mirror of
https://github.com/qurator-spk/eynollah.git
synced 2025-12-01 08:44:13 +01:00
Merge b161e33854 into 0f410c2e7c
This commit is contained in:
commit
a924af2438
36 changed files with 2384 additions and 3455 deletions
4
.github/workflows/test-eynollah.yml
vendored
4
.github/workflows/test-eynollah.yml
vendored
|
|
@ -67,10 +67,6 @@ jobs:
|
|||
make install-dev EXTRAS=OCR,plotting
|
||||
make deps-test EXTRAS=OCR,plotting
|
||||
|
||||
- name: Hard-upgrade torch for debugging
|
||||
run: |
|
||||
python -m pip install --upgrade torch
|
||||
|
||||
- name: Test with pytest
|
||||
run: make coverage PYTEST_ARGS="-vv --junitxml=pytest.xml"
|
||||
|
||||
|
|
|
|||
|
|
@ -103,15 +103,12 @@ The following options can be used to further configure the processing:
|
|||
| option | description |
|
||||
|-------------------|:--------------------------------------------------------------------------------------------|
|
||||
| `-fl` | full layout analysis including all steps and segmentation classes (recommended) |
|
||||
| `-light` | lighter and faster but simpler method for main region detection and deskewing (recommended) |
|
||||
| `-tll` | this indicates the light textline and should be passed with light version (recommended) |
|
||||
| `-tab` | apply table detection |
|
||||
| `-ae` | apply enhancement (the resulting image is saved to the output directory) |
|
||||
| `-as` | apply scaling |
|
||||
| `-cl` | apply contour detection for curved text lines instead of bounding boxes |
|
||||
| `-ib` | apply binarization (the resulting image is saved to the output directory) |
|
||||
| `-ep` | enable plotting (MUST always be used with `-sl`, `-sd`, `-sa`, `-si` or `-ae`) |
|
||||
| `-eoi` | extract only images to output directory (other processing will not be done) |
|
||||
| `-ho` | ignore headers for reading order dectection |
|
||||
| `-si <directory>` | save image regions detected to this directory |
|
||||
| `-sd <directory>` | save deskewed image to this directory |
|
||||
|
|
@ -120,9 +117,6 @@ The following options can be used to further configure the processing:
|
|||
| `-sa <directory>` | save all (plot, enhanced/binary image, layout) to this directory |
|
||||
| `-thart` | threshold of artifical class in the case of textline detection. The default value is 0.1 |
|
||||
| `-tharl` | threshold of artifical class in the case of layout detection. The default value is 0.1 |
|
||||
| `-ocr` | do ocr |
|
||||
| `-tr` | apply transformer ocr. Default model is a CNN-RNN model |
|
||||
| `-bs_ocr` | ocr inference batch size. Default bs for trocr and cnn_rnn models are 2 and 8 respectively |
|
||||
| `-ncu` | upper limit of columns in document image |
|
||||
| `-ncl` | lower limit of columns in document image |
|
||||
| `-slro` | skip layout detection and reading order |
|
||||
|
|
|
|||
|
|
@ -1,2 +1,2 @@
|
|||
torch <= 2.0.1
|
||||
torch
|
||||
transformers <= 4.30.2
|
||||
|
|
|
|||
|
|
@ -1,617 +0,0 @@
|
|||
from dataclasses import dataclass
|
||||
import logging
|
||||
import sys
|
||||
import os
|
||||
from typing import Union
|
||||
|
||||
import click
|
||||
|
||||
# NOTE: For debugging/predictable order of imports
|
||||
from .eynollah_imports import imported_libs
|
||||
from .model_zoo import EynollahModelZoo
|
||||
from .cli_models import models_cli
|
||||
|
||||
@dataclass()
|
||||
class EynollahCliCtx:
|
||||
"""
|
||||
Holds options relevant for all eynollah subcommands
|
||||
"""
|
||||
model_zoo: EynollahModelZoo
|
||||
log_level : Union[str, None] = 'INFO'
|
||||
|
||||
|
||||
@click.group()
|
||||
@click.option(
|
||||
"--model-basedir",
|
||||
"-m",
|
||||
help="directory of models",
|
||||
# NOTE: not mandatory to exist so --help for subcommands works but will log a warning
|
||||
# and raise exception when trying to load models in the CLI
|
||||
# type=click.Path(exists=True),
|
||||
default=f'{os.getcwd()}/models_eynollah',
|
