mirror of
https://github.com/qurator-spk/eynollah.git
synced 2025-06-08 19:59:56 +02:00
only images extraction - update inference parameters
This commit is contained in:
parent
7cbca79f16
commit
9170a9f21c
1 changed files with 11 additions and 4 deletions
|
@ -260,7 +260,7 @@ class Eynollah:
|
|||
|
||||
self.model_page = self.our_load_model(self.model_page_dir)
|
||||
self.model_classifier = self.our_load_model(self.model_dir_of_col_classifier)
|
||||
#self.model_bin = self.our_load_model(self.model_dir_of_binarization)
|
||||
self.model_bin = self.our_load_model(self.model_dir_of_binarization)
|
||||
#self.model_textline = self.our_load_model(self.model_textline_dir)
|
||||
self.model_region = self.our_load_model(self.model_region_dir_p_ens_light_only_images_extraction)
|
||||
#self.model_region_fl_np = self.our_load_model(self.model_region_dir_fully_np)
|
||||
|
@ -917,7 +917,8 @@ class Eynollah:
|
|||
##seg2 = -label_p_pred[0,:,:,2]
|
||||
|
||||
if self.extract_only_images:
|
||||
seg_not_base[seg_not_base>0.3] =1
|
||||
#seg_not_base[seg_not_base>0.3] =1
|
||||
seg_not_base[seg_not_base>0.5] =1
|
||||
seg_not_base[seg_not_base<1] =0
|
||||
else:
|
||||
seg_not_base[seg_not_base>0.03] =1
|
||||
|
@ -955,7 +956,7 @@ class Eynollah:
|
|||
##plt.show()
|
||||
#seg[seg==1]=0
|
||||
#seg[seg_test==1]=1
|
||||
seg[seg_not_base==1]=4
|
||||
###seg[seg_not_base==1]=4
|
||||
if not self.extract_only_images:
|
||||
seg[seg_background==1]=0
|
||||
seg[(seg_line==1) & (seg==0)]=3
|
||||
|
@ -1689,7 +1690,13 @@ class Eynollah:
|
|||
|
||||
text_regions_p_true = cv2.fillPoly(text_regions_p_true, pts = polygons_of_only_texts, color=(1,1,1))
|
||||
|
||||
polygons_of_images = return_contours_of_interested_region(text_regions_p_true, 2, 0.0001)
|
||||
|
||||
|
||||
text_regions_p_true[text_regions_p_true.shape[0]-15:text_regions_p_true.shape[0], :] = 0
|
||||
text_regions_p_true[:, text_regions_p_true.shape[1]-15:text_regions_p_true.shape[1]] = 0
|
||||
|
||||
##polygons_of_images = return_contours_of_interested_region(text_regions_p_true, 2, 0.0001)
|
||||
polygons_of_images = return_contours_of_interested_region(text_regions_p_true, 2, 0.001)
|
||||
|
||||
image_boundary_of_doc = np.zeros((text_regions_p_true.shape[0], text_regions_p_true.shape[1]))
|
||||
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue