|
|
@ -273,7 +273,7 @@ class eynollah:
|
|
|
|
dpi = os.popen('identify -format "%x " ' + self.image_filename).read()
|
|
|
|
dpi = os.popen('identify -format "%x " ' + self.image_filename).read()
|
|
|
|
return int(float(dpi))
|
|
|
|
return int(float(dpi))
|
|
|
|
|
|
|
|
|
|
|
|
def calculate_width_height_by_columns(self, img, num_col, width_early):
|
|
|
|
def calculate_width_height_by_columns(self, img, num_col, width_early, label_p_pred):
|
|
|
|
if num_col == 1 and width_early < 1100:
|
|
|
|
if num_col == 1 and width_early < 1100:
|
|
|
|
img_w_new = 2000
|
|
|
|
img_w_new = 2000
|
|
|
|
img_h_new = int(img.shape[0] / float(img.shape[1]) * 2000)
|
|
|
|
img_h_new = int(img.shape[0] / float(img.shape[1]) * 2000)
|
|
|
@ -370,7 +370,7 @@ class eynollah:
|
|
|
|
gc.collect()
|
|
|
|
gc.collect()
|
|
|
|
|
|
|
|
|
|
|
|
# sys.exit()
|
|
|
|
# sys.exit()
|
|
|
|
img_new, num_column_is_classified = self.calculate_width_height_by_columns(img, num_col, width_early)
|
|
|
|
img_new, num_column_is_classified = self.calculate_width_height_by_columns(img, num_col, width_early, label_p_pred)
|
|
|
|
|
|
|
|
|
|
|
|
if img_new.shape[1] > img.shape[1]:
|
|
|
|
if img_new.shape[1] > img.shape[1]:
|
|
|
|
img_new = self.predict_enhancement(img_new)
|
|
|
|
img_new = self.predict_enhancement(img_new)
|
|
|
@ -428,7 +428,7 @@ class eynollah:
|
|
|
|
if dpi < 298:
|
|
|
|
if dpi < 298:
|
|
|
|
|
|
|
|
|
|
|
|
# sys.exit()
|
|
|
|
# sys.exit()
|
|
|
|
img_new, num_column_is_classified = self.calculate_width_height_by_columns(img, num_col, width_early)
|
|
|
|
img_new, num_column_is_classified = self.calculate_width_height_by_columns(img, num_col, width_early, label_p_pred)
|
|
|
|
|
|
|
|
|
|
|
|
# img_new=resize_image(img,img_h_new,img_w_new)
|
|
|
|
# img_new=resize_image(img,img_h_new,img_w_new)
|
|
|
|
image_res = self.predict_enhancement(img_new)
|
|
|
|
image_res = self.predict_enhancement(img_new)
|
|
|
|