||||
)
|
||||
@click.option(
|
||||
"--model-overrides",
|
||||
"-mv",
|
||||
help="override default versions of model categories, syntax is 'CATEGORY VARIANT PATH', e.g 'region light /path/to/model'. See eynollah list-models for the full list",
|
||||
type=(str, str, str),
|
||||
multiple=True,
|
||||
)
|
||||
@click.option(
|
||||
"--log_level",
|
||||
"-l",
|
||||
type=click.Choice(['OFF', 'DEBUG', 'INFO', 'WARN', 'ERROR']),
|
||||
help="Override log level globally to this",
|
||||
)
|
||||
@click.pass_context
|
||||
def main(ctx, model_basedir, model_overrides, log_level):
|
||||
"""
|
||||
eynollah - Document Layout Analysis, Image Enhancement, OCR
|
||||
"""
|
||||
# Initialize logging
|
||||
console_handler = logging.StreamHandler(sys.stdout)
|
||||
console_handler.setLevel(logging.NOTSET)
|
||||
formatter = logging.Formatter('%(asctime)s.%(msecs)03d %(levelname)s %(name)s - %(message)s', datefmt='%H:%M:%S')
|
||||
console_handler.setFormatter(formatter)
|
||||
logging.getLogger('eynollah').addHandler(console_handler)
|
||||
logging.getLogger('eynollah').setLevel(log_level or logging.INFO)
|
||||
# Initialize model zoo
|
||||
model_zoo = EynollahModelZoo(basedir=model_basedir, model_overrides=model_overrides)
|
||||
# Initialize CLI context
|
||||
ctx.obj = EynollahCliCtx(
|
||||
model_zoo=model_zoo,
|
||||
log_level=log_level,
|
||||
)
|
||||
|
||||
main.add_command(models_cli, 'models')
|
||||
|
||||
@main.command()
|
||||
@click.option(
|
||||
"--input",
|
||||
"-i",
|
||||
help="PAGE-XML input filename",
|
||||
type=click.Path(exists=True, dir_okay=False),
|
||||
)
|
||||
@click.option(
|
||||
"--dir_in",
|
||||
"-di",
|
||||
help="directory of PAGE-XML input files (instead of --input)",
|
||||
type=click.Path(exists=True, file_okay=False),
|
||||
)
|
||||
@click.option(
|
||||
"--out",
|
||||
"-o",
|
||||
help="directory for output images",
|
||||
type=click.Path(exists=True, file_okay=False),
|
||||
required=True,
|
||||
)
|
||||
@click.pass_context
|
||||
def machine_based_reading_order(ctx, input, dir_in, out):
|
||||
"""
|
||||
Generate ReadingOrder with a ML model
|
||||
"""
|
||||
from eynollah.mb_ro_on_layout import machine_based_reading_order_on_layout
|
||||
assert bool(input) != bool(dir_in), "Either -i (single input) or -di (directory) must be provided, but not both."
|
||||
orderer = machine_based_reading_order_on_layout(model_zoo=ctx.obj.model_zoo)
|
||||
orderer.run(xml_filename=input,
|
||||
dir_in=dir_in,
|
||||
dir_out=out,
|
||||
)
|
||||
|
||||
|
||||
@main.command()
|
||||
@click.option('--patches/--no-patches', default=True, help='by enabling this parameter you let the model to see the image in patches.')
|
||||
@click.option(
|
||||
"--input-image", "--image",
|
||||
"-i",
|
||||
help="input image filename",
|
||||
type=click.Path(exists=True, dir_okay=False)
|
||||
)
|
||||
@click.option(
|
||||
"--dir_in",
|
||||
"-di",
|
||||
help="directory of input images (instead of --image)",
|
||||
type=click.Path(exists=True, file_okay=False),
|
||||
)
|
||||
@click.option(
|
||||
"--output",
|
||||
"-o",
|
||||
help="output image (if using -i) or output image directory (if using -di)",
|
||||
type=click.Path(file_okay=True, dir_okay=True),
|
||||
required=True,
|
||||
)
|
||||
@click.option(
|
||||
'-M',
|
||||
'--mode',
|
||||
type=click.Choice(['single', 'multi']),
|
||||
default='single',
|
||||
help="Whether to use the (newer and faster) single-model binarization or the (slightly better) multi-model binarization"
|
||||
)
|
||||
@click.pass_context
|
||||
def binarization(
|
||||
ctx,
|
||||
patches,
|
||||
input_image,
|
||||
mode,
|
||||
dir_in,
|
||||
output,
|
||||
):
|
||||
"""
|
||||
Binarize images with a ML model
|
||||
"""
|
||||
from eynollah.sbb_binarize import SbbBinarizer
|
||||
assert bool(input_image) != bool(dir_in), "Either -i (single input) or -di (directory) must be provided, but not both."
|
||||
binarizer = SbbBinarizer(model_zoo=ctx.obj.model_zoo, mode=mode)
|
||||
binarizer.run(
|
||||
image_path=input_image,
|
||||
use_patches=patches,
|
||||
output=output,
|
||||
dir_in=dir_in
|
||||
)
|
||||
|
||||
|
||||
@main.command()
|
||||
@click.option(
|
||||
"--image",
|
||||
"-i",
|
||||
help="input image filename",
|
||||
type=click.Path(exists=True, dir_okay=False),
|
||||
)
|
||||
|
||||
@click.option(
|
||||
"--out",
|
||||
"-o",
|
||||
help="directory for output PAGE-XML files",
|
||||
type=click.Path(exists=True, file_okay=False),
|
||||
required=True,
|
||||
)
|
||||
@click.option(
|
||||
"--overwrite",
|
||||
"-O",
|
||||
help="overwrite (instead of skipping) if output xml exists",
|
||||
is_flag=True,
|
||||
)
|
||||
@click.option(
|
||||
"--dir_in",
|
||||
"-di",
|
||||
help="directory of input images (instead of --image)",
|
||||
type=click.Path(exists=True, file_okay=False),
|
||||
)
|
||||
@click.option(
|
||||
"--num_col_upper",
|
||||
"-ncu",
|
||||
help="lower limit of columns in document image",
|
||||
)
|
||||
@click.option(
|
||||
"--num_col_lower",
|
||||
"-ncl",
|
||||
help="upper limit of columns in document image",
|
||||
)
|
||||
@click.option(
|
||||
"--save_org_scale/--no_save_org_scale",
|
||||
"-sos/-nosos",
|
||||
is_flag=True,
|
||||
help="if this parameter set to true, this tool will save the enhanced image in org scale.",
|
||||
)
|
||||
@click.pass_context
|
||||
def enhancement(ctx, image, out, overwrite, dir_in, num_col_upper, num_col_lower, save_org_scale):
|
||||
"""
|
||||
Enhance image
|
||||
"""
|
||||
assert bool(image) != bool(dir_in), "Either -i (single input) or -di (directory) must be provided, but not both."
|
||||
from .image_enhancer import Enhancer
|
||||
enhancer = Enhancer(
|
||||
model_zoo=ctx.obj.model_zoo,
|
||||
num_col_upper=num_col_upper,
|
||||
num_col_lower=num_col_lower,
|
||||
save_org_scale=save_org_scale,
|
||||
)
|
||||
enhancer.run(overwrite=overwrite,
|
||||
dir_in=dir_in,
|
||||
image_filename=image,
|
||||
dir_out=out,
|
||||
)
|
||||
|
||||
@main.command()
|
||||
@click.option(
|
||||
"--image",
|
||||
"-i",
|
||||
help="input image filename",
|
||||
type=click.Path(exists=True, dir_okay=False),
|
||||
)
|
||||
|
||||
@click.option(
|
||||
"--out",
|
||||
"-o",
|
||||
help="directory for output PAGE-XML files",
|
||||
type=click.Path(exists=True, file_okay=False),
|
||||
required=True,
|
||||
)
|
||||
@click.option(
|
||||
"--overwrite",
|
||||
"-O",
|
||||
help="overwrite (instead of skipping) if output xml exists",
|
||||
is_flag=True,
|
||||
)
|
||||
@click.option(
|
||||
"--dir_in",
|
||||
"-di",
|
||||
help="directory of input images (instead of --image)",
|
||||
type=click.Path(exists=True, file_okay=False),
|
||||
)
|
||||
@click.option(
|
||||
"--save_images",
|
||||
"-si",
|
||||
help="if a directory is given, images in documents will be cropped and saved there",
|
||||
type=click.Path(exists=True, file_okay=False),
|
||||
)
|
||||
@click.option(
|
||||
"--save_layout",
|
||||
"-sl",
|
||||
help="if a directory is given, plot of layout will be saved there",
|
||||
type=click.Path(exists=True, file_okay=False),
|
||||
)
|
||||
@click.option(
|
||||
"--save_deskewed",
|
||||
"-sd",
|
||||
help="if a directory is given, deskewed image will be saved there",
|
||||
type=click.Path(exists=True, file_okay=False),
|
||||
)
|
||||
@click.option(
|
||||
"--save_all",
|
||||
"-sa",
|
||||
help="if a directory is given, all plots needed for documentation will be saved there",
|
||||
type=click.Path(exists=True, file_okay=False),
|
||||
)
|
||||
@click.option(
|
||||
"--save_page",
|
||||
"-sp",
|
||||
help="if a directory is given, page crop of image will be saved there",
|
||||
type=click.Path(exists=True, file_okay=False),
|
||||
)
|
||||
@click.option(
|
||||
"--enable-plotting/--disable-plotting",
|
||||
"-ep/-noep",
|
||||
is_flag=True,
|
||||
help="If set, will plot intermediary files and images",
|
||||
)
|
||||
@click.option(
