str(stage) + block + '_branch'
x = Conv2D(filters1, (1, 1), data_format=IMAGE_ORDERING, strides=strides,
name=conv_name_base + '2a')(input_tensor)
x = BatchNormalization(axis=bn_axis, name=bn_name_base + '2a')(x)
x = Activation('relu')(x)
x = Conv2D(filters2, kernel_size, data_format=IMAGE_ORDERING, padding='same',
name=conv_name_base + '2b')(x)
x = BatchNormalization(axis=bn_axis, name=bn_name_base + '2b')(x)
x = Activation('relu')(x)
x = Conv2D(filters3, (1, 1), data_format=IMAGE_ORDERING, name=conv_name_base + '2c')(x)
x = BatchNormalization(axis=bn_axis, name=bn_name_base + '2c')(x)
shortcut = Conv2D(filters3, (1, 1), data_format=IMAGE_ORDERING, strides=strides,
name=conv_name_base + '1')(input_tensor)
shortcut = BatchNormalization(axis=bn_axis, name=bn_name_base + '1')(shortcut)
x = layers.add([x, shortcut])
x = Activation('relu')(x)
return x
def resnet50_unet_light(n_classes, input_height=224, input_width=224, weight_decay=1e-6, pretraining=False):
assert input_height % 32 == 0
assert input_width % 32 == 0
img_input = Input(shape=(input_height, input_width, 3))
if IMAGE_ORDERING == 'channels_last':
bn_axis = 3
else:
bn_axis = 1
x = ZeroPadding2D((3, 3), data_format=IMAGE_ORDERING)(img_input)
x = Conv2D(64, (7, 7), data_format=IMAGE_ORDERING, strides=(2, 2), kernel_regularizer=l2(weight_decay),
name='conv1')(x)
f1 = x
x = BatchNormalization(axis=bn_axis, name='bn_conv1')(x)
x = Activation('relu')(x)
x = MaxPooling2D((3, 3), data_format=IMAGE_ORDERING, strides=(2, 2))(x)
x = conv_block(x, 3, [64, 64, 256], stage=2, block='a', strides=(1, 1))
x = identity_block(x, 3, [64, 64, 256], stage=2, block='b')
x = identity_block(x, 3, [64, 64, 256], stage=2, block='c')
f2 = one_side_pad(x)
x = conv_block(x, 3, [128, 128, 512], stage=3, block='a')
x = identity_block(x, 3, [128, 128, 512], stage=3, block='b')
x = identity_block(x, 3, [128, 128, 512], stage=3, block='c')
x = identity_block(x, 3, [128, 128, 512], stage=3, block='d')
f3 = x
x = conv_block(x, 3, [256, 256, 1024], stage=4, block='a')
x = identity_block(x, 3, [256, 256, 1024], stage=4, block='b')
x = identity_block(x, 3, [256, 256, 1024], stage=4, block='c')
x = identity_block(x, 3, [256, 256, 1024], stage=4, block='d')
x = identity_block(x, 3, [256, 256, 1024], stage=4, block='e')
x = identity_block(x, 3, [256, 256, 1024], stage=4, block='f')
f4 = x
x = conv_block(x, 3, [512, 512, 2048], stage=5, block='a')
x = identity_block(x, 3, [512, 512, 2048], stage=5, block='b')
x = identity_block(x, 3, [512, 512, 2048], stage=5, block='c')
f5 = x
if pretraining:
model = Model(img_input, x).load_weights(resnet50_Weights_path)
v512_2048 = Conv2D(512, (1, 1), padding='same', data_format=IMAGE_ORDERING, kernel_regularizer=l2(weight_decay))(f5)
v512_2048 = (BatchNormalization(axis=bn_axis))(v512_2048)
v512_2048 = Activation('relu')(v512_2048)
v512_1024 = Conv2D(512, (1, 1), padding='same', data_format=IMAGE_ORDERING, kernel_regularizer=l2(weight_decay))(f4)
v512_1024 = (BatchNormalization(axis=bn_axis))(v512_1024)
v512_1024 = Activation('relu')(v512_1024)
o = (UpSampling2D((2, 2), data_format=IMAGE_ORDERING))(v512_2048)
o = (concatenate([o, v512_1024], axis=MERGE_AXIS))
o = (ZeroPadding2D((1, 1), data_format=IMAGE_ORDERING))(o)
o = (Conv2D(512, (3, 3), padding='valid', data_format=IMAGE_ORDERING, kernel_regularizer=l2(weight_decay)))(o)
o = (BatchNormalization(axis=bn_axis))(o)
o = Activation('relu')(o)
o = (UpSampling2D((2, 2), data_format=IMAGE_ORDERING))(o)
o = (concatenate([o, f3], axis=MERGE_AXIS))
o = (ZeroPadding2D((1, 1), data_format=IMAGE_ORDERING))(o)
o = (Conv2D(256, (3, 3), padding='valid', data_format=IMAGE_ORDERING, kernel_regularizer=l2(weight_decay)))(o)
o = (BatchNormalization(axis=bn_axis))(o)
o = Activation('relu')(o)
o = (UpSampling2D((2, 2), data_format=IMAGE_ORDERING))(o)
o = (concatenate([o, f2], axis=MERGE_AXIS))
o = (ZeroPadding2D((1, 1), data_format=IMAGE_ORDERING))(o)
o = (Conv2D(128, (3, 3), padding='valid', data_format=IMAGE_ORDERING, kernel_regularizer=l2(weight_decay)))(o)
o = (BatchNormalization(axis=bn_axis))(o)
o = Activation('relu')(o)
o = (UpSampling2D((2, 2), data_format=IMAGE_ORDERING))(o)
o = (concatenate([o, f1], axis=MERGE_AXIS))
o = (ZeroPadding2D((1, 1), data_format=IMAGE_ORDERING))(o)
o = (Conv2D(64, (3, 3), padding='valid', data_format=IMAGE_ORDERING, kernel_regularizer=l2(weight_decay)))(o)
o = (BatchNormalization(axis=bn_axis))(o)
o = Activation('relu')(o)
o = (UpSampling2D((2, 2), data_format=IMAGE_ORDERING))(o)
o = (concatenate([o, img_input], axis=MERGE_AXIS))
o = (ZeroPadding2D((1, 1), data_format=IMAGE_ORDERING))(o)
o = (Conv2D(32, (3, 3), padding='valid', data_format=IMAGE_ORDERING, kernel_regularizer=l2(weight_decay)))(o)
o = (BatchNormalization(axis=bn_axis))(o)
o = Activation('relu')(o)
o = Conv2D(n_classes, (1, 1), padding='same', data_format=IMAGE_ORDERING, kernel_regularizer=l2(weight_decay))(o)
o = (BatchNormalization(axis=bn_axis))(o)
o = (Activation('softmax'))(o)
model = Model(img_input, o)
return model
def resnet50_unet(n_classes, input_height=224, input_width=224, weight_decay=1e-6, pretraining=False):
assert input_height % 32 == 0
assert input_width % 32 == 0
img_input = Input(shape=(input_height, input_width, 3))
if IMAGE_ORDERING == 'channels_last':
bn_axis = 3
else:
bn_axis = 1
x = ZeroPadding2D((3, 3), data_format=IMAGE_ORDERING)(img_input)
x = Conv2D(64, (7, 7), data_format=IMAGE_ORDERING, strides=(2, 2), kernel_regularizer=l2(weight_decay),
name='conv1')(x)
f1 = x
x = BatchNormalization(axis=bn_axis, name='bn_conv1')(x)
x = Activation('relu')(x)
x = MaxPooling2D((3, 3), data_format=IMAGE_ORDERING, strides=(2, 2))(x)
x = conv_block(x, 3, [64, 64, 256], stage=2, block='a', strides=(1, 1))
x = identity_block(x, 3, [64, 64, 256], stage=2, block='b')
x = identity_block(x, 3, [64, 64, 256], stage=2, block='c')
f2 = one_side_pad(x)
x = conv_block(x, 3, [128, 128, 512], stage=3, block='a')
x = identity_block(x, 3, [128, 128, 512], stage=3, block='b')
x = identity_block(x, 3, [128, 128, 512], stage=3, block='c')
x = identity_block(x, 3, [128, 128, 512], stage=3, block='d')
f3 = x
x = conv_block(x, 3, [256, 256, 1024], stage=4, block='a')
x = identity_block(x, 3, [256, 256, 1024], stage=4, block='b')
x = identity_block(x, 3, [256, 256, 1024], stage=4, block='c')
x = identity_block(x, 3, [256, 256, 1024], stage=4, block='d')
x = identity_block(x, 3, [256, 256, 1024], stage=4, block='e')
x = identity_block(x, 3, [256, 256, 1024], stage=4, block='f')
f4 = x
x = conv_block(x, 3, [512, 512, 2048], stage=5, block='a')
x = identity_block(x, 3, [512, 512, 2048], stage=5, block='b')
x = identity_block(x, 3, [512, 512, 2048], stage=5, block='c')
f5 = x
if pretraining:
Model(img_input, x).load_weights(resnet50_Weights_path)
v1024_2048 = Conv2D(1024, (1, 1), padding='same', data_format=IMAGE_ORDERING, kernel_regularizer=l2(weight_decay))(
f5)
v1024_2048 = (BatchNormalization(axis=bn_axis))(v1024_2048)
v1024_2048 = Activation('relu')(v1024_2048)
o = (UpSampling2D((2, 2), data_format=IMAGE_ORDERING))(v1024_2048)
o = (concatenate([o, f4], axis=MERGE_AXIS))
o = (ZeroPadding2D((1, 1), data_format=IMAGE_ORDERING))(o)
o = (Conv2D(512, (3, 3), padding='valid', data_format=IMAGE_ORDERING, kernel_regularizer=l2(weight_decay)))(o)
o = (BatchNormalization(axis=bn_axis))(o)
o = Activation('relu')(o)
o = (UpSampling2D((2, 2), data_format=IMAGE_ORDERING))(o)
o = (concatenate([o, f3], axis=MERGE_AXIS))
o = (ZeroPadding2D((1, 1), data_format=IMAGE_ORDERING))(o)
o = (Conv2D(256, (3, 3), padding='valid', data_format=IMAGE_ORDERING, kernel_regularizer=l2(weight_decay)))(o)
o = (BatchNormalization(axis=bn_axis))(o)
o = Activation('relu')(o)
o = (UpSampling2D((2, 2), data_format=IMAGE_ORDERING))(o)
o = (concatenate([o, f2], axis=MERGE_AXIS))
o = (ZeroPadding2D((1, 1), data_format=IMAGE_ORDERING))(o)
o = (Conv2D(128, (3, 3), padding='valid', data_format=IMAGE_ORDERING, kernel_regularizer=l2(weight_decay)))(o)
o = (BatchNormalization(axis=bn_axis))(o)
o = Activation('relu')(o)
o = (UpSampling2D((2, 2), data_format=IMAGE_ORDERING))(o)
o = (concatenate([o, f1], axis=MERGE_AXIS))
o = (ZeroPadding2D((1, 1), data_format=IMAGE_ORDERING))(o)
o = (Conv2D(64, (3, 3), padding='valid', data_format=IMAGE_ORDERING, kernel_regularizer=l2(weight_decay)))(o)
o = (BatchNormalization(axis=bn_axis))(o)
o = Activation('relu')(o)
o = (UpSampling2D((2, 2), data_format=IMAGE_ORDERING))(o)
o = (concatenate([o, img_input], axis=MERGE_AXIS))
o = (ZeroPadding2D((1, 1), data_format=IMAGE_ORDERING))(o)
o = (Conv2D(32, (3, 3), padding='valid', data_format=IMAGE_ORDERING, kernel_regularizer=l2(weight_decay)))(o)
o = (BatchNormalization(axis=bn_axis))(o)
o = Activation('relu')(o)
o = Conv2D(n_classes, (1, 1), padding='same', data_format=IMAGE_ORDERING, kernel_regularizer=l2(weight_decay))(o)
o = (BatchNormalization(axis=bn_axis))(o)
o = (Activation('softmax'))(o)
model = Model(img_input, o)
return model

@ -0,0 +1,273 @@
#! /usr/bin/env python3
__version__ = '1.0'
import argparse
import sys
import os
import numpy as np
import warnings
import xml.etree.ElementTree as ET
from tqdm import tqdm
import cv2
with warnings.catch_warnings():
warnings.simplefilter("ignore")
__doc__ = \
"""
tool to extract 2d or 3d RGB images from page xml data. In former case output will be 1
2D image array which each class has filled with a pixel value. In the case of 3D RGB image
each class will be defined with a RGB value and beside images a text file of classes also will be produced.
This classes.txt file is required for dhsegment tool.
"""
class pagexml2img:
def __init__(self, dir_in, out_dir, output_type):
self.dir = dir_in
self.output_dir = out_dir
self.output_type = output_type
def get_content_of_dir(self):
"""
Listing all ground truth page xml files. All files are needed to have xml format.
"""
gt_all = os.listdir(self.dir)
self.gt_list = [file for file in gt_all if file.split('.')[len(file.split('.')) - 1] == 'xml']
def get_images_of_ground_truth(self):
"""
Reading the page xml files and write the ground truth images into given output directory.
"""
if self.output_type == '3d' or self.output_type == '3D':
classes = np.array([[0, 0, 0, 1, 0, 0, 0, 0],
[255, 0, 0, 0, 1, 0, 0, 0],
[0, 255, 0, 0, 0, 1, 0, 0],
[0, 0, 255, 0, 0, 0, 1, 0],
[0, 255, 255, 0, 0, 0, 0, 1]])
for index in tqdm(range(len(self.gt_list))):
try:
tree1 = ET.parse(self.dir + '/' + self.gt_list[index])
root1 = tree1.getroot()
alltags = [elem.tag for elem in root1.iter()]
link = alltags[0].split('}')[0] + '}'
region_tags = np.unique([x for x in alltags if x.endswith('Region')])
for jj in root1.iter(link + 'Page'):
y_len = int(jj.attrib['imageHeight'])
x_len = int(jj.attrib['imageWidth'])
co_text = []
co_sep = []
co_img = []
co_table = []
for tag in region_tags:
if tag.endswith('}TextRegion') or tag.endswith('}Textregion') or tag.endswith(
'}textRegion') or tag.endswith('}textregion'):
for nn in root1.iter(tag):
for co_it in nn.iter(link + 'Coords'):
if bool(co_it.attrib) == False:
c_t_in = []
for ll in nn.iter(link + 'Point'):
c_t_in.append(
[int(np.float(ll.attrib['x'])), int(np.float(ll.attrib['y']))])
co_text.append(np.array(c_t_in))
print(co_text)
elif bool(co_it.attrib) == True and 'points' in co_it.attrib.keys():
p_h = co_it.attrib['points'].split(' ')
co_text.append(
np.array([[int(x.split(',')[0]), int(x.split(',')[1])] for x in p_h]))
elif tag.endswith('}ImageRegion') or tag.endswith('}Imageregion') or tag.endswith(
'}imageRegion') or tag.endswith('}imageregion'):
for nn in root1.iter(tag):
for co_it in nn.iter(link + 'Coords'):
if bool(co_it.attrib) == False:
c_i_in = []
for ll in nn.iter(link + 'Point'):
c_i_in.append(
[int(np.float(ll.attrib['x'])), int(np.float(ll.attrib['y']))])
co_img.append(np.array(c_i_in))
elif bool(co_it.attrib) == True and 'points' in co_it.attrib.keys():
p_h = co_it.attrib['points'].split(' ')
co_img.append(
np.array([[int(x.split(',')[0]), int(x.split(',')[1])] for x in p_h]))
elif tag.endswith('}SeparatorRegion') or tag.endswith('}Separatorregion') or tag.endswith(
'}separatorRegion') or tag.endswith('}separatorregion'):
for nn in root1.iter(tag):
for co_it in nn.iter(link + 'Coords'):
if bool(co_it.attrib) == False:
c_s_in = []
for ll in nn.iter(link + 'Point'):
c_s_in.append(
[int(np.float(ll.attrib['x'])), int(np.float(ll.attrib['y']))])
co_sep.append(np.array(c_s_in))
elif bool(co_it.attrib) == True and 'points' in co_it.attrib.keys():
p_h = co_it.attrib['points'].split(' ')
co_sep.append(
np.array([[int(x.split(',')[0]), int(x.split(',')[1])] for x in p_h]))
elif tag.endswith('}TableRegion') or tag.endswith('}tableRegion') or tag.endswith(
'}Tableregion') or tag.endswith('}tableregion'):
for nn in root1.iter(tag):
for co_it in nn.iter(link + 'Coords'):
if bool(co_it.attrib) == False:
c_ta_in = []
for ll in nn.iter(link + 'Point'):
c_ta_in.append(
[int(np.float(ll.attrib['x'])), int(np.float(ll.attrib['y']))])
co_table.append(np.array(c_ta_in))
elif bool(co_it.attrib) == True and 'points' in co_it.attrib.keys():
p_h = co_it.attrib['points'].split(' ')
co_table.append(
np.array([[int(x.split(',')[0]), int(x.split(',')[1])] for x in p_h]))
else:
pass
img = np.zeros((y_len, x_len, 3))
img_poly = cv2.fillPoly(img, pts=co_text, color=(255, 0, 0))
img_poly = cv2.fillPoly(img, pts=co_img, color=(0, 255, 0))
img_poly = cv2.fillPoly(img, pts=co_sep, color=(0, 0, 255))
img_poly = cv2.fillPoly(img, pts=co_table, color=(0, 255, 255))
try:
cv2.imwrite(self.output_dir + '/' + self.gt_list[index].split('-')[1].split('.')[0] + '.png',
img_poly)
except:
cv2.imwrite(self.output_dir + '/' + self.gt_list[index].split('.')[0] + '.png', img_poly)
except:
pass
np.savetxt(self.output_dir + '/../classes.txt', classes)
if self.output_type == '2d' or self.output_type == '2D':
for index in tqdm(range(len(self.gt_list))):
try:
tree1 = ET.parse(self.dir + '/' + self.gt_list[index])
root1 = tree1.getroot()
alltags = [elem.tag for elem in root1.iter()]
link = alltags[0].split('}')[0] + '}'
region_tags = np.unique([x for x in alltags if x.endswith('Region')])
for jj in root1.iter(link + 'Page'):
y_len = int(jj.attrib['imageHeight'])
x_len = int(jj.attrib['imageWidth'])
co_text = []
co_sep = []
co_img = []
co_table = []
for tag in region_tags:
if tag.endswith('}TextRegion') or tag.endswith('}Textregion') or tag.endswith(
'}textRegion') or tag.endswith('}textregion'):
for nn in root1.iter(tag):
for co_it in nn.iter(link + 'Coords'):
if bool(co_it.attrib) == False:
c_t_in = []
for ll in nn.iter(link + 'Point'):
c_t_in.append(
[int(np.float(ll.attrib['x'])), int(np.float(ll.attrib['y']))])
co_text.append(np.array(c_t_in))
print(co_text)
elif bool(co_it.attrib) == True and 'points' in co_it.attrib.keys():
p_h = co_it.attrib['points'].split(' ')
co_text.append(
np.array([[int(x.split(',')[0]), int(x.split(',')[1])] for x in p_h]))
elif tag.endswith('}ImageRegion') or tag.endswith('}Imageregion') or tag.endswith(
'}imageRegion') or tag.endswith('}imageregion'):
for nn in root1.iter(tag):
for co_it in nn.iter(link + 'Coords'):
if bool(co_it.attrib) == False:
c_i_in = []
for ll in nn.iter(link + 'Point'):
c_i_in.append(
[int(np.float(ll.attrib['x'])), int(np.float(ll.attrib['y']))])
co_img.append(np.array(c_i_in))
elif bool(co_it.attrib) == True and 'points' in co_it.attrib.keys():
p_h = co_it.attrib['points'].split(' ')
co_img.append(
np.array([[int(x.split(',')[0]), int(x.split(',')[1])] for x in p_h]))
elif tag.endswith('}SeparatorRegion') or tag.endswith('}Separatorregion') or tag.endswith(
'}separatorRegion') or tag.endswith('}separatorregion'):
for nn in root1.iter(tag):
for co_it in nn.iter(link + 'Coords'):
if bool(co_it.attrib) == False:
c_s_in = []
for ll in nn.iter(link + 'Point'):
c_s_in.append(
[int(np.float(ll.attrib['x'])), int(np.float(ll.attrib['y']))])
co_sep.append(np.array(c_s_in))
elif bool(co_it.attrib) == True and 'points' in co_it.attrib.keys():
p_h = co_it.attrib['points'].split(' ')
co_sep.append(
np.array([[int(x.split(',')[0]), int(x.split(',')[1])] for x in p_h]))
elif tag.endswith('}TableRegion') or tag.endswith('}tableRegion') or tag.endswith(
'}Tableregion') or tag.endswith('}tableregion'):
for nn in root1.iter(tag):
for co_it in nn.iter(link + 'Coords'):
if bool(co_it.attrib) == False:
c_ta_in = []
for ll in nn.iter(link + 'Point'):
c_ta_in.append(
[int(np.float(ll.attrib['x'])), int(np.float(ll.attrib['y']))])
co_table.append(np.array(c_ta_in))
elif bool(co_it.attrib) == True and 'points' in co_it.attrib.keys():
p_h = co_it.attrib['points'].split(' ')
co_table.append(
np.array([[int(x.split(',')[0]), int(x.split(',')[1])] for x in p_h]))
else:
pass
img = np.zeros((y_len, x_len))
img_poly = cv2.fillPoly(img, pts=co_text, color=(1, 1, 1))
img_poly = cv2.fillPoly(img, pts=co_img, color=(2, 2, 2))
img_poly = cv2.fillPoly(img, pts=co_sep, color=(3, 3, 3))
img_poly = cv2.fillPoly(img, pts=co_table, color=(4, 4, 4))
try:
cv2.imwrite(self.output_dir + '/' + self.gt_list[index].split('-')[1].split('.')[0] + '.png',
img_poly)
except:
cv2.imwrite(self.output_dir + '/' + self.gt_list[index].split('.')[0] + '.png', img_poly)
except:
pass
def run(self):
self.get_content_of_dir()
self.get_images_of_ground_truth()
def main():
parser = argparse.ArgumentParser()
parser.add_argument('-dir_in', '--dir_in', dest='inp1', default=None, help='directory of page-xml files')
parser.add_argument('-dir_out', '--dir_out', dest='inp2', default=None,
help='directory where ground truth images would be written')
parser.add_argument('-type', '--type', dest='inp3', default=None,
help='this defines how output should be. A 2d image array or a 3d image array encoded with RGB color. Just pass 2d or 3d. The file will be saved one directory up. 2D image array is 3d but only information of one channel would be enough since all channels have the same values.')
options = parser.parse_args()
possibles = globals()
possibles.update(locals())
x = pagexml2img(options.inp1, options.inp2, options.inp3)
x.run()
if __name__ == "__main__":
main()

@ -0,0 +1,221 @@
import os
import sys
import tensorflow as tf
from tensorflow.compat.v1.keras.backend import set_session
import keras, warnings
from keras.optimizers import *
from sacred import Experiment
from models import *
from utils import *
from metrics import *
from keras.models import load_model
from tqdm import tqdm
def configuration():
keras.backend.clear_session()
tf.reset_default_graph()
warnings.filterwarnings('ignore')
os.environ['CUDA_DEVICE_ORDER'] = 'PCI_BUS_ID'
config = tf.ConfigProto(log_device_placement=False, allow_soft_placement=True)
config.gpu_options.allow_growth = True
config.gpu_options.per_process_gpu_memory_fraction = 0.95 # 0.95
config.gpu_options.visible_device_list = "0"
set_session(tf.Session(config=config))
def get_dirs_or_files(input_data):
if os.path.isdir(input_data):
image_input, labels_input = os.path.join(input_data, 'images/'), os.path.join(input_data, 'labels/')
# Check if training dir exists
assert os.path.isdir(image_input), "{} is not a directory".format(image_input)
assert os.path.isdir(labels_input), "{} is not a directory".format(labels_input)
return image_input, labels_input
ex = Experiment()
@ex.config
def config_params():
n_classes = None # Number of classes. If your case study is binary case the set it to 2 and otherwise give your number of cases.
n_epochs = 1
input_height = 224 * 1
input_width = 224 * 1
weight_decay = 1e-6 # Weight decay of l2 regularization of model layers.
n_batch = 1 # Number of batches at each iteration.
learning_rate = 1e-4
patches = False # Make patches of image in order to use all information of image. In the case of page
# extraction this should be set to false since model should see all image.
augmentation = False
flip_aug = False # Flip image (augmentation).
blur_aug = False # Blur patches of image (augmentation).
scaling = False # Scaling of patches (augmentation) will be imposed if this set to true.
binarization = False # Otsu thresholding. Used for augmentation in the case of binary case like textline prediction. For multicases should not be applied.
dir_train = None # Directory of training dataset (sub-folders should be named images and labels).
dir_eval = None # Directory of validation dataset (sub-folders should be named images and labels).
dir_output = None # Directory of output where the model should be saved.
pretraining = False # Set true to load pretrained weights of resnet50 encoder.
scaling_bluring = False
scaling_binarization = False
scaling_flip = False
thetha = [10, -10]
blur_k = ['blur', 'guass', 'median'] # Used in order to blur image. Used for augmentation.
scales = [0.5, 2] # Scale patches with these scales. Used for augmentation.
flip_index = [0, 1, -1] # Flip image. Used for augmentation.
continue_training = False # If
index_start = 0
dir_of_start_model = ''
is_loss_soft_dice = False
weighted_loss = False
data_is_provided = False
@ex.automain
def run(n_classes, n_epochs, input_height,
input_width, weight_decay, weighted_loss,
index_start, dir_of_start_model, is_loss_soft_dice,
n_batch, patches, augmentation, flip_aug,
blur_aug, scaling, binarization,
blur_k, scales, dir_train, data_is_provided,
scaling_bluring, scaling_binarization, rotation,
rotation_not_90, thetha, scaling_flip, continue_training,
flip_index, dir_eval, dir_output, pretraining, learning_rate):
if data_is_provided:
dir_train_flowing = os.path.join(dir_output, 'train')
dir_eval_flowing = os.path.join(dir_output, 'eval')
dir_flow_train_imgs = os.path.join(dir_train_flowing, 'images')
dir_flow_train_labels = os.path.join(dir_train_flowing, 'labels')
dir_flow_eval_imgs = os.path.join(dir_eval_flowing, 'images')
dir_flow_eval_labels = os.path.join(dir_eval_flowing, 'labels')
configuration()
else:
dir_img, dir_seg = get_dirs_or_files(dir_train)
dir_img_val, dir_seg_val = get_dirs_or_files(dir_eval)
# make first a directory in output for both training and evaluations in order to flow data from these directories.
dir_train_flowing = os.path.join(dir_output, 'train')
dir_eval_flowing = os.path.join(dir_output, 'eval')
dir_flow_train_imgs = os.path.join(dir_train_flowing, 'images/')
dir_flow_train_labels = os.path.join(dir_train_flowing, 'labels/')
dir_flow_eval_imgs = os.path.join(dir_eval_flowing, 'images/')
dir_flow_eval_labels = os.path.join(dir_eval_flowing, 'labels/')
if os.path.isdir(dir_train_flowing):
os.system('rm -rf ' + dir_train_flowing)
os.makedirs(dir_train_flowing)
else:
os.makedirs(dir_train_flowing)
if os.path.isdir(dir_eval_flowing):
os.system('rm -rf ' + dir_eval_flowing)
os.makedirs(dir_eval_flowing)
else:
os.makedirs(dir_eval_flowing)
os.mkdir(dir_flow_train_imgs)
os.mkdir(dir_flow_train_labels)
os.mkdir(dir_flow_eval_imgs)
os.mkdir(dir_flow_eval_labels)
# set the gpu configuration
configuration()
# writing patches into a sub-folder in order to be flowed from directory.
provide_patches(dir_img, dir_seg, dir_flow_train_imgs,
dir_flow_train_labels,
input_height, input_width, blur_k, blur_aug,
flip_aug, binarization, scaling, scales, flip_index,
scaling_bluring, scaling_binarization, rotation,
rotation_not_90, thetha, scaling_flip,
augmentation=augmentation, patches=patches)
provide_patches(dir_img_val, dir_seg_val, dir_flow_eval_imgs,
dir_flow_eval_labels,
input_height, input_width, blur_k, blur_aug,
flip_aug, binarization, scaling, scales, flip_index,
scaling_bluring, scaling_binarization, rotation,
rotation_not_90, thetha, scaling_flip,
augmentation=False, patches=patches)
if weighted_loss:
weights = np.zeros(n_classes)
if data_is_provided:
for obj in os.listdir(dir_flow_train_labels):
try:
label_obj = cv2.imread(dir_flow_train_labels + '/' + obj)
label_obj_one_hot = get_one_hot(label_obj, label_obj.shape[0], label_obj.shape[1], n_classes)
weights += (label_obj_one_hot.sum(axis=0)).sum(axis=0)
except:
pass
else:
for obj in os.listdir(dir_seg):
try:
label_obj = cv2.imread(dir_seg + '/' + obj)
label_obj_one_hot = get_one_hot(label_obj, label_obj.shape[0], label_obj.shape[1], n_classes)
weights += (label_obj_one_hot.sum(axis=0)).sum(axis=0)
except:
pass
weights = 1.00 / weights
weights = weights / float(np.sum(weights))
weights = weights / float(np.min(weights))
weights = weights / float(np.sum(weights))
if continue_training:
if is_loss_soft_dice:
model = load_model(dir_of_start_model, compile=True, custom_objects={'soft_dice_loss': soft_dice_loss})
if weighted_loss:
model = load_model(dir_of_start_model, compile=True,
custom_objects={'loss': weighted_categorical_crossentropy(weights)})
if not is_loss_soft_dice and not weighted_loss:
model = load_model(dir_of_start_model, compile=True)
else:
# get our model.
index_start = 0
model = resnet50_unet(n_classes, input_height, input_width, weight_decay, pretraining)
# if you want to see the model structure just uncomment model summary.
# model.summary()
if not is_loss_soft_dice and not weighted_loss:
model.compile(loss='categorical_crossentropy',
optimizer=Adam(lr=learning_rate), metrics=['accuracy'])
if is_loss_soft_dice:
model.compile(loss=soft_dice_loss,
optimizer=Adam(lr=learning_rate), metrics=['accuracy'])
if weighted_loss:
model.compile(loss=weighted_categorical_crossentropy(weights),
optimizer=Adam(lr=learning_rate), metrics=['accuracy'])
# generating train and evaluation data
train_gen = data_gen(dir_flow_train_imgs, dir_flow_train_labels, batch_size=n_batch,
input_height=input_height, input_width=input_width, n_classes=n_classes)
val_gen = data_gen(dir_flow_eval_imgs, dir_flow_eval_labels, batch_size=n_batch,
input_height=input_height, input_width=input_width, n_classes=n_classes)
for i in tqdm(range(index_start, n_epochs + index_start)):
model.fit_generator(
train_gen,
steps_per_epoch=int(len(os.listdir(dir_flow_train_imgs)) / n_batch) - 1,
validation_data=val_gen,
validation_steps=1,
epochs=1)
model.save(dir_output + '/' + 'model_' + str(i) + '.h5')
# os.system('rm -rf '+dir_train_flowing)
# os.system('rm -rf '+dir_eval_flowing)
# model.save(dir_output+'/'+'model'+'.h5')