|
||||
"--extract_only_images/--disable-extracting_only_images",
|
||||
"-eoi/-noeoi",
|
||||
is_flag=True,
|
||||
help="If a directory is given, only images in documents will be cropped and saved there and the other processing will not be done",
|
||||
)
|
||||
@click.option(
|
||||
"--allow-enhancement/--no-allow-enhancement",
|
||||
"-ae/-noae",
|
||||
is_flag=True,
|
||||
help="if this parameter set to true, this tool would check that input image need resizing and enhancement or not. If so output of resized and enhanced image and corresponding layout data will be written in out directory",
|
||||
)
|
||||
@click.option(
|
||||
"--curved-line/--no-curvedline",
|
||||
"-cl/-nocl",
|
||||
is_flag=True,
|
||||
help="if this parameter set to true, this tool will try to return contoure of textlines instead of rectangle bounding box of textline. This should be taken into account that with this option the tool need more time to do process.",
|
||||
)
|
||||
@click.option(
|
||||
"--textline_light/--no-textline_light",
|
||||
"-tll/-notll",
|
||||
is_flag=True,
|
||||
help="if this parameter set to true, this tool will try to return contoure of textlines instead of rectangle bounding box of textline with a faster method.",
|
||||
)
|
||||
@click.option(
|
||||
"--full-layout/--no-full-layout",
|
||||
"-fl/-nofl",
|
||||
is_flag=True,
|
||||
help="if this parameter set to true, this tool will try to return all elements of layout.",
|
||||
)
|
||||
@click.option(
|
||||
"--tables/--no-tables",
|
||||
"-tab/-notab",
|
||||
is_flag=True,
|
||||
help="if this parameter set to true, this tool will try to detect tables.",
|
||||
)
|
||||
@click.option(
|
||||
"--right2left/--left2right",
|
||||
"-r2l/-l2r",
|
||||
is_flag=True,
|
||||
help="if this parameter set to true, this tool will extract right-to-left reading order.",
|
||||
)
|
||||
@click.option(
|
||||
"--input_binary/--input-RGB",
|
||||
"-ib/-irgb",
|
||||
is_flag=True,
|
||||
help="in general, eynollah uses RGB as input but if the input document is strongly dark, bright or for any other reason you can turn binarized input on. This option does not mean that you have to provide a binary image, otherwise this means that the tool itself will binarized the RGB input document.",
|
||||
)
|
||||
@click.option(
|
||||
"--allow_scaling/--no-allow-scaling",
|
||||
"-as/-noas",
|
||||
is_flag=True,
|
||||
help="if this parameter set to true, this tool would check the scale and if needed it will scale it to perform better layout detection",
|
||||
)
|
||||
@click.option(
|
||||
"--headers_off/--headers-on",
|
||||
"-ho/-noho",
|
||||
is_flag=True,
|
||||
help="if this parameter set to true, this tool would ignore headers role in reading order",
|
||||
)
|
||||
@click.option(
|
||||
"--light_version/--original",
|
||||
"-light/-org",
|
||||
is_flag=True,
|
||||
help="if this parameter set to true, this tool would use lighter version",
|
||||
)
|
||||
@click.option(
|
||||
"--ignore_page_extraction/--extract_page_included",
|
||||
"-ipe/-epi",
|
||||
is_flag=True,
|
||||
help="if this parameter set to true, this tool would ignore page extraction",
|
||||
)
|
||||
@click.option(
|
||||
"--reading_order_machine_based/--heuristic_reading_order",
|
||||
"-romb/-hro",
|
||||
is_flag=True,
|
||||
help="if this parameter set to true, this tool would apply machine based reading order detection",
|
||||
)
|
||||
@click.option(
|
||||
"--do_ocr",
|
||||
"-ocr/-noocr",
|
||||
is_flag=True,
|
||||
help="if this parameter set to true, this tool will try to do ocr",
|
||||
)
|
||||
@click.option(
|
||||
"--transformer_ocr",
|
||||
"-tr/-notr",
|
||||
is_flag=True,
|
||||
help="if this parameter set to true, this tool will apply transformer ocr",
|
||||
)
|
||||
@click.option(
|
||||
"--batch_size_ocr",
|
||||
"-bs_ocr",
|
||||
help="number of inference batch size of ocr model. Default b_s for trocr and cnn_rnn models are 2 and 8 respectively",
|
||||
)
|
||||
@click.option(
|
||||
"--num_col_upper",
|
||||
"-ncu",
|
||||
help="lower limit of columns in document image",
|
||||
)
|
||||
@click.option(
|
||||
"--num_col_lower",
|
||||
"-ncl",
|
||||
help="upper limit of columns in document image",
|
||||
)
|
||||
@click.option(
|
||||
"--threshold_art_class_layout",
|
||||
"-tharl",
|
||||
help="threshold of artifical class in the case of layout detection. The default value is 0.1",
|
||||
)
|
||||
@click.option(
|
||||
"--threshold_art_class_textline",
|
||||
"-thart",
|
||||
help="threshold of artifical class in the case of textline detection. The default value is 0.1",
|
||||
)
|
||||
@click.option(
|
||||
"--skip_layout_and_reading_order",
|
||||
"-slro/-noslro",
|
||||
is_flag=True,
|
||||
help="if this parameter set to true, this tool will ignore layout detection and reading order. It means that textline detection will be done within printspace and contours of textline will be written in xml output file.",
|
||||
)
|
||||
@click.pass_context
|
||||
def layout(
|
||||
ctx,
|
||||
image,
|
||||
out,
|
||||
overwrite,
|
||||
dir_in,
|
||||
save_images,
|
||||
save_layout,
|
||||
save_deskewed,
|
||||
save_all,
|
||||
extract_only_images,
|
||||
save_page,
|
||||
enable_plotting,
|
||||
allow_enhancement,
|
||||
curved_line,
|
||||
textline_light,
|
||||
full_layout,
|
||||
tables,
|
||||
right2left,
|
||||
input_binary,
|
||||
allow_scaling,
|
||||
headers_off,
|
||||
light_version,
|
||||
reading_order_machine_based,
|
||||
do_ocr,
|
||||
transformer_ocr,
|
||||
batch_size_ocr,
|
||||
num_col_upper,
|
||||
num_col_lower,
|
||||
threshold_art_class_textline,
|
||||
threshold_art_class_layout,
|
||||
skip_layout_and_reading_order,
|
||||
ignore_page_extraction,
|
||||
):
|
||||
"""
|
||||
Detect Layout (with optional image enhancement and reading order detection)
|
||||
"""
|
||||
from .eynollah import Eynollah
|
||||
assert enable_plotting or not save_layout, "Plotting with -sl also requires -ep"
|
||||
assert enable_plotting or not save_deskewed, "Plotting with -sd also requires -ep"
|
||||
assert enable_plotting or not save_all, "Plotting with -sa also requires -ep"
|
||||
assert enable_plotting or not save_page, "Plotting with -sp also requires -ep"
|
||||
assert enable_plotting or not save_images, "Plotting with -si also requires -ep"
|
||||
assert enable_plotting or not allow_enhancement, "Plotting with -ae also requires -ep"
|
||||
assert not enable_plotting or save_layout or save_deskewed or save_all or save_page or save_images or allow_enhancement, \
|
||||
"Plotting with -ep also requires -sl, -sd, -sa, -sp, -si or -ae"
|
||||
assert textline_light == light_version, "Both light textline detection -tll and light version -light must be set or unset equally"
|
||||
assert not extract_only_images or not allow_enhancement, "Image extraction -eoi can not be set alongside allow_enhancement -ae"
|
||||
assert not extract_only_images or not allow_scaling, "Image extraction -eoi can not be set alongside allow_scaling -as"
|
||||
assert not extract_only_images or not light_version, "Image extraction -eoi can not be set alongside light_version -light"
|
||||
assert not extract_only_images or not curved_line, "Image extraction -eoi can not be set alongside curved_line -cl"
|
||||
assert not extract_only_images or not textline_light, "Image extraction -eoi can not be set alongside textline_light -tll"
|
||||
assert not extract_only_images or not full_layout, "Image extraction -eoi can not be set alongside full_layout -fl"
|
||||
assert not extract_only_images or not tables, "Image extraction -eoi can not be set alongside tables -tab"
|
||||
assert not extract_only_images or not right2left, "Image extraction -eoi can not be set alongside right2left -r2l"
|
||||
assert not extract_only_images or not headers_off, "Image extraction -eoi can not be set alongside headers_off -ho"
|
||||
assert bool(image) != bool(dir_in), "Either -i (single input) or -di (directory) must be provided, but not both."