@ -0,0 +1,494 @@
import os
import cv2
import numpy as np
import seaborn as sns
from scipy.ndimage.interpolation import map_coordinates
from scipy.ndimage.filters import gaussian_filter
import random
from tqdm import tqdm
import imutils
import math
def bluring(img_in, kind):
if kind == 'guass':
img_blur = cv2.GaussianBlur(img_in, (5, 5), 0)
elif kind == "median":
img_blur = cv2.medianBlur(img_in, 5)
elif kind == 'blur':
img_blur = cv2.blur(img_in, (5, 5))
return img_blur
def elastic_transform(image, alpha, sigma, seedj, random_state=None):
"""Elastic deformation of images as described in [Simard2003]_.
.. [Simard2003] Simard, Steinkraus and Platt, "Best Practices for
Convolutional Neural Networks applied to Visual Document Analysis", in
Proc. of the International Conference on Document Analysis and
Recognition, 2003.
"""
if random_state is None:
random_state = np.random.RandomState(seedj)
shape = image.shape
dx = gaussian_filter((random_state.rand(*shape) * 2 - 1), sigma, mode="constant", cval=0) * alpha
dy = gaussian_filter((random_state.rand(*shape) * 2 - 1), sigma, mode="constant", cval=0) * alpha
dz = np.zeros_like(dx)
x, y, z = np.meshgrid(np.arange(shape[1]), np.arange(shape[0]), np.arange(shape[2]))
indices = np.reshape(y + dy, (-1, 1)), np.reshape(x + dx, (-1, 1)), np.reshape(z, (-1, 1))
distored_image = map_coordinates(image, indices, order=1, mode='reflect')
return distored_image.reshape(image.shape)
def rotation_90(img):
img_rot = np.zeros((img.shape[1], img.shape[0], img.shape[2]))
img_rot[:, :, 0] = img[:, :, 0].T
img_rot[:, :, 1] = img[:, :, 1].T
img_rot[:, :, 2] = img[:, :, 2].T
return img_rot
def rotatedRectWithMaxArea(w, h, angle):
"""
Given a rectangle of size wxh that has been rotated by 'angle' (in
radians), computes the width and height of the largest possible
axis-aligned rectangle (maximal area) within the rotated rectangle.
"""
if w <= 0 or h <= 0:
return 0, 0
width_is_longer = w >= h
side_long, side_short = (w, h) if width_is_longer else (h, w)
# since the solutions for angle, -angle and 180-angle are all the same,
# if suffices to look at the first quadrant and the absolute values of sin,cos:
sin_a, cos_a = abs(math.sin(angle)), abs(math.cos(angle))
if side_short <= 2. * sin_a * cos_a * side_long or abs(sin_a - cos_a) < 1e-10:
# half constrained case: two crop corners touch the longer side,
# the other two corners are on the mid-line parallel to the longer line
x = 0.5 * side_short
wr, hr = (x / sin_a, x / cos_a) if width_is_longer else (x / cos_a, x / sin_a)
else:
# fully constrained case: crop touches all 4 sides
cos_2a = cos_a * cos_a - sin_a * sin_a
wr, hr = (w * cos_a - h * sin_a) / cos_2a, (h * cos_a - w * sin_a) / cos_2a
return wr, hr
def rotate_max_area(image, rotated, rotated_label, angle):
""" image: cv2 image matrix object
angle: in degree
"""
wr, hr = rotatedRectWithMaxArea(image.shape[1], image.shape[0],
math.radians(angle))
h, w, _ = rotated.shape
y1 = h // 2 - int(hr / 2)
y2 = y1 + int(hr)
x1 = w // 2 - int(wr / 2)
x2 = x1 + int(wr)
return rotated[y1:y2, x1:x2], rotated_label[y1:y2, x1:x2]
def rotation_not_90_func(img, label, thetha):
rotated = imutils.rotate(img, thetha)
rotated_label = imutils.rotate(label, thetha)
return rotate_max_area(img, rotated, rotated_label, thetha)
def color_images(seg, n_classes):
ann_u = range(n_classes)
if len(np.shape(seg)) == 3:
seg = seg[:, :, 0]
seg_img = np.zeros((np.shape(seg)[0], np.shape(seg)[1], 3)).astype(float)
colors = sns.color_palette("hls", n_classes)
for c in ann_u:
c = int(c)
segl = (seg == c)
seg_img[:, :, 0] += segl * (colors[c][0])
seg_img[:, :, 1] += segl * (colors[c][1])
seg_img[:, :, 2] += segl * (colors[c][2])
return seg_img
def resize_image(seg_in, input_height, input_width):
return cv2.resize(seg_in, (input_width, input_height), interpolation=cv2.INTER_NEAREST)
def get_one_hot(seg, input_height, input_width, n_classes):
seg = seg[:, :, 0]
seg_f = np.zeros((input_height, input_width, n_classes))
for j in range(n_classes):
seg_f[:, :, j] = (seg == j).astype(int)
return seg_f
def IoU(Yi, y_predi):
# mean Intersection over Union
# Mean IoU = TP/(FN + TP + FP)
IoUs = []
classes_true = np.unique(Yi)
for c in classes_true:
TP = np.sum((Yi == c) & (y_predi == c))
FP = np.sum((Yi != c) & (y_predi == c))
FN = np.sum((Yi == c) & (y_predi != c))
IoU = TP / float(TP + FP + FN)
print("class {:02.0f}: #TP={:6.0f}, #FP={:6.0f}, #FN={:5.0f}, IoU={:4.3f}".format(c, TP, FP, FN, IoU))
IoUs.append(IoU)
mIoU = np.mean(IoUs)
print("_________________")
print("Mean IoU: {:4.3f}".format(mIoU))
return mIoU
def data_gen(img_folder, mask_folder, batch_size, input_height, input_width, n_classes):
c = 0
n = [f for f in os.listdir(img_folder) if not f.startswith('.')] # os.listdir(img_folder) #List of training images
random.shuffle(n)
while True:
img = np.zeros((batch_size, input_height, input_width, 3)).astype('float')
mask = np.zeros((batch_size, input_height, input_width, n_classes)).astype('float')
for i in range(c, c + batch_size): # initially from 0 to 16, c = 0.
# print(img_folder+'/'+n[i])
try:
filename = n[i].split('.')[0]
train_img = cv2.imread(img_folder + '/' + n[i]) / 255.
train_img = cv2.resize(train_img, (input_width, input_height),
interpolation=cv2.INTER_NEAREST) # Read an image from folder and resize
img[i - c] = train_img # add to array - img[0], img[1], and so on.
train_mask = cv2.imread(mask_folder + '/' + filename + '.png')
# print(mask_folder+'/'+filename+'.png')
# print(train_mask.shape)
train_mask = get_one_hot(resize_image(train_mask, input_height, input_width), input_height, input_width,
n_classes)
# train_mask = train_mask.reshape(224, 224, 1) # Add extra dimension for parity with train_img size [512 * 512 * 3]
mask[i - c] = train_mask
except:
img[i - c] = np.ones((input_height, input_width, 3)).astype('float')
mask[i - c] = np.zeros((input_height, input_width, n_classes)).astype('float')
c += batch_size
if c + batch_size >= len(os.listdir(img_folder)):
c = 0
random.shuffle(n)
yield img, mask
def otsu_copy(img):
img_r = np.zeros(img.shape)
img1 = img[:, :, 0]
img2 = img[:, :, 1]
img3 = img[:, :, 2]
_, threshold1 = cv2.threshold(img1, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
_, threshold2 = cv2.threshold(img2, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
_, threshold3 = cv2.threshold(img3, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
img_r[:, :, 0] = threshold1
img_r[:, :, 1] = threshold1
img_r[:, :, 2] = threshold1
return img_r
def get_patches(dir_img_f, dir_seg_f, img, label, height, width, indexer):
if img.shape[0] < height or img.shape[1] < width:
img, label = do_padding(img, label, height, width)
img_h = img.shape[0]
img_w = img.shape[1]
nxf = img_w / float(width)
nyf = img_h / float(height)
if nxf > int(nxf):
nxf = int(nxf) + 1
if nyf > int(nyf):
nyf = int(nyf) + 1
nxf = int(nxf)
nyf = int(nyf)
for i in range(nxf):
for j in range(nyf):
index_x_d = i * width
index_x_u = (i + 1) * width
index_y_d = j * height
index_y_u = (j + 1) * height
if index_x_u > img_w:
index_x_u = img_w
index_x_d = img_w - width
if index_y_u > img_h:
index_y_u = img_h
index_y_d = img_h - height
img_patch = img[index_y_d:index_y_u, index_x_d:index_x_u, :]
label_patch = label[index_y_d:index_y_u, index_x_d:index_x_u, :]
cv2.imwrite(dir_img_f + '/img_' + str(indexer) + '.png', img_patch)
cv2.imwrite(dir_seg_f + '/img_' + str(indexer) + '.png', label_patch)
indexer += 1
return indexer
def do_padding(img, label, height, width):
height_new = img.shape[0]
width_new = img.shape[1]
h_start = 0
w_start = 0
if img.shape[0] < height:
h_start = int(abs(height - img.shape[0]) / 2.)
height_new = height
if img.shape[1] < width:
w_start = int(abs(width - img.shape[1]) / 2.)
width_new = width
img_new = np.ones((height_new, width_new, img.shape[2])).astype(float) * 255
label_new = np.zeros((height_new, width_new, label.shape[2])).astype(float)
img_new[h_start:h_start + img.shape[0], w_start:w_start + img.shape[1], :] = np.copy(img[:, :, :])
label_new[h_start:h_start + label.shape[0], w_start:w_start + label.shape[1], :] = np.copy(label[:, :, :])
return img_new, label_new
def get_patches_num_scale(dir_img_f, dir_seg_f, img, label, height, width, indexer, n_patches, scaler):
if img.shape[0] < height or img.shape[1] < width:
img, label = do_padding(img, label, height, width)
img_h = img.shape[0]
img_w = img.shape[1]
height_scale = int(height * scaler)
width_scale = int(width * scaler)
nxf = img_w / float(width_scale)
nyf = img_h / float(height_scale)
if nxf > int(nxf):
nxf = int(nxf) + 1
if nyf > int(nyf):
nyf = int(nyf) + 1
nxf = int(nxf)
nyf = int(nyf)
for i in range(nxf):
for j in range(nyf):
index_x_d = i * width_scale
index_x_u = (i + 1) * width_scale
index_y_d = j * height_scale
index_y_u = (j + 1) * height_scale
if index_x_u > img_w:
index_x_u = img_w
index_x_d = img_w - width_scale
if index_y_u > img_h:
index_y_u = img_h
index_y_d = img_h - height_scale
img_patch = img[index_y_d:index_y_u, index_x_d:index_x_u, :]
label_patch = label[index_y_d:index_y_u, index_x_d:index_x_u, :]
img_patch = resize_image(img_patch, height, width)
label_patch = resize_image(label_patch, height, width)
cv2.imwrite(dir_img_f + '/img_' + str(indexer) + '.png', img_patch)
cv2.imwrite(dir_seg_f + '/img_' + str(indexer) + '.png', label_patch)
indexer += 1
return indexer
def get_patches_num_scale_new(dir_img_f, dir_seg_f, img, label, height, width, indexer, scaler):
img = resize_image(img, int(img.shape[0] * scaler), int(img.shape[1] * scaler))
label = resize_image(label, int(label.shape[0] * scaler), int(label.shape[1] * scaler))
if img.shape[0] < height or img.shape[1] < width:
img, label = do_padding(img, label, height, width)
img_h = img.shape[0]
img_w = img.shape[1]
height_scale = int(height * 1)
width_scale = int(width * 1)
nxf = img_w / float(width_scale)
nyf = img_h / float(height_scale)
if nxf > int(nxf):
nxf = int(nxf) + 1
if nyf > int(nyf):
nyf = int(nyf) + 1
nxf = int(nxf)
nyf = int(nyf)
for i in range(nxf):
for j in range(nyf):
index_x_d = i * width_scale
index_x_u = (i + 1) * width_scale
index_y_d = j * height_scale
index_y_u = (j + 1) * height_scale
if index_x_u > img_w:
index_x_u = img_w
index_x_d = img_w - width_scale
if index_y_u > img_h:
index_y_u = img_h
index_y_d = img_h - height_scale
img_patch = img[index_y_d:index_y_u, index_x_d:index_x_u, :]
label_patch = label[index_y_d:index_y_u, index_x_d:index_x_u, :]
# img_patch=resize_image(img_patch,height,width)
# label_patch=resize_image(label_patch,height,width)
cv2.imwrite(dir_img_f + '/img_' + str(indexer) + '.png', img_patch)
cv2.imwrite(dir_seg_f + '/img_' + str(indexer) + '.png', label_patch)
indexer += 1
return indexer
def provide_patches(dir_img, dir_seg, dir_flow_train_imgs,
dir_flow_train_labels,
input_height, input_width, blur_k, blur_aug,
flip_aug, binarization, scaling, scales, flip_index,
scaling_bluring, scaling_binarization, rotation,
rotation_not_90, thetha, scaling_flip,
augmentation=False, patches=False):
imgs_cv_train = np.array(os.listdir(dir_img))
segs_cv_train = np.array(os.listdir(dir_seg))
indexer = 0
for im, seg_i in tqdm(zip(imgs_cv_train, segs_cv_train)):
img_name = im.split('.')[0]
if not patches:
cv2.imwrite(dir_flow_train_imgs + '/img_' + str(indexer) + '.png',
resize_image(cv2.imread(dir_img + '/' + im), input_height, input_width))
cv2.imwrite(dir_flow_train_labels + '/img_' + str(indexer) + '.png',
resize_image(cv2.imread(dir_seg + '/' + img_name + '.png'), input_height, input_width))
indexer += 1
if augmentation:
if flip_aug:
for f_i in flip_index:
cv2.imwrite(dir_flow_train_imgs + '/img_' + str(indexer) + '.png',
resize_image(cv2.flip(cv2.imread(dir_img + '/' + im), f_i), input_height,
input_width))
cv2.imwrite(dir_flow_train_labels + '/img_' + str(indexer) + '.png',
resize_image(cv2.flip(cv2.imread(dir_seg + '/' + img_name + '.png'), f_i),
input_height, input_width))
indexer += 1
if blur_aug:
for blur_i in blur_k:
cv2.imwrite(dir_flow_train_imgs + '/img_' + str(indexer) + '.png',
(resize_image(bluring(cv2.imread(dir_img + '/' + im), blur_i), input_height,
input_width)))
cv2.imwrite(dir_flow_train_labels + '/img_' + str(indexer) + '.png',
resize_image(cv2.imread(dir_seg + '/' + img_name + '.png'), input_height,
input_width))
indexer += 1
if binarization:
cv2.imwrite(dir_flow_train_imgs + '/img_' + str(indexer) + '.png',
resize_image(otsu_copy(cv2.imread(dir_img + '/' + im)), input_height, input_width))
cv2.imwrite(dir_flow_train_labels + '/img_' + str(indexer) + '.png',
resize_image(cv2.imread(dir_seg + '/' + img_name + '.png'), input_height, input_width))
indexer += 1
if patches:
indexer = get_patches(dir_flow_train_imgs, dir_flow_train_labels,
cv2.imread(dir_img + '/' + im), cv2.imread(dir_seg + '/' + img_name + '.png'),
input_height, input_width, indexer=indexer)
if augmentation:
if rotation:
indexer = get_patches(dir_flow_train_imgs, dir_flow_train_labels,
rotation_90(cv2.imread(dir_img + '/' + im)),
rotation_90(cv2.imread(dir_seg + '/' + img_name + '.png')),
input_height, input_width, indexer=indexer)
if rotation_not_90:
for thetha_i in thetha:
img_max_rotated, label_max_rotated = rotation_not_90_func(cv2.imread(dir_img + '/' + im),
cv2.imread(
dir_seg + '/' + img_name + '.png'),
thetha_i)
indexer = get_patches(dir_flow_train_imgs, dir_flow_train_labels,
img_max_rotated,
label_max_rotated,
input_height, input_width, indexer=indexer)
if flip_aug:
for f_i in flip_index:
indexer = get_patches(dir_flow_train_imgs, dir_flow_train_labels,
cv2.flip(cv2.imread(dir_img + '/' + im), f_i),
cv2.flip(cv2.imread(dir_seg + '/' + img_name + '.png'), f_i),
input_height, input_width, indexer=indexer)
if blur_aug:
for blur_i in blur_k:
indexer = get_patches(dir_flow_train_imgs, dir_flow_train_labels,
bluring(cv2.imread(dir_img + '/' + im), blur_i),
cv2.imread(dir_seg + '/' + img_name + '.png'),
input_height, input_width, indexer=indexer)
if scaling:
for sc_ind in scales:
indexer = get_patches_num_scale_new(dir_flow_train_imgs, dir_flow_train_labels,
cv2.imread(dir_img + '/' + im),
cv2.imread(dir_seg + '/' + img_name + '.png'),
input_height, input_width, indexer=indexer, scaler=sc_ind)
if binarization:
indexer = get_patches(dir_flow_train_imgs, dir_flow_train_labels,
otsu_copy(cv2.imread(dir_img + '/' + im)),
cv2.imread(dir_seg + '/' + img_name + '.png'),
input_height, input_width, indexer=indexer)
if scaling_bluring:
for sc_ind in scales:
for blur_i in blur_k:
indexer = get_patches_num_scale_new(dir_flow_train_imgs, dir_flow_train_labels,
bluring(cv2.imread(dir_img + '/' + im), blur_i),
cv2.imread(dir_seg + '/' + img_name + '.png'),
input_height, input_width, indexer=indexer,
scaler=sc_ind)
if scaling_binarization:
for sc_ind in scales:
indexer = get_patches_num_scale_new(dir_flow_train_imgs, dir_flow_train_labels,
otsu_copy(cv2.imread(dir_img + '/' + im)),
cv2.imread(dir_seg + '/' + img_name + '.png'),
input_height, input_width, indexer=indexer, scaler=sc_ind)
if scaling_flip:
for sc_ind in scales:
for f_i in flip_index:
indexer = get_patches_num_scale_new(dir_flow_train_imgs, dir_flow_train_labels,
cv2.flip(cv2.imread(dir_img + '/' + im), f_i),
cv2.flip(cv2.imread(dir_seg + '/' + img_name + '.png'),
f_i),
input_height, input_width, indexer=indexer,
scaler=sc_ind)

@ -5,6 +5,8 @@ from shapely import geometry
from .rotate import rotate_image, rotation_image_new from .rotate import rotate_image, rotation_image_new
from multiprocessing import Process, Queue, cpu_count from multiprocessing import Process, Queue, cpu_count
from multiprocessing import Pool from multiprocessing import Pool
def contours_in_same_horizon(cy_main_hor): def contours_in_same_horizon(cy_main_hor):
X1 = np.zeros((len(cy_main_hor), len(cy_main_hor))) X1 = np.zeros((len(cy_main_hor), len(cy_main_hor)))
X2 = np.zeros((len(cy_main_hor), len(cy_main_hor))) X2 = np.zeros((len(cy_main_hor), len(cy_main_hor)))
@ -22,6 +24,7 @@ def contours_in_same_horizon(cy_main_hor):
all_args.append(list(set(list_h))) all_args.append(list(set(list_h)))
return np.unique(np.array(all_args, dtype=object)) return np.unique(np.array(all_args, dtype=object))
def find_contours_mean_y_diff(contours_main): def find_contours_mean_y_diff(contours_main):
M_main = [cv2.moments(contours_main[j]) for j in range(len(contours_main))] M_main = [cv2.moments(contours_main[j]) for j in range(len(contours_main))]
cy_main = [(M_main[j]["m01"] / (M_main[j]["m00"] + 1e-32)) for j in range(len(M_main))] cy_main = [(M_main[j]["m01"] / (M_main[j]["m00"] + 1e-32)) for j in range(len(M_main))]
@ -42,6 +45,7 @@ def get_text_region_boxes_by_given_contours(contours):
del contours del contours
return boxes, contours_new return boxes, contours_new
def filter_contours_area_of_image(image, contours, hierarchy, max_area, min_area): def filter_contours_area_of_image(image, contours, hierarchy, max_area, min_area):
found_polygons_early = list() found_polygons_early = list()
@ -55,6 +59,7 @@ def filter_contours_area_of_image(image, contours, hierarchy, max_area, min_area
found_polygons_early.append(np.array([[point] for point in polygon.exterior.coords], dtype=np.uint)) found_polygons_early.append(np.array([[point] for point in polygon.exterior.coords], dtype=np.uint))
return found_polygons_early return found_polygons_early
def filter_contours_area_of_image_tables(image, contours, hierarchy, max_area, min_area): def filter_contours_area_of_image_tables(image, contours, hierarchy, max_area, min_area):
found_polygons_early = list() found_polygons_early = list()
@ -65,7 +70,7 @@ def filter_contours_area_of_image_tables(image, contours, hierarchy, max_area, m
polygon = geometry.Polygon([point[0] for point in c]) polygon = geometry.Polygon([point[0] for point in c])
# area = cv2.contourArea(c) # area = cv2.contourArea(c)
area = polygon.area area = polygon.area
##print(np.prod(thresh.shape[:2])) # print(np.prod(thresh.shape[:2]))
# Check that polygon has area greater than minimal area # Check that polygon has area greater than minimal area
# print(hierarchy[0][jv][3],hierarchy ) # print(hierarchy[0][jv][3],hierarchy )
if area >= min_area * np.prod(image.shape[:2]) and area <= max_area * np.prod(image.shape[:2]): # and hierarchy[0][jv][3]==-1 : if area >= min_area * np.prod(image.shape[:2]) and area <= max_area * np.prod(image.shape[:2]): # and hierarchy[0][jv][3]==-1 :
@ -73,6 +78,7 @@ def filter_contours_area_of_image_tables(image, contours, hierarchy, max_area, m
found_polygons_early.append(np.array([[point] for point in polygon.exterior.coords], dtype=np.int32)) found_polygons_early.append(np.array([[point] for point in polygon.exterior.coords], dtype=np.int32))
return found_polygons_early return found_polygons_early
def find_new_features_of_contours(contours_main): def find_new_features_of_contours(contours_main):
areas_main = np.array([cv2.contourArea(contours_main[j]) for j in range(len(contours_main))]) areas_main = np.array([cv2.contourArea(contours_main[j]) for j in range(len(contours_main))])
@ -108,9 +114,8 @@ def find_new_features_of_contours(contours_main):
return cx_main, cy_main, x_min_main, x_max_main, y_min_main, y_max_main, y_corr_x_min_from_argmin return cx_main, cy_main, x_min_main, x_max_main, y_min_main, y_max_main, y_corr_x_min_from_argmin
def find_features_of_contours(contours_main):
def find_features_of_contours(contours_main):
areas_main = np.array([cv2.contourArea(contours_main[j]) for j in range(len(contours_main))]) areas_main = np.array([cv2.contourArea(contours_main[j]) for j in range(len(contours_main))])
M_main = [cv2.moments(contours_main[j]) for j in range(len(contours_main))] M_main = [cv2.moments(contours_main[j]) for j in range(len(contours_main))]
cx_main = [(M_main[j]['m10']/(M_main[j]['m00']+1e-32)) for j in range(len(M_main))] cx_main = [(M_main[j]['m10']/(M_main[j]['m00']+1e-32)) for j in range(len(M_main))]
@ -121,12 +126,14 @@ def find_features_of_contours(contours_main):
y_min_main = np.array([np.min(contours_main[j][:, 0, 1]) for j in range(len(contours_main))]) y_min_main = np.array([np.min(contours_main[j][:, 0, 1]) for j in range(len(contours_main))])
y_max_main = np.array([np.max(contours_main[j][:, 0, 1]) for j in range(len(contours_main))]) y_max_main = np.array([np.max(contours_main[j][:, 0, 1]) for j in range(len(contours_main))])
return y_min_main, y_max_main return y_min_main, y_max_main
def return_parent_contours(contours, hierarchy): def return_parent_contours(contours, hierarchy):
contours_parent = [contours[i] for i in range(len(contours)) if hierarchy[0][i][3] == -1] contours_parent = [contours[i] for i in range(len(contours)) if hierarchy[0][i][3] == -1]
return contours_parent return contours_parent
def return_contours_of_interested_region(region_pre_p, pixel, min_area=0.0002): def return_contours_of_interested_region(region_pre_p, pixel, min_area=0.0002):
# pixels of images are identified by 5 # pixels of images are identified by 5
@ -146,6 +153,7 @@ def return_contours_of_interested_region(region_pre_p, pixel, min_area=0.0002):
return contours_imgs return contours_imgs
def do_work_of_contours_in_image(queue_of_all_params, contours_per_process, indexes_r_con_per_pro, img, slope_first): def do_work_of_contours_in_image(queue_of_all_params, contours_per_process, indexes_r_con_per_pro, img, slope_first):
cnts_org_per_each_subprocess = [] cnts_org_per_each_subprocess = []
index_by_text_region_contours = [] index_by_text_region_contours = []
@ -166,7 +174,6 @@ def do_work_of_contours_in_image(queue_of_all_params, contours_per_process, inde
cont_int[0][:, 0, 0] = cont_int[0][:, 0, 0] + np.abs(img_copy.shape[1] - img.shape[1]) cont_int[0][:, 0, 0] = cont_int[0][:, 0, 0] + np.abs(img_copy.shape[1] - img.shape[1])
cont_int[0][:, 0, 1] = cont_int[0][:, 0, 1] + np.abs(img_copy.shape[0] - img.shape[0]) cont_int[0][:, 0, 1] = cont_int[0][:, 0, 1] + np.abs(img_copy.shape[0] - img.shape[0])
cnts_org_per_each_subprocess.append(cont_int[0]) cnts_org_per_each_subprocess.append(cont_int[0])
queue_of_all_params.put([cnts_org_per_each_subprocess, index_by_text_region_contours]) queue_of_all_params.put([cnts_org_per_each_subprocess, index_by_text_region_contours])
@ -181,7 +188,7 @@ def loop_contour_image(index_l, cnts,img, slope_first):
# print(img.shape,'img') # print(img.shape,'img')
img_copy = rotation_image_new(img_copy, -slope_first) img_copy = rotation_image_new(img_copy, -slope_first)
##print(img_copy.shape,'img_copy') # print(img_copy.shape,'img_copy')
# plt.imshow(img_copy) # plt.imshow(img_copy)
# plt.show() # plt.show()
@ -196,6 +203,7 @@ def loop_contour_image(index_l, cnts,img, slope_first):
# print(np.shape(cont_int[0])) # print(np.shape(cont_int[0]))
return cont_int[0] return cont_int[0]
def get_textregion_contours_in_org_image_multi2(cnts, img, slope_first): def get_textregion_contours_in_org_image_multi2(cnts, img, slope_first):
cnts_org = [] cnts_org = []
@ -205,6 +213,7 @@ def get_textregion_contours_in_org_image_multi2(cnts, img, slope_first):
return cnts_org return cnts_org
def get_textregion_contours_in_org_image(cnts, img, slope_first): def get_textregion_contours_in_org_image(cnts, img, slope_first):
cnts_org = [] cnts_org = []
@ -218,7 +227,7 @@ def get_textregion_contours_in_org_image(cnts, img, slope_first):
# print(img.shape,'img') # print(img.shape,'img')
img_copy = rotation_image_new(img_copy, -slope_first) img_copy = rotation_image_new(img_copy, -slope_first)
##print(img_copy.shape,'img_copy') # print(img_copy.shape,'img_copy')
# plt.imshow(img_copy) # plt.imshow(img_copy)
# plt.show() # plt.show()
@ -235,13 +244,14 @@ def get_textregion_contours_in_org_image(cnts, img, slope_first):
return cnts_org return cnts_org
def get_textregion_contours_in_org_image_light(cnts, img, slope_first): def get_textregion_contours_in_org_image_light(cnts, img, slope_first):
h_o = img.shape[0] h_o = img.shape[0]
w_o = img.shape[1] w_o = img.shape[1]
img = cv2.resize(img, (int(img.shape[1]/3.), int(img.shape[0]/3.)), interpolation=cv2.INTER_NEAREST) img = cv2.resize(img, (int(img.shape[1]/3.), int(img.shape[0]/3.)), interpolation=cv2.INTER_NEAREST)
##cnts = list( (np.array(cnts)/2).astype(np.int16) ) # cnts = list( (np.array(cnts)/2).astype(np.int16) )
# cnts = cnts/2 # cnts = cnts/2
cnts = [(i / 3).astype(np.int32) for i in cnts] cnts = [(i / 3).astype(np.int32) for i in cnts]
cnts_org = [] cnts_org = []
@ -255,7 +265,7 @@ def get_textregion_contours_in_org_image_light(cnts, img, slope_first):
# print(img.shape,'img') # print(img.shape,'img')
img_copy = rotation_image_new(img_copy, -slope_first) img_copy = rotation_image_new(img_copy, -slope_first)
##print(img_copy.shape,'img_copy') # print(img_copy.shape,'img_copy')
# plt.imshow(img_copy) # plt.imshow(img_copy)
# plt.show() # plt.show()
@ -272,6 +282,7 @@ def get_textregion_contours_in_org_image_light(cnts, img, slope_first):
return cnts_org return cnts_org
def return_contours_of_interested_textline(region_pre_p, pixel): def return_contours_of_interested_textline(region_pre_p, pixel):
# pixels of images are identified by 5 # pixels of images are identified by 5
@ -289,6 +300,7 @@ def return_contours_of_interested_textline(region_pre_p, pixel):
contours_imgs = filter_contours_area_of_image_tables(thresh, contours_imgs, hierarchy, max_area=1, min_area=0.000000003) contours_imgs = filter_contours_area_of_image_tables(thresh, contours_imgs, hierarchy, max_area=1, min_area=0.000000003)
return contours_imgs return contours_imgs
def return_contours_of_image(image): def return_contours_of_image(image):
if len(image.shape) == 2: if len(image.shape) == 2:
@ -301,6 +313,7 @@ def return_contours_of_image(image):
contours, hierarchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) contours, hierarchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
return contours, hierarchy return contours, hierarchy
def return_contours_of_interested_region_by_min_size(region_pre_p, pixel, min_size=0.00003): def return_contours_of_interested_region_by_min_size(region_pre_p, pixel, min_size=0.00003):
# pixels of images are identified by 5 # pixels of images are identified by 5
@ -320,6 +333,7 @@ def return_contours_of_interested_region_by_min_size(region_pre_p, pixel, min_si
return contours_imgs return contours_imgs
def return_contours_of_interested_region_by_size(region_pre_p, pixel, min_area, max_area): def return_contours_of_interested_region_by_size(region_pre_p, pixel, min_area, max_area):
# pixels of images are identified by 5 # pixels of images are identified by 5
@ -339,4 +353,3 @@ def return_contours_of_interested_region_by_size(region_pre_p, pixel, min_area,
img_ret = np.zeros((region_pre_p.shape[0], region_pre_p.shape[1], 3)) img_ret = np.zeros((region_pre_p.shape[0], region_pre_p.shape[1], 3))
img_ret = cv2.fillPoly(img_ret, pts=contours_imgs, color=(1, 1, 1)) img_ret = cv2.fillPoly(img_ret, pts=contours_imgs, color=(1, 1, 1))
return img_ret[:, :, 0] return img_ret[:, :, 0]