|
||||
eynollah = Eynollah(
|
||||
model_zoo=ctx.obj.model_zoo,
|
||||
extract_only_images=extract_only_images,
|
||||
enable_plotting=enable_plotting,
|
||||
allow_enhancement=allow_enhancement,
|
||||
curved_line=curved_line,
|
||||
textline_light=textline_light,
|
||||
full_layout=full_layout,
|
||||
tables=tables,
|
||||
right2left=right2left,
|
||||
input_binary=input_binary,
|
||||
allow_scaling=allow_scaling,
|
||||
headers_off=headers_off,
|
||||
light_version=light_version,
|
||||
ignore_page_extraction=ignore_page_extraction,
|
||||
reading_order_machine_based=reading_order_machine_based,
|
||||
do_ocr=do_ocr,
|
||||
transformer_ocr=transformer_ocr,
|
||||
batch_size_ocr=batch_size_ocr,
|
||||
num_col_upper=num_col_upper,
|
||||
num_col_lower=num_col_lower,
|
||||
skip_layout_and_reading_order=skip_layout_and_reading_order,
|
||||
threshold_art_class_textline=threshold_art_class_textline,
|
||||
threshold_art_class_layout=threshold_art_class_layout,
|
||||
)
|
||||
eynollah.run(overwrite=overwrite,
|
||||
image_filename=image,
|
||||
dir_in=dir_in,
|
||||
dir_out=out,
|
||||
dir_of_cropped_images=save_images,
|
||||
dir_of_layout=save_layout,
|
||||
dir_of_deskewed=save_deskewed,
|
||||
dir_of_all=save_all,
|
||||
dir_save_page=save_page,
|
||||
)
|
||||
|
||||
@main.command()
|
||||
@click.option(
|
||||
"--image",
|
||||
"-i",
|
||||
help="input image filename",
|
||||
type=click.Path(exists=True, dir_okay=False),
|
||||
)
|
||||
@click.option(
|
||||
"--dir_in",
|
||||
"-di",
|
||||
help="directory of input images (instead of --image)",
|
||||
type=click.Path(exists=True, file_okay=False),
|
||||
)
|
||||
@click.option(
|
||||
"--dir_in_bin",
|
||||
"-dib",
|
||||
help="directory of binarized images (in addition to --dir_in for RGB images; filename stems must match the RGB image files, with '.png' suffix).\nPerform prediction using both RGB and binary images. (This does not necessarily improve results, however it may be beneficial for certain document images.)",
|
||||
type=click.Path(exists=True, file_okay=False),
|
||||
)
|
||||
@click.option(
|
||||
"--dir_xmls",
|
||||
"-dx",
|
||||
help="directory of input PAGE-XML files (in addition to --dir_in; filename stems must match the image files, with '.xml' suffix).",
|
||||
type=click.Path(exists=True, file_okay=False),
|
||||
required=True,
|
||||
)
|
||||
@click.option(
|
||||
"--out",
|
||||
"-o",
|
||||
help="directory for output PAGE-XML files",
|
||||
type=click.Path(exists=True, file_okay=False),
|
||||
required=True,
|
||||
)
|
||||
@click.option(
|
||||
"--dir_out_image_text",
|
||||
"-doit",
|
||||
help="directory for output images, newly rendered with predicted text",
|
||||
type=click.Path(exists=True, file_okay=False),
|
||||
)
|
||||
@click.option(
|
||||
"--overwrite",
|
||||
"-O",
|
||||
help="overwrite (instead of skipping) if output xml exists",
|
||||
is_flag=True,
|
||||
)
|
||||
@click.option(
|
||||
"--tr_ocr",
|
||||
"-trocr/-notrocr",
|
||||
is_flag=True,
|
||||
help="if this parameter set to true, transformer ocr will be applied, otherwise cnn_rnn model.",
|
||||
)
|
||||
@click.option(
|
||||
"--export_textline_images_and_text",
|
||||
"-etit/-noetit",
|
||||
is_flag=True,
|
||||