@ -3,6 +3,7 @@ from collections import Counter
REGION_ID_TEMPLATE = 'region_%04d' REGION_ID_TEMPLATE = 'region_%04d'
LINE_ID_TEMPLATE = 'region_%04d_line_%04d' LINE_ID_TEMPLATE = 'region_%04d_line_%04d'
class EynollahIdCounter(): class EynollahIdCounter():
def __init__(self, region_idx=0, line_idx=0): def __init__(self, region_idx=0, line_idx=0):

@ -6,6 +6,7 @@ from .contour import (
return_parent_contours, return_parent_contours,
) )
def adhere_drop_capital_region_into_corresponding_textline( def adhere_drop_capital_region_into_corresponding_textline(
text_regions_p, text_regions_p,
polygons_of_drop_capitals, polygons_of_drop_capitals,
@ -44,7 +45,7 @@ def adhere_drop_capital_region_into_corresponding_textline(
# plt.imshow(img_con[:,:,0]) # plt.imshow(img_con[:,:,0])
# plt.show() # plt.show()
##img_con=cv2.dilate(img_con, kernel, iterations=30) # img_con=cv2.dilate(img_con, kernel, iterations=30)
# plt.imshow(img_con[:,:,0]) # plt.imshow(img_con[:,:,0])
# plt.show() # plt.show()
@ -185,7 +186,7 @@ def adhere_drop_capital_region_into_corresponding_textline(
# contours_biggest[:,0,1]=contours_biggest[:,0,1]#-all_box_coord[int(region_final)][0] # contours_biggest[:,0,1]=contours_biggest[:,0,1]#-all_box_coord[int(region_final)][0]
# print(np.shape(contours_biggest),'contours_biggest') # print(np.shape(contours_biggest),'contours_biggest')
# print(np.shape(all_found_textline_polygons[int(region_final)][arg_min])) # print(np.shape(all_found_textline_polygons[int(region_final)][arg_min]))
##contours_biggest=contours_biggest.reshape(np.shape(contours_biggest)[0],np.shape(contours_biggest)[2]) # contours_biggest=contours_biggest.reshape(np.shape(contours_biggest)[0],np.shape(contours_biggest)[2])
all_found_textline_polygons[int(region_final)][arg_min] = contours_biggest all_found_textline_polygons[int(region_final)][arg_min] = contours_biggest
except: except:
pass pass
@ -230,7 +231,7 @@ def adhere_drop_capital_region_into_corresponding_textline(
contours_biggest[:, 0, 0] = contours_biggest[:, 0, 0] # -all_box_coord[int(region_final)][2] contours_biggest[:, 0, 0] = contours_biggest[:, 0, 0] # -all_box_coord[int(region_final)][2]
contours_biggest[:, 0, 1] = contours_biggest[:, 0, 1] # -all_box_coord[int(region_final)][0] contours_biggest[:, 0, 1] = contours_biggest[:, 0, 1] # -all_box_coord[int(region_final)][0]
##contours_biggest=contours_biggest.reshape(np.shape(contours_biggest)[0],np.shape(contours_biggest)[2]) # contours_biggest=contours_biggest.reshape(np.shape(contours_biggest)[0],np.shape(contours_biggest)[2])
all_found_textline_polygons[int(region_final)][arg_min] = contours_biggest all_found_textline_polygons[int(region_final)][arg_min] = contours_biggest
# all_found_textline_polygons[int(region_final)][arg_min]=contours_biggest # all_found_textline_polygons[int(region_final)][arg_min]=contours_biggest
@ -239,7 +240,7 @@ def adhere_drop_capital_region_into_corresponding_textline(
else: else:
pass pass
##cx_t,cy_t ,_, _, _ ,_,_= find_new_features_of_contours(all_found_textline_polygons[int(region_final)]) # cx_t,cy_t ,_, _, _ ,_,_= find_new_features_of_contours(all_found_textline_polygons[int(region_final)])
# ##print(all_box_coord[j_cont]) # ##print(all_box_coord[j_cont])
# ##print(cx_t) # ##print(cx_t)
# ##print(cy_t) # ##print(cy_t)
@ -464,6 +465,7 @@ def adhere_drop_capital_region_into_corresponding_textline(
# ####pass # ####pass
return all_found_textline_polygons return all_found_textline_polygons
def filter_small_drop_capitals_from_no_patch_layout(layout_no_patch, layout1): def filter_small_drop_capitals_from_no_patch_layout(layout_no_patch, layout1):
drop_only = (layout_no_patch[:, :, 0] == 4) * 1 drop_only = (layout_no_patch[:, :, 0] == 4) * 1
@ -499,4 +501,3 @@ def filter_small_drop_capitals_from_no_patch_layout(layout_no_patch, layout1):
layout_no_patch = cv2.fillPoly(layout_no_patch, pts=contours_drop_parent_final, color=(4, 4, 4)) layout_no_patch = cv2.fillPoly(layout_no_patch, pts=contours_drop_parent_final, color=(4, 4, 4))
return layout_no_patch return layout_no_patch

@ -0,0 +1,228 @@
import numpy as np
import cv2
from scipy.signal import find_peaks
from scipy.ndimage import gaussian_filter1d
from .contour import find_new_features_of_contours, return_contours_of_interested_region
from .resize import resize_image
from .rotate import rotate_image
def get_marginals(text_with_lines, text_regions, num_col, slope_deskew, kernel=None):
mask_marginals = np.zeros((text_with_lines.shape[0], text_with_lines.shape[1]))
mask_marginals = mask_marginals.astype(np.uint8)
text_with_lines = text_with_lines.astype(np.uint8)
# text_with_lines=cv2.erode(text_with_lines,self.kernel,iterations=3)
text_with_lines_eroded = cv2.erode(text_with_lines, kernel, iterations=5)
if text_with_lines.shape[0] <= 1500:
pass
elif text_with_lines.shape[0] > 1500 and text_with_lines.shape[0] <= 1800:
text_with_lines = resize_image(text_with_lines, int(text_with_lines.shape[0] * 1.5), text_with_lines.shape[1])
text_with_lines = cv2.erode(text_with_lines, kernel, iterations=5)
text_with_lines = resize_image(text_with_lines, text_with_lines_eroded.shape[0],
text_with_lines_eroded.shape[1])
else:
text_with_lines = resize_image(text_with_lines, int(text_with_lines.shape[0] * 1.8), text_with_lines.shape[1])
text_with_lines = cv2.erode(text_with_lines, kernel, iterations=7)
text_with_lines = resize_image(text_with_lines, text_with_lines_eroded.shape[0],
text_with_lines_eroded.shape[1])
text_with_lines_y = text_with_lines.sum(axis=0)
text_with_lines_y_eroded = text_with_lines_eroded.sum(axis=0)
thickness_along_y_percent = text_with_lines_y_eroded.max() / (float(text_with_lines.shape[0])) * 100
# print(thickness_along_y_percent,'thickness_along_y_percent')
if thickness_along_y_percent < 30:
min_textline_thickness = 8
elif thickness_along_y_percent >= 30 and thickness_along_y_percent < 50:
min_textline_thickness = 20
else:
min_textline_thickness = 40
if thickness_along_y_percent >= 14:
text_with_lines_y_rev = -1 * text_with_lines_y[:]
# print(text_with_lines_y)
# print(text_with_lines_y_rev)
# plt.plot(text_with_lines_y)
# plt.show()
text_with_lines_y_rev = text_with_lines_y_rev - np.min(text_with_lines_y_rev)
# plt.plot(text_with_lines_y_rev)
# plt.show()
sigma_gaus = 1
region_sum_0 = gaussian_filter1d(text_with_lines_y, sigma_gaus)
region_sum_0_rev = gaussian_filter1d(text_with_lines_y_rev, sigma_gaus)
# plt.plot(region_sum_0_rev)
# plt.show()
region_sum_0_updown = region_sum_0[len(region_sum_0)::-1]
first_nonzero = (next((i for i, x in enumerate(region_sum_0) if x), None))
last_nonzero = (next((i for i, x in enumerate(region_sum_0_updown) if x), None))
last_nonzero = len(region_sum_0) - last_nonzero
# img_sum_0_smooth_rev=-region_sum_0
mid_point = (last_nonzero + first_nonzero) / 2.
one_third_right = (last_nonzero - mid_point) / 3.0
one_third_left = (mid_point - first_nonzero) / 3.0
# img_sum_0_smooth_rev=img_sum_0_smooth_rev-np.min(img_sum_0_smooth_rev)
peaks, _ = find_peaks(text_with_lines_y_rev, height=0)
peaks = np.array(peaks)
# print(region_sum_0[peaks])
# #plt.plot(region_sum_0)
# #plt.plot(peaks,region_sum_0[peaks],'*')
# #plt.show()
# print(first_nonzero,last_nonzero,peaks)
peaks = peaks[(peaks > first_nonzero) & (peaks < last_nonzero)]
# print(first_nonzero,last_nonzero,peaks)
# print(region_sum_0[peaks]<10)
# ###peaks=peaks[region_sum_0[peaks]<25 ]
# print(region_sum_0[peaks])
peaks = peaks[region_sum_0[peaks] < min_textline_thickness]
# print(peaks)
# print(first_nonzero,last_nonzero,one_third_right,one_third_left)
if num_col == 1:
peaks_right = peaks[peaks > mid_point]
peaks_left = peaks[peaks < mid_point]
if num_col == 2:
peaks_right = peaks[peaks > (mid_point + one_third_right)]
peaks_left = peaks[peaks < (mid_point - one_third_left)]
try:
point_right = np.min(peaks_right)
except:
point_right = last_nonzero
try:
point_left = np.max(peaks_left)
except:
point_left = first_nonzero
# print(point_left,point_right)
# print(text_regions.shape)
if point_right >= mask_marginals.shape[1]:
point_right = mask_marginals.shape[1] - 1
try:
mask_marginals[:, point_left:point_right] = 1
except:
mask_marginals[:, :] = 1
# print(mask_marginals.shape,point_left,point_right,'nadosh')
mask_marginals_rotated = rotate_image(mask_marginals, -slope_deskew)
# print(mask_marginals_rotated.shape,'nadosh')
mask_marginals_rotated_sum = mask_marginals_rotated.sum(axis=0)
mask_marginals_rotated_sum[mask_marginals_rotated_sum != 0] = 1
index_x = np.array(range(len(mask_marginals_rotated_sum))) + 1
index_x_interest = index_x[mask_marginals_rotated_sum == 1]
min_point_of_left_marginal = np.min(index_x_interest) - 16
max_point_of_right_marginal = np.max(index_x_interest) + 16
if min_point_of_left_marginal < 0:
min_point_of_left_marginal = 0
if max_point_of_right_marginal >= text_regions.shape[1]:
max_point_of_right_marginal = text_regions.shape[1] - 1
# print(np.min(index_x_interest) ,np.max(index_x_interest),'minmaxnew')
# print(mask_marginals_rotated.shape,text_regions.shape,'mask_marginals_rotated')
# plt.imshow(mask_marginals)
# plt.show()
# plt.imshow(mask_marginals_rotated)
# plt.show()
text_regions[(mask_marginals_rotated[:, :] != 1) & (text_regions[:, :] == 1)] = 4
# plt.imshow(text_regions)
# plt.show()
pixel_img = 4
min_area_text = 0.00001
polygons_of_marginals = return_contours_of_interested_region(text_regions, pixel_img, min_area_text)
cx_text_only, cy_text_only, x_min_text_only, x_max_text_only, y_min_text_only, y_max_text_only, y_cor_x_min_main = find_new_features_of_contours(
polygons_of_marginals)
text_regions[(text_regions[:, :] == 4)] = 1
marginlas_should_be_main_text = []
x_min_marginals_left = []
x_min_marginals_right = []
for i in range(len(cx_text_only)):
x_width_mar = abs(x_min_text_only[i] - x_max_text_only[i])
y_height_mar = abs(y_min_text_only[i] - y_max_text_only[i])
# print(x_width_mar,y_height_mar,y_height_mar/x_width_mar,'y_height_mar')
if x_width_mar > 16 and y_height_mar / x_width_mar < 18:
marginlas_should_be_main_text.append(polygons_of_marginals[i])
if x_min_text_only[i] < (mid_point - one_third_left):
x_min_marginals_left_new = x_min_text_only[i]
if len(x_min_marginals_left) == 0:
x_min_marginals_left.append(x_min_marginals_left_new)
else:
x_min_marginals_left[0] = min(x_min_marginals_left[0], x_min_marginals_left_new)
else:
x_min_marginals_right_new = x_min_text_only[i]
if len(x_min_marginals_right) == 0:
x_min_marginals_right.append(x_min_marginals_right_new)
else:
x_min_marginals_right[0] = min(x_min_marginals_right[0], x_min_marginals_right_new)
if len(x_min_marginals_left) == 0:
x_min_marginals_left = [0]
if len(x_min_marginals_right) == 0:
x_min_marginals_right = [text_regions.shape[1] - 1]
# print(x_min_marginals_left[0],x_min_marginals_right[0],'margo')
# print(marginlas_should_be_main_text,'marginlas_should_be_main_text')
text_regions = cv2.fillPoly(text_regions, pts=marginlas_should_be_main_text, color=(4, 4))
# print(np.unique(text_regions))
# text_regions[:,:int(x_min_marginals_left[0])][text_regions[:,:int(x_min_marginals_left[0])]==1]=0
# text_regions[:,int(x_min_marginals_right[0]):][text_regions[:,int(x_min_marginals_right[0]):]==1]=0
text_regions[:, :int(min_point_of_left_marginal)][text_regions[:, :int(min_point_of_left_marginal)] == 1] = 0
text_regions[:, int(max_point_of_right_marginal):][text_regions[:, int(max_point_of_right_marginal):] == 1] = 0
# ##text_regions[:,0:point_left][text_regions[:,0:point_left]==1]=4
# ##text_regions[:,point_right:][ text_regions[:,point_right:]==1]=4
# plt.plot(region_sum_0)
# plt.plot(peaks,region_sum_0[peaks],'*')
# plt.show()
# plt.imshow(text_regions)
# plt.show()
# sys.exit()
else:
pass
return text_regions

@ -5,15 +5,18 @@ from cv2 import COLOR_GRAY2BGR, COLOR_RGB2BGR, COLOR_BGR2RGB, cvtColor, imread
# from sbb_binarization # from sbb_binarization
def cv2pil(img): def cv2pil(img):
return Image.fromarray(np.array(cvtColor(img, COLOR_BGR2RGB))) return Image.fromarray(np.array(cvtColor(img, COLOR_BGR2RGB)))
def pil2cv(img): def pil2cv(img):
# from ocrd/workspace.py # from ocrd/workspace.py
color_conversion = COLOR_GRAY2BGR if img.mode in ('1', 'L') else COLOR_RGB2BGR color_conversion = COLOR_GRAY2BGR if img.mode in ('1', 'L') else COLOR_RGB2BGR
pil_as_np_array = np.array(img).astype('uint8') if img.mode == '1' else np.array(img) pil_as_np_array = np.array(img).astype('uint8') if img.mode == '1' else np.array(img)
return cvtColor(pil_as_np_array, color_conversion) return cvtColor(pil_as_np_array, color_conversion)
def check_dpi(img): def check_dpi(img):
try: try:
if isinstance(img, Image.Image): if isinstance(img, Image.Image):

@ -1,4 +1,5 @@
import cv2 import cv2
def resize_image(img_in, input_height, input_width): def resize_image(img_in, input_height, input_width):
return cv2.resize(img_in, (input_width, input_height), interpolation=cv2.INTER_NEAREST) return cv2.resize(img_in, (input_width, input_height), interpolation=cv2.INTER_NEAREST)

@ -3,6 +3,7 @@ import math
import imutils import imutils
import cv2 import cv2
def rotatedRectWithMaxArea(w, h, angle): def rotatedRectWithMaxArea(w, h, angle):
if w <= 0 or h <= 0: if w <= 0 or h <= 0:
return 0, 0 return 0, 0
@ -25,6 +26,7 @@ def rotatedRectWithMaxArea(w, h, angle):
return wr, hr return wr, hr
def rotate_max_area_new(image, rotated, angle): def rotate_max_area_new(image, rotated, angle):
wr, hr = rotatedRectWithMaxArea(image.shape[1], image.shape[0], math.radians(angle)) wr, hr = rotatedRectWithMaxArea(image.shape[1], image.shape[0], math.radians(angle))
h, w, _ = rotated.shape h, w, _ = rotated.shape
@ -34,16 +36,19 @@ def rotate_max_area_new(image, rotated, angle):
x2 = x1 + int(wr) x2 = x1 + int(wr)
return rotated[y1:y2, x1:x2] return rotated[y1:y2, x1:x2]
def rotation_image_new(img, thetha): def rotation_image_new(img, thetha):
rotated = imutils.rotate(img, thetha) rotated = imutils.rotate(img, thetha)
return rotate_max_area_new(img, rotated, thetha) return rotate_max_area_new(img, rotated, thetha)
def rotate_image(img_patch, slope): def rotate_image(img_patch, slope):
(h, w) = img_patch.shape[:2] (h, w) = img_patch.shape[:2]
center = (w // 2, h // 2) center = (w // 2, h // 2)
M = cv2.getRotationMatrix2D(center, slope, 1.0) M = cv2.getRotationMatrix2D(center, slope, 1.0)
return cv2.warpAffine(img_patch, M, (w, h), flags=cv2.INTER_CUBIC, borderMode=cv2.BORDER_REPLICATE) return cv2.warpAffine(img_patch, M, (w, h), flags=cv2.INTER_CUBIC, borderMode=cv2.BORDER_REPLICATE)
def rotate_image_different(img, slope): def rotate_image_different(img, slope):
# img = cv2.imread('images/input.jpg') # img = cv2.imread('images/input.jpg')
num_rows, num_cols = img.shape[:2] num_rows, num_cols = img.shape[:2]
@ -52,6 +57,7 @@ def rotate_image_different( img, slope):
img_rotation = cv2.warpAffine(img, rotation_matrix, (num_cols, num_rows)) img_rotation = cv2.warpAffine(img, rotation_matrix, (num_cols, num_rows))
return img_rotation return img_rotation
def rotate_max_area(image, rotated, rotated_textline, rotated_layout, rotated_table_prediction, angle): def rotate_max_area(image, rotated, rotated_textline, rotated_layout, rotated_table_prediction, angle):
wr, hr = rotatedRectWithMaxArea(image.shape[1], image.shape[0], math.radians(angle)) wr, hr = rotatedRectWithMaxArea(image.shape[1], image.shape[0], math.radians(angle))
h, w, _ = rotated.shape h, w, _ = rotated.shape
@ -61,6 +67,7 @@ def rotate_max_area(image, rotated, rotated_textline, rotated_layout, rotated_ta
x2 = x1 + int(wr) x2 = x1 + int(wr)
return rotated[y1:y2, x1:x2], rotated_textline[y1:y2, x1:x2], rotated_layout[y1:y2, x1:x2], rotated_table_prediction[y1:y2, x1:x2] return rotated[y1:y2, x1:x2], rotated_textline[y1:y2, x1:x2], rotated_layout[y1:y2, x1:x2], rotated_table_prediction[y1:y2, x1:x2]
def rotation_not_90_func(img, textline, text_regions_p_1, table_prediction, thetha): def rotation_not_90_func(img, textline, text_regions_p_1, table_prediction, thetha):
rotated = imutils.rotate(img, thetha) rotated = imutils.rotate(img, thetha)
rotated_textline = imutils.rotate(textline, thetha) rotated_textline = imutils.rotate(textline, thetha)
@ -68,6 +75,7 @@ def rotation_not_90_func(img, textline, text_regions_p_1, table_prediction, thet
rotated_table_prediction = imutils.rotate(table_prediction, thetha) rotated_table_prediction = imutils.rotate(table_prediction, thetha)
return rotate_max_area(img, rotated, rotated_textline, rotated_layout, rotated_table_prediction, thetha) return rotate_max_area(img, rotated, rotated_textline, rotated_layout, rotated_table_prediction, thetha)
def rotation_not_90_func_full_layout(img, textline, text_regions_p_1, text_regions_p_fully, thetha): def rotation_not_90_func_full_layout(img, textline, text_regions_p_1, text_regions_p_fully, thetha):
rotated = imutils.rotate(img, thetha) rotated = imutils.rotate(img, thetha)
rotated_textline = imutils.rotate(textline, thetha) rotated_textline = imutils.rotate(textline, thetha)
@ -75,6 +83,7 @@ def rotation_not_90_func_full_layout(img, textline, text_regions_p_1, text_regio
rotated_layout_full = imutils.rotate(text_regions_p_fully, thetha) rotated_layout_full = imutils.rotate(text_regions_p_fully, thetha)
return rotate_max_area_full_layout(img, rotated, rotated_textline, rotated_layout, rotated_layout_full, thetha) return rotate_max_area_full_layout(img, rotated, rotated_textline, rotated_layout, rotated_layout_full, thetha)
def rotate_max_area_full_layout(image, rotated, rotated_textline, rotated_layout, rotated_layout_full, angle): def rotate_max_area_full_layout(image, rotated, rotated_textline, rotated_layout, rotated_layout_full, angle):
wr, hr = rotatedRectWithMaxArea(image.shape[1], image.shape[0], math.radians(angle)) wr, hr = rotatedRectWithMaxArea(image.shape[1], image.shape[0], math.radians(angle))
h, w, _ = rotated.shape h, w, _ = rotated.shape
@ -83,4 +92,3 @@ def rotate_max_area_full_layout(image, rotated, rotated_textline, rotated_layout
x1 = w // 2 - int(wr / 2) x1 = w // 2 - int(wr / 2)
x2 = x1 + int(wr) x2 = x1 + int(wr)
return rotated[y1:y2, x1:x2], rotated_textline[y1:y2, x1:x2], rotated_layout[y1:y2, x1:x2], rotated_layout_full[y1:y2, x1:x2] return rotated[y1:y2, x1:x2], rotated_textline[y1:y2, x1:x2], rotated_layout[y1:y2, x1:x2], rotated_layout_full[y1:y2, x1:x2]

@ -29,6 +29,7 @@ from ocrd_models.ocrd_page import (
to_xml) to_xml)
def create_page_xml(imageFilename, height, width): def create_page_xml(imageFilename, height, width):
now = datetime.now() now = datetime.now()
pcgts = PcGtsType( pcgts = PcGtsType(
@ -46,6 +47,7 @@ def create_page_xml(imageFilename, height, width):
)) ))
return pcgts return pcgts
def xml_reading_order(page, order_of_texts, id_of_marginalia): def xml_reading_order(page, order_of_texts, id_of_marginalia):
region_order = ReadingOrderType() region_order = ReadingOrderType()
og = OrderedGroupType(id="ro357564684568544579089") og = OrderedGroupType(id="ro357564684568544579089")
@ -59,6 +61,7 @@ def xml_reading_order(page, order_of_texts, id_of_marginalia):
og.add_RegionRefIndexed(RegionRefIndexedType(index=str(region_counter.get('region')), regionRef=id_marginal)) og.add_RegionRefIndexed(RegionRefIndexedType(index=str(region_counter.get('region')), regionRef=id_marginal))
region_counter.inc('region') region_counter.inc('region')
def order_and_id_of_texts(found_polygons_text_region, found_polygons_text_region_h, matrix_of_orders, indexes_sorted, index_of_types, kind_of_texts, ref_point): def order_and_id_of_texts(found_polygons_text_region, found_polygons_text_region_h, matrix_of_orders, indexes_sorted, index_of_types, kind_of_texts, ref_point):
indexes_sorted = np.array(indexes_sorted) indexes_sorted = np.array(indexes_sorted)
index_of_types = np.array(index_of_types) index_of_types = np.array(index_of_types)

@ -23,6 +23,7 @@ from ocrd_models.ocrd_page import (
) )
import numpy as np import numpy as np
class EynollahXmlWriter(): class EynollahXmlWriter():
def __init__( def __init__(
@ -65,7 +66,8 @@ class EynollahXmlWriter():
points_page_print = points_page_print + ' ' points_page_print = points_page_print + ' '
return points_page_print[:-1] return points_page_print[:-1]
def serialize_lines_in_marginal(self, marginal_region, all_found_textline_polygons_marginals, marginal_idx, page_coord, all_box_coord_marginals, slopes_marginals, counter): def serialize_lines_in_marginal(self, marginal_region, all_found_textline_polygons_marginals, marginal_idx,
page_coord, all_box_coord_marginals, slopes_marginals, counter):
for j in range(len(all_found_textline_polygons_marginals[marginal_idx])): for j in range(len(all_found_textline_polygons_marginals[marginal_idx])):
coords = CoordsType() coords = CoordsType()
textline = TextLineType(id=counter.next_line_id, Coords=coords) textline = TextLineType(id=counter.next_line_id, Coords=coords)
@ -74,37 +76,54 @@ class EynollahXmlWriter():
for l in range(len(all_found_textline_polygons_marginals[marginal_idx][j])): for l in range(len(all_found_textline_polygons_marginals[marginal_idx][j])):
if not (self.curved_line or self.textline_light): if not (self.curved_line or self.textline_light):
if len(all_found_textline_polygons_marginals[marginal_idx][j][l]) == 2: if len(all_found_textline_polygons_marginals[marginal_idx][j][l]) == 2:
textline_x_coord = max(0, int((all_found_textline_polygons_marginals[marginal_idx][j][l][0] + all_box_coord_marginals[marginal_idx][2] + page_coord[2]) / self.scale_x) ) textline_x_coord = max(0, int((all_found_textline_polygons_marginals[marginal_idx][j][l][0] +
textline_y_coord = max(0, int((all_found_textline_polygons_marginals[marginal_idx][j][l][1] + all_box_coord_marginals[marginal_idx][0] + page_coord[0]) / self.scale_y) ) all_box_coord_marginals[marginal_idx][2] + page_coord[
2]) / self.scale_x))
textline_y_coord = max(0, int((all_found_textline_polygons_marginals[marginal_idx][j][l][1] +
all_box_coord_marginals[marginal_idx][0] + page_coord[
0]) / self.scale_y))
else: else:
textline_x_coord = max(0, int((all_found_textline_polygons_marginals[marginal_idx][j][l][0][0] + all_box_coord_marginals[marginal_idx][2] + page_coord[2]) / self.scale_x) ) textline_x_coord = max(0, int((all_found_textline_polygons_marginals[marginal_idx][j][l][0][0] +
textline_y_coord = max(0, int((all_found_textline_polygons_marginals[marginal_idx][j][l][0][1] + all_box_coord_marginals[marginal_idx][0] + page_coord[0]) / self.scale_y) ) all_box_coord_marginals[marginal_idx][2] + page_coord[
2]) / self.scale_x))
textline_y_coord = max(0, int((all_found_textline_polygons_marginals[marginal_idx][j][l][0][1] +
all_box_coord_marginals[marginal_idx][0] + page_coord[
0]) / self.scale_y))
points_co += str(textline_x_coord) points_co += str(textline_x_coord)
points_co += ',' points_co += ','
points_co += str(textline_y_coord) points_co += str(textline_y_coord)
if (self.curved_line or self.textline_light) and np.abs(slopes_marginals[marginal_idx]) <= 45: if (self.curved_line or self.textline_light) and np.abs(slopes_marginals[marginal_idx]) <= 45:
if len(all_found_textline_polygons_marginals[marginal_idx][j][l]) == 2: if len(all_found_textline_polygons_marginals[marginal_idx][j][l]) == 2:
points_co += str(int((all_found_textline_polygons_marginals[marginal_idx][j][l][0] + page_coord[2]) / self.scale_x)) points_co += str(int((all_found_textline_polygons_marginals[marginal_idx][j][l][0] + page_coord[
2]) / self.scale_x))
points_co += ',' points_co += ','
points_co += str(int((all_found_textline_polygons_marginals[marginal_idx][j][l][1] + page_coord[0]) / self.scale_y)) points_co += str(int((all_found_textline_polygons_marginals[marginal_idx][j][l][1] + page_coord[
0]) / self.scale_y))
else: else:
points_co += str(int((all_found_textline_polygons_marginals[marginal_idx][j][l][0][0] + page_coord[2]) / self.scale_x)) points_co += str(int((all_found_textline_polygons_marginals[marginal_idx][j][l][0][0] +
page_coord[2]) / self.scale_x))
points_co += ',' points_co += ','
points_co += str(int((all_found_textline_polygons_marginals[marginal_idx][j][l][0][1] + page_coord[0]) / self.scale_y)) points_co += str(int((all_found_textline_polygons_marginals[marginal_idx][j][l][0][1] +
page_coord[0]) / self.scale_y))
elif (self.curved_line or self.textline_light) and np.abs(slopes_marginals[marginal_idx]) > 45: elif (self.curved_line or self.textline_light) and np.abs(slopes_marginals[marginal_idx]) > 45:
if len(all_found_textline_polygons_marginals[marginal_idx][j][l]) == 2: if len(all_found_textline_polygons_marginals[marginal_idx][j][l]) == 2:
points_co += str(int((all_found_textline_polygons_marginals[marginal_idx][j][l][0] + all_box_coord_marginals[marginal_idx][2] + page_coord[2]) / self.scale_x)) points_co += str(int((all_found_textline_polygons_marginals[marginal_idx][j][l][0] +
all_box_coord_marginals[marginal_idx][2] + page_coord[2]) / self.scale_x))
points_co += ',' points_co += ','
points_co += str(int((all_found_textline_polygons_marginals[marginal_idx][j][l][1] + all_box_coord_marginals[marginal_idx][0] + page_coord[0]) / self.scale_y)) points_co += str(int((all_found_textline_polygons_marginals[marginal_idx][j][l][1] +
all_box_coord_marginals[marginal_idx][0] + page_coord[0]) / self.scale_y))
else: else:
points_co += str(int((all_found_textline_polygons_marginals[marginal_idx][j][l][0][0] + all_box_coord_marginals[marginal_idx][2] + page_coord[2]) / self.scale_x)) points_co += str(int((all_found_textline_polygons_marginals[marginal_idx][j][l][0][0] +
all_box_coord_marginals[marginal_idx][2] + page_coord[2]) / self.scale_x))
points_co += ',' points_co += ','
points_co += str(int((all_found_textline_polygons_marginals[marginal_idx][j][l][0][1] + all_box_coord_marginals[marginal_idx][0] + page_coord[0]) / self.scale_y)) points_co += str(int((all_found_textline_polygons_marginals[marginal_idx][j][l][0][1] +
all_box_coord_marginals[marginal_idx][0] + page_coord[0]) / self.scale_y))
points_co += ' ' points_co += ' '
coords.set_points(points_co[:-1]) coords.set_points(points_co[:-1])
def serialize_lines_in_region(self, text_region, all_found_textline_polygons, region_idx, page_coord, all_box_coord, slopes, counter): def serialize_lines_in_region(self, text_region, all_found_textline_polygons, region_idx, page_coord, all_box_coord,
slopes, counter):
self.logger.debug('enter serialize_lines_in_region') self.logger.debug('enter serialize_lines_in_region')
for j in range(len(all_found_textline_polygons[region_idx])): for j in range(len(all_found_textline_polygons[region_idx])):
coords = CoordsType() coords = CoordsType()
@ -115,11 +134,15 @@ class EynollahXmlWriter():
for idx_contour_textline, contour_textline in enumerate(all_found_textline_polygons[region_idx][j]): for idx_contour_textline, contour_textline in enumerate(all_found_textline_polygons[region_idx][j]):
if not (self.curved_line or self.textline_light): if not (self.curved_line or self.textline_light):
if len(contour_textline) == 2: if len(contour_textline) == 2:
textline_x_coord = max(0, int((contour_textline[0] + region_bboxes[2] + page_coord[2]) / self.scale_x)) textline_x_coord = max(0, int((contour_textline[0] + region_bboxes[2] + page_coord[
textline_y_coord = max(0, int((contour_textline[1] + region_bboxes[0] + page_coord[0]) / self.scale_y)) 2]) / self.scale_x))
textline_y_coord = max(0, int((contour_textline[1] + region_bboxes[0] + page_coord[
0]) / self.scale_y))
else: else:
textline_x_coord = max(0, int((contour_textline[0][0] + region_bboxes[2] + page_coord[2]) / self.scale_x)) textline_x_coord = max(0, int((contour_textline[0][0] + region_bboxes[2] + page_coord[
textline_y_coord = max(0, int((contour_textline[0][1] + region_bboxes[0] + page_coord[0]) / self.scale_y)) 2]) / self.scale_x))
textline_y_coord = max(0, int((contour_textline[0][1] + region_bboxes[0] + page_coord[
0]) / self.scale_y))
points_co += str(textline_x_coord) points_co += str(textline_x_coord)
points_co += ',' points_co += ','
points_co += str(textline_y_coord) points_co += str(textline_y_coord)
@ -139,9 +162,11 @@ class EynollahXmlWriter():
points_co += ',' points_co += ','
points_co += str(int((contour_textline[1] + region_bboxes[0] + page_coord[0]) / self.scale_y)) points_co += str(int((contour_textline[1] + region_bboxes[0] + page_coord[0]) / self.scale_y))
else: else:
points_co += str(int((contour_textline[0][0] + region_bboxes[2]+page_coord[2])/self.scale_x)) points_co += str(
int((contour_textline[0][0] + region_bboxes[2] + page_coord[2]) / self.scale_x))
points_co += ',' points_co += ','
points_co += str(int((contour_textline[0][1] + region_bboxes[0]+page_coord[0])/self.scale_y)) points_co += str(
int((contour_textline[0][1] + region_bboxes[0] + page_coord[0]) / self.scale_y))
points_co += ' ' points_co += ' '
coords.set_points(points_co[:-1]) coords.set_points(points_co[:-1])
@ -151,7 +176,11 @@ class EynollahXmlWriter():
with open(out_fname, 'w') as f: with open(out_fname, 'w') as f:
f.write(to_xml(pcgts)) f.write(to_xml(pcgts))
def build_pagexml_no_full_layout(self, found_polygons_text_region, page_coord, order_of_texts, id_of_texts, all_found_textline_polygons, all_box_coord, found_polygons_text_region_img, found_polygons_marginals, all_found_textline_polygons_marginals, all_box_coord_marginals, slopes, slopes_marginals, cont_page, polygons_lines_to_be_written_in_xml, found_polygons_tables): def build_pagexml_no_full_layout(self, found_polygons_text_region, page_coord, order_of_texts, id_of_texts,
all_found_textline_polygons, all_box_coord, found_polygons_text_region_img,
found_polygons_marginals, all_found_textline_polygons_marginals,
all_box_coord_marginals, slopes, slopes_marginals, cont_page,
polygons_lines_to_be_written_in_xml, found_polygons_tables):
self.logger.debug('enter build_pagexml_no_full_layout') self.logger.debug('enter build_pagexml_no_full_layout')
# create the file structure # create the file structure
@ -167,16 +196,22 @@ class EynollahXmlWriter():
for mm in range(len(found_polygons_text_region)): for mm in range(len(found_polygons_text_region)):
textregion = TextRegionType(id=counter.next_region_id, type_='paragraph', textregion = TextRegionType(id=counter.next_region_id, type_='paragraph',
Coords=CoordsType(points=self.calculate_polygon_coords(found_polygons_text_region[mm], page_coord)), Coords=CoordsType(
points=self.calculate_polygon_coords(found_polygons_text_region[mm],
page_coord)),
) )
page.add_TextRegion(textregion) page.add_TextRegion(textregion)
self.serialize_lines_in_region(textregion, all_found_textline_polygons, mm, page_coord, all_box_coord, slopes, counter) self.serialize_lines_in_region(textregion, all_found_textline_polygons, mm, page_coord, all_box_coord,
slopes, counter)
for mm in range(len(found_polygons_marginals)): for mm in range(len(found_polygons_marginals)):
marginal = TextRegionType(id=counter.next_region_id, type_='marginalia', marginal = TextRegionType(id=counter.next_region_id, type_='marginalia',
Coords=CoordsType(points=self.calculate_polygon_coords(found_polygons_marginals[mm], page_coord))) Coords=CoordsType(
points=self.calculate_polygon_coords(found_polygons_marginals[mm],
page_coord)))
page.add_TextRegion(marginal) page.add_TextRegion(marginal)
self.serialize_lines_in_marginal(marginal, all_found_textline_polygons_marginals, mm, page_coord, all_box_coord_marginals, slopes_marginals, counter) self.serialize_lines_in_marginal(marginal, all_found_textline_polygons_marginals, mm, page_coord,
all_box_coord_marginals, slopes_marginals, counter)
for mm in range(len(found_polygons_text_region_img)): for mm in range(len(found_polygons_text_region_img)):
img_region = ImageRegionType(id=counter.next_region_id, Coords=CoordsType()) img_region = ImageRegionType(id=counter.next_region_id, Coords=CoordsType())
@ -212,7 +247,13 @@ class EynollahXmlWriter():
return pcgts return pcgts
def build_pagexml_full_layout(self, found_polygons_text_region, found_polygons_text_region_h, page_coord, order_of_texts, id_of_texts, all_found_textline_polygons, all_found_textline_polygons_h, all_box_coord, all_box_coord_h, found_polygons_text_region_img, found_polygons_tables, found_polygons_drop_capitals, found_polygons_marginals, all_found_textline_polygons_marginals, all_box_coord_marginals, slopes, slopes_h, slopes_marginals, cont_page, polygons_lines_to_be_written_in_xml): def build_pagexml_full_layout(self, found_polygons_text_region, found_polygons_text_region_h, page_coord,
order_of_texts, id_of_texts, all_found_textline_polygons,
all_found_textline_polygons_h, all_box_coord, all_box_coord_h,
found_polygons_text_region_img, found_polygons_tables, found_polygons_drop_capitals,
found_polygons_marginals, all_found_textline_polygons_marginals,
all_box_coord_marginals, slopes, slopes_h, slopes_marginals, cont_page,
polygons_lines_to_be_written_in_xml):
self.logger.debug('enter build_pagexml_full_layout') self.logger.debug('enter build_pagexml_full_layout')
# create the file structure # create the file structure
@ -227,35 +268,48 @@ class EynollahXmlWriter():
for mm in range(len(found_polygons_text_region)): for mm in range(len(found_polygons_text_region)):
textregion = TextRegionType(id=counter.next_region_id, type_='paragraph', textregion = TextRegionType(id=counter.next_region_id, type_='paragraph',
Coords=CoordsType(points=self.calculate_polygon_coords(found_polygons_text_region[mm], page_coord))) Coords=CoordsType(
points=self.calculate_polygon_coords(found_polygons_text_region[mm],
page_coord)))
page.add_TextRegion(textregion) page.add_TextRegion(textregion)
self.serialize_lines_in_region(textregion, all_found_textline_polygons, mm, page_coord, all_box_coord, slopes, counter) self.serialize_lines_in_region(textregion, all_found_textline_polygons, mm, page_coord, all_box_coord,
slopes, counter)
self.logger.debug('len(found_polygons_text_region_h) %s', len(found_polygons_text_region_h)) self.logger.debug('len(found_polygons_text_region_h) %s', len(found_polygons_text_region_h))
for mm in range(len(found_polygons_text_region_h)): for mm in range(len(found_polygons_text_region_h)):
textregion = TextRegionType(id=counter.next_region_id, type_='header', textregion = TextRegionType(id=counter.next_region_id, type_='header',
Coords=CoordsType(points=self.calculate_polygon_coords(found_polygons_text_region_h[mm], page_coord))) Coords=CoordsType(
points=self.calculate_polygon_coords(found_polygons_text_region_h[mm],
page_coord)))
page.add_TextRegion(textregion) page.add_TextRegion(textregion)
self.serialize_lines_in_region(textregion, all_found_textline_polygons_h, mm, page_coord, all_box_coord_h, slopes_h, counter) self.serialize_lines_in_region(textregion, all_found_textline_polygons_h, mm, page_coord, all_box_coord_h,
slopes_h, counter)
for mm in range(len(found_polygons_marginals)): for mm in range(len(found_polygons_marginals)):
marginal = TextRegionType(id=counter.next_region_id, type_='marginalia', marginal = TextRegionType(id=counter.next_region_id, type_='marginalia',
Coords=CoordsType(points=self.calculate_polygon_coords(found_polygons_marginals[mm], page_coord))) Coords=CoordsType(
points=self.calculate_polygon_coords(found_polygons_marginals[mm],
page_coord)))
page.add_TextRegion(marginal) page.add_TextRegion(marginal)
self.serialize_lines_in_marginal(marginal, all_found_textline_polygons_marginals, mm, page_coord, all_box_coord_marginals, slopes_marginals, counter) self.serialize_lines_in_marginal(marginal, all_found_textline_polygons_marginals, mm, page_coord,
all_box_coord_marginals, slopes_marginals, counter)
for mm in range(len(found_polygons_drop_capitals)): for mm in range(len(found_polygons_drop_capitals)):
page.add_TextRegion(TextRegionType(id=counter.next_region_id, type_='drop-capital', page.add_TextRegion(TextRegionType(id=counter.next_region_id, type_='drop-capital',
Coords=CoordsType(points=self.calculate_polygon_coords(found_polygons_drop_capitals[mm], page_coord)))) Coords=CoordsType(points=self.calculate_polygon_coords(
found_polygons_drop_capitals[mm], page_coord))))
for mm in range(len(found_polygons_text_region_img)): for mm in range(len(found_polygons_text_region_img)):
page.add_ImageRegion(ImageRegionType(id=counter.next_region_id, Coords=CoordsType(points=self.calculate_polygon_coords(found_polygons_text_region_img[mm], page_coord)))) page.add_ImageRegion(ImageRegionType(id=counter.next_region_id, Coords=CoordsType(
points=self.calculate_polygon_coords(found_polygons_text_region_img[mm], page_coord))))
for mm in range(len(polygons_lines_to_be_written_in_xml)): for mm in range(len(polygons_lines_to_be_written_in_xml)):
page.add_SeparatorRegion(ImageRegionType(id=counter.next_region_id, Coords=CoordsType(points=self.calculate_polygon_coords(polygons_lines_to_be_written_in_xml[mm], [0 , 0, 0, 0])))) page.add_SeparatorRegion(ImageRegionType(id=counter.next_region_id, Coords=CoordsType(
points=self.calculate_polygon_coords(polygons_lines_to_be_written_in_xml[mm], [0, 0, 0, 0]))))
for mm in range(len(found_polygons_tables)): for mm in range(len(found_polygons_tables)):
page.add_TableRegion(TableRegionType(id=counter.next_region_id, Coords=CoordsType(points=self.calculate_polygon_coords(found_polygons_tables[mm], page_coord)))) page.add_TableRegion(TableRegionType(id=counter.next_region_id, Coords=CoordsType(
points=self.calculate_polygon_coords(found_polygons_tables[mm], page_coord))))
return pcgts return pcgts
@ -273,4 +327,3 @@ class EynollahXmlWriter():
coords += str(int((value_bbox[0][1] + page_coord[0]) / self.scale_y)) coords += str(int((value_bbox[0][1] + page_coord[0]) / self.scale_y))
coords = coords + ' ' coords = coords + ' '
return coords[:-1] return coords[:-1]

@ -1 +1 @@
qurator/eynollah/ocrd-tool.json eynollah/eynollah/ocrd-tool.json

@ -0,0 +1,42 @@
[build-system]
requires = ["setuptools>=61.0"]
build-backend = "setuptools.build_meta"
[project]
name = "eynollah"
version = "0.3.0"
authors = [
{name = "Vahid Rezanezhad"}
]
description = "Document Layout Analysis"
readme = "README.md"
requires-python = ">=3.8"
keywords = ["document layout analysis", "semantic segmentation"]
classifiers = [
"Development Status :: 4 - Beta",
"Environment :: Console",
"Intended Audience :: Science/Research",
"License :: OSI Approved :: Apache Software License",
"Programming Language :: Python :: 3",
"Programming Language :: Python :: 3 :: Only",
"Topic :: Scientific/Engineering :: Image Processing",
]
dependencies = [
"ocrd >= 2.63.3",
"numpy <= 1.24.4",
"scikit-learn <= 1.3.2",
"tensorflow <= 2.13.1",
"imutils >= 0.5.4",
"matplotlib <= 3.7.5",
"setuptools >= 61",
]
# TODO: test dependencies
[project.scripts]
eynollah = "eynollah.eynollah.cli:main"
ocrd-eynollah-segment = "eynollah.eynollah.ocrd_cli:main"
[project.urls]
Homepage = "https://github.com/qurator-spk/eynollah"
Repository = "https://github.com/qurator-spk/eynollah.git"

@ -1,252 +0,0 @@
import numpy as np
import cv2
from scipy.signal import find_peaks
from scipy.ndimage import gaussian_filter1d
from .contour import find_new_features_of_contours, return_contours_of_interested_region
from .resize import resize_image
from .rotate import rotate_image
def get_marginals(text_with_lines, text_regions, num_col, slope_deskew, kernel=None):
mask_marginals=np.zeros((text_with_lines.shape[0],text_with_lines.shape[1]))
mask_marginals=mask_marginals.astype(np.uint8)
text_with_lines=text_with_lines.astype(np.uint8)
##text_with_lines=cv2.erode(text_with_lines,self.kernel,iterations=3)
text_with_lines_eroded=cv2.erode(text_with_lines,kernel,iterations=5)
if text_with_lines.shape[0]<=1500:
pass
elif text_with_lines.shape[0]>1500 and text_with_lines.shape[0]<=1800:
text_with_lines=resize_image(text_with_lines,int(text_with_lines.shape[0]*1.5),text_with_lines.shape[1])
text_with_lines=cv2.erode(text_with_lines,kernel,iterations=5)
text_with_lines=resize_image(text_with_lines,text_with_lines_eroded.shape[0],text_with_lines_eroded.shape[1])
else:
text_with_lines=resize_image(text_with_lines,int(text_with_lines.shape[0]*1.8),text_with_lines.shape[1])
text_with_lines=cv2.erode(text_with_lines,kernel,iterations=7)
text_with_lines=resize_image(text_with_lines,text_with_lines_eroded.shape[0],text_with_lines_eroded.shape[1])
text_with_lines_y=text_with_lines.sum(axis=0)
text_with_lines_y_eroded=text_with_lines_eroded.sum(axis=0)
thickness_along_y_percent=text_with_lines_y_eroded.max()/(float(text_with_lines.shape[0]))*100
#print(thickness_along_y_percent,'thickness_along_y_percent')
if thickness_along_y_percent<30:
min_textline_thickness=8
elif thickness_along_y_percent>=30 and thickness_along_y_percent<50:
min_textline_thickness=20
else:
min_textline_thickness=40
if thickness_along_y_percent>=14:
text_with_lines_y_rev=-1*text_with_lines_y[:]
#print(text_with_lines_y)
#print(text_with_lines_y_rev)
#plt.plot(text_with_lines_y)
#plt.show()
text_with_lines_y_rev=text_with_lines_y_rev-np.min(text_with_lines_y_rev)
#plt.plot(text_with_lines_y_rev)
#plt.show()
sigma_gaus=1
region_sum_0= gaussian_filter1d(text_with_lines_y, sigma_gaus)
region_sum_0_rev=gaussian_filter1d(text_with_lines_y_rev, sigma_gaus)
#plt.plot(region_sum_0_rev)
#plt.show()
region_sum_0_updown=region_sum_0[len(region_sum_0)::-1]
first_nonzero=(next((i for i, x in enumerate(region_sum_0) if x), None))
last_nonzero=(next((i for i, x in enumerate(region_sum_0_updown) if x), None))
last_nonzero=len(region_sum_0)-last_nonzero
##img_sum_0_smooth_rev=-region_sum_0
mid_point=(last_nonzero+first_nonzero)/2.
one_third_right=(last_nonzero-mid_point)/3.0
one_third_left=(mid_point-first_nonzero)/3.0
#img_sum_0_smooth_rev=img_sum_0_smooth_rev-np.min(img_sum_0_smooth_rev)
peaks, _ = find_peaks(text_with_lines_y_rev, height=0)
peaks=np.array(peaks)
#print(region_sum_0[peaks])
##plt.plot(region_sum_0)
##plt.plot(peaks,region_sum_0[peaks],'*')
##plt.show()
#print(first_nonzero,last_nonzero,peaks)
peaks=peaks[(peaks>first_nonzero) & ((peaks<last_nonzero))]
#print(first_nonzero,last_nonzero,peaks)
#print(region_sum_0[peaks]<10)
####peaks=peaks[region_sum_0[peaks]<25 ]
#print(region_sum_0[peaks])
peaks=peaks[region_sum_0[peaks]<min_textline_thickness ]
#print(peaks)
#print(first_nonzero,last_nonzero,one_third_right,one_third_left)
if num_col==1:
peaks_right=peaks[peaks>mid_point]
peaks_left=peaks[peaks<mid_point]
if num_col==2:
peaks_right=peaks[peaks>(mid_point+one_third_right)]
peaks_left=peaks[peaks<(mid_point-one_third_left)]
try:
point_right=np.min(peaks_right)
except:
point_right=last_nonzero
try:
point_left=np.max(peaks_left)
except:
point_left=first_nonzero
#print(point_left,point_right)
#print(text_regions.shape)
if point_right>=mask_marginals.shape[1]:
point_right=mask_marginals.shape[1]-1
try:
mask_marginals[:,point_left:point_right]=1
except:
mask_marginals[:,:]=1
#print(mask_marginals.shape,point_left,point_right,'nadosh')
mask_marginals_rotated=rotate_image(mask_marginals,-slope_deskew)
#print(mask_marginals_rotated.shape,'nadosh')
mask_marginals_rotated_sum=mask_marginals_rotated.sum(axis=0)
mask_marginals_rotated_sum[mask_marginals_rotated_sum!=0]=1
index_x=np.array(range(len(mask_marginals_rotated_sum)))+1
index_x_interest=index_x[mask_marginals_rotated_sum==1]
min_point_of_left_marginal=np.min(index_x_interest)-16
max_point_of_right_marginal=np.max(index_x_interest)+16
if min_point_of_left_marginal<0:
min_point_of_left_marginal=0
if max_point_of_right_marginal>=text_regions.shape[1]:
max_point_of_right_marginal=text_regions.shape[1]-1
#print(np.min(index_x_interest) ,np.max(index_x_interest),'minmaxnew')
#print(mask_marginals_rotated.shape,text_regions.shape,'mask_marginals_rotated')
#plt.imshow(mask_marginals)
#plt.show()
#plt.imshow(mask_marginals_rotated)
#plt.show()
text_regions[(mask_marginals_rotated[:,:]!=1) & (text_regions[:,:]==1)]=4
#plt.imshow(text_regions)
#plt.show()
pixel_img=4
min_area_text=0.00001
polygons_of_marginals=return_contours_of_interested_region(text_regions,pixel_img,min_area_text)
cx_text_only,cy_text_only ,x_min_text_only,x_max_text_only, y_min_text_only ,y_max_text_only,y_cor_x_min_main=find_new_features_of_contours(polygons_of_marginals)
text_regions[(text_regions[:,:]==4)]=1
marginlas_should_be_main_text=[]
x_min_marginals_left=[]
x_min_marginals_right=[]
for i in range(len(cx_text_only)):
x_width_mar=abs(x_min_text_only[i]-x_max_text_only[i])
y_height_mar=abs(y_min_text_only[i]-y_max_text_only[i])
#print(x_width_mar,y_height_mar,y_height_mar/x_width_mar,'y_height_mar')
if x_width_mar>16 and y_height_mar/x_width_mar<18:
marginlas_should_be_main_text.append(polygons_of_marginals[i])
if x_min_text_only[i]<(mid_point-one_third_left):
x_min_marginals_left_new=x_min_text_only[i]
if len(x_min_marginals_left)==0:
x_min_marginals_left.append(x_min_marginals_left_new)
else:
x_min_marginals_left[0]=min(x_min_marginals_left[0],x_min_marginals_left_new)
else:
x_min_marginals_right_new=x_min_text_only[i]
if len(x_min_marginals_right)==0:
x_min_marginals_right.append(x_min_marginals_right_new)
else:
x_min_marginals_right[0]=min(x_min_marginals_right[0],x_min_marginals_right_new)
if len(x_min_marginals_left)==0:
x_min_marginals_left=[0]
if len(x_min_marginals_right)==0:
x_min_marginals_right=[text_regions.shape[1]-1]
#print(x_min_marginals_left[0],x_min_marginals_right[0],'margo')
#print(marginlas_should_be_main_text,'marginlas_should_be_main_text')
text_regions=cv2.fillPoly(text_regions, pts =marginlas_should_be_main_text, color=(4,4))
#print(np.unique(text_regions))
#text_regions[:,:int(x_min_marginals_left[0])][text_regions[:,:int(x_min_marginals_left[0])]==1]=0
#text_regions[:,int(x_min_marginals_right[0]):][text_regions[:,int(x_min_marginals_right[0]):]==1]=0
text_regions[:,:int(min_point_of_left_marginal)][text_regions[:,:int(min_point_of_left_marginal)]==1]=0
text_regions[:,int(max_point_of_right_marginal):][text_regions[:,int(max_point_of_right_marginal):]==1]=0
###text_regions[:,0:point_left][text_regions[:,0:point_left]==1]=4
###text_regions[:,point_right:][ text_regions[:,point_right:]==1]=4
#plt.plot(region_sum_0)
#plt.plot(peaks,region_sum_0[peaks],'*')
#plt.show()
#plt.imshow(text_regions)
#plt.show()
#sys.exit()
else:
pass
return text_regions

@ -1,8 +1,8 @@
# ocrd includes opencv, numpy, shapely, click # ocrd includes opencv, numpy, shapely, click
ocrd >= 3.0.0a2 ocrd >= 3.0.0a2
numpy <1.24.0 numpy <= 1.24.4
scikit-learn >= 0.23.2 scikit-learn <= 1.3.2
tensorflow == 2.12.1 tensorflow <= 2.13.1
imutils >= 0.5.3 imutils >= 0.5.4
matplotlib matplotlib <= 3.7.5
setuptools >= 50 setuptools >= 61

@ -1,4 +1,4 @@
from setuptools import setup, find_namespace_packages from setuptools import find_packages, setup
from json import load from json import load
install_requires = open('requirements.txt').read().split('\n') install_requires = open('requirements.txt').read().split('\n')
@ -13,15 +13,16 @@ setup(
author='Vahid Rezanezhad', author='Vahid Rezanezhad',
url='https://github.com/qurator-spk/eynollah', url='https://github.com/qurator-spk/eynollah',
license='Apache License 2.0', license='Apache License 2.0',
packages=find_namespace_packages(include=['qurator']), namespace_packages=['eynollah'],
packages=find_packages(exclude=['tests']),
install_requires=install_requires, install_requires=install_requires,
package_data={ package_data={
'': ['*.json'] '': ['*.json']
}, },
entry_points={ entry_points={
'console_scripts': [ 'console_scripts': [
'eynollah=qurator.eynollah.cli:main', 'eynollah=eynollah.eynollah.cli:main',
'ocrd-eynollah-segment=qurator.eynollah.ocrd_cli:main', 'ocrd-eynollah-segment=eynollah.eynollah.ocrd_cli:main',
] ]
}, },
) )

@ -10,12 +10,14 @@ from unittest import TestCase as VanillaTestCase, skip, main as unittests_main
import pytest import pytest
from ocrd_utils import disableLogging, initLogging from ocrd_utils import disableLogging, initLogging
def main(fn=None): def main(fn=None):
if fn: if fn:
sys.exit(pytest.main([fn])) sys.exit(pytest.main([fn]))
else: else:
unittests_main() unittests_main()
class TestCase(VanillaTestCase): class TestCase(VanillaTestCase):
@classmethod @classmethod
@ -26,6 +28,7 @@ class TestCase(VanillaTestCase):
disableLogging() disableLogging()
initLogging() initLogging()
class CapturingTestCase(TestCase): class CapturingTestCase(TestCase):
""" """
A TestCase that needs to capture stderr/stdout and invoke click CLI. A TestCase that needs to capture stderr/stdout and invoke click CLI.

@ -1,5 +1,6 @@
from tests.base import main from tests.base import main
from qurator.eynollah.utils.counter import EynollahIdCounter from eynollah.eynollah.utils.counter import EynollahIdCounter
def test_counter_string(): def test_counter_string():
c = EynollahIdCounter() c = EynollahIdCounter()
@ -11,6 +12,7 @@ def test_counter_string():
assert c.region_id(999) == 'region_0999' assert c.region_id(999) == 'region_0999'
assert c.line_id(999, 888) == 'region_0999_line_0888' assert c.line_id(999, 888) == 'region_0999_line_0888'
def test_counter_init(): def test_counter_init():
c = EynollahIdCounter(region_idx=2) c = EynollahIdCounter(region_idx=2)
assert c.get('region') == 2 assert c.get('region') == 2
@ -19,6 +21,7 @@ def test_counter_init():
c.reset() c.reset()
assert c.get('region') == 2 assert c.get('region') == 2
def test_counter_methods(): def test_counter_methods():
c = EynollahIdCounter() c = EynollahIdCounter()
assert c.get('region') == 0 assert c.get('region') == 0
@ -29,5 +32,6 @@ def test_counter_methods():
c.inc('region', -9) c.inc('region', -9)
assert c.get('region') == 1 assert c.get('region') == 1
if __name__ == '__main__': if __name__ == '__main__':
main(__file__) main(__file__)

@ -1,11 +1,13 @@
import cv2 import cv2
from pathlib import Path from pathlib import Path
from qurator.eynollah.utils.pil_cv2 import check_dpi from eynollah.eynollah.utils.pil_cv2 import check_dpi
from tests.base import main from tests.base import main
def test_dpi(): def test_dpi():
fpath = str(Path(__file__).parent.joinpath('resources', 'kant_aufklaerung_1784_0020.tif')) fpath = str(Path(__file__).parent.joinpath('resources', 'kant_aufklaerung_1784_0020.tif'))
assert 230 == check_dpi(cv2.imread(fpath)) assert 230 == check_dpi(cv2.imread(fpath))
if __name__ == '__main__': if __name__ == '__main__':
main(__file__) main(__file__)

@ -2,13 +2,14 @@ from os import environ
from pathlib import Path from pathlib import Path
from ocrd_utils import pushd_popd from ocrd_utils import pushd_popd
from tests.base import CapturingTestCase as TestCase, main from tests.base import CapturingTestCase as TestCase, main
from qurator.eynollah.cli import main as eynollah_cli from eynollah.eynollah.cli import main as eynollah_cli
testdir = Path(__file__).parent.resolve() testdir = Path(__file__).parent.resolve()
# EYNOLLAH_MODELS = environ.get('EYNOLLAH_MODELS', str(testdir.joinpath('..', 'models_eynollah').resolve())) # EYNOLLAH_MODELS = environ.get('EYNOLLAH_MODELS', str(testdir.joinpath('..', 'models_eynollah').resolve()))
EYNOLLAH_MODELS = environ['EYNOLLAH_MODELS'] EYNOLLAH_MODELS = environ['EYNOLLAH_MODELS']
class TestEynollahRun(TestCase): class TestEynollahRun(TestCase):
def test_full_run(self): def test_full_run(self):
@ -21,5 +22,6 @@ class TestEynollahRun(TestCase):
print(code, out, err) print(code, out, err)
assert not code assert not code
if __name__ == '__main__': if __name__ == '__main__':
main(__file__) main(__file__)

@ -1,7 +1,7 @@
def test_utils_import(): def test_utils_import():
import qurator.eynollah.utils import eynollah.eynollah.utils
import qurator.eynollah.utils.contour import eynollah.eynollah.utils.contour
import qurator.eynollah.utils.drop_capitals import eynollah.eynollah.utils.drop_capitals
import qurator.eynollah.utils.drop_capitals import eynollah.eynollah.utils.drop_capitals
import qurator.eynollah.utils.is_nan import eynollah.eynollah.utils.is_nan
import qurator.eynollah.utils.rotate import eynollah.eynollah.utils.rotate

@ -1,14 +1,16 @@
from pytest import main from pytest import main
from qurator.eynollah.utils.xml import create_page_xml from eynollah.eynollah.utils.xml import create_page_xml
from ocrd_models.ocrd_page import to_xml from ocrd_models.ocrd_page import to_xml
PAGE_2019 = 'http://schema.primaresearch.org/PAGE/gts/pagecontent/2019-07-15' PAGE_2019 = 'http://schema.primaresearch.org/PAGE/gts/pagecontent/2019-07-15'
def test_create_xml(): def test_create_xml():
pcgts = create_page_xml('/path/to/img.tif', 100, 100) pcgts = create_page_xml('/path/to/img.tif', 100, 100)
xmlstr = to_xml(pcgts) xmlstr = to_xml(pcgts)
assert 'xmlns:pc="%s"' % PAGE_2019 in xmlstr assert 'xmlns:pc="%s"' % PAGE_2019 in xmlstr
assert 'Metadata' in xmlstr assert 'Metadata' in xmlstr
if __name__ == '__main__': if __name__ == '__main__':
main([__file__]) main([__file__])

Loading…
Cancel
Save