help="if this parameter set to true, images and text in xml will be exported into output dir. This files can be used for training a OCR engine.",
|
||||
)
|
||||
@click.option(
|
||||
"--do_not_mask_with_textline_contour",
|
||||
"-nmtc/-mtc",
|
||||
is_flag=True,
|
||||
help="if this parameter set to true, cropped textline images will not be masked with textline contour.",
|
||||
)
|
||||
@click.option(
|
||||
"--batch_size",
|
||||
"-bs",
|
||||
help="number of inference batch size. Default b_s for trocr and cnn_rnn models are 2 and 8 respectively",
|
||||
)
|
||||
@click.option(
|
||||
"--dataset_abbrevation",
|
||||
"-ds_pref",
|
||||
help="in the case of extracting textline and text from a xml GT file user can add an abbrevation of dataset name to generated dataset",
|
||||
)
|
||||
@click.option(
|
||||
"--min_conf_value_of_textline_text",
|
||||
"-min_conf",
|
||||
help="minimum OCR confidence value. Text lines with a confidence value lower than this threshold will not be included in the output XML file.",
|
||||
)
|
||||
@click.pass_context
|
||||
def ocr(
|
||||
ctx,
|
||||
image,
|
||||
dir_in,
|
||||
dir_in_bin,
|
||||
dir_xmls,
|
||||
out,
|
||||
dir_out_image_text,
|
||||
overwrite,
|
||||
tr_ocr,
|
||||
export_textline_images_and_text,
|
||||
do_not_mask_with_textline_contour,
|
||||
batch_size,
|
||||
dataset_abbrevation,
|
||||
min_conf_value_of_textline_text,
|
||||
):
|
||||
"""
|
||||
Recognize text with a CNN/RNN or transformer ML model.
|
||||
"""
|
||||
assert not export_textline_images_and_text or not tr_ocr, "Exporting textline and text -etit can not be set alongside transformer ocr -tr_ocr"
|
||||
# FIXME: refactor: move export_textline_images_and_text out of eynollah.py
|
||||
# assert not export_textline_images_and_text or not model, "Exporting textline and text -etit can not be set alongside model -m"
|
||||
assert not export_textline_images_and_text or not batch_size, "Exporting textline and text -etit can not be set alongside batch size -bs"
|
||||
assert not export_textline_images_and_text or not dir_in_bin, "Exporting textline and text -etit can not be set alongside directory of bin images -dib"
|
||||
assert not export_textline_images_and_text or not dir_out_image_text, "Exporting textline and text -etit can not be set alongside directory of images with predicted text -doit"
|
||||
assert bool(image) != bool(dir_in), "Either -i (single image) or -di (directory) must be provided, but not both."
|
||||
from .eynollah_ocr import Eynollah_ocr
|
||||
eynollah_ocr = Eynollah_ocr(
|
||||
model_zoo=ctx.obj.model_zoo,
|
||||
tr_ocr=tr_ocr,
|
||||
export_textline_images_and_text=export_textline_images_and_text,
|
||||
do_not_mask_with_textline_contour=do_not_mask_with_textline_contour,
|
||||
batch_size=batch_size,
|
||||
pref_of_dataset=dataset_abbrevation,
|
||||
min_conf_value_of_textline_text=min_conf_value_of_textline_text)
|
||||
eynollah_ocr.run(overwrite=overwrite,
|
||||
dir_in=dir_in,
|
||||
dir_in_bin=dir_in_bin,
|
||||
image_filename=image,
|
||||
dir_xmls=dir_xmls,
|
||||
dir_out_image_text=dir_out_image_text,
|
||||
dir_out=out,
|
||||
)
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
22
src/eynollah/cli/__init__.py
Normal file
22
src/eynollah/cli/__init__.py
Normal file
|
|
@ -0,0 +1,22 @@
|
|||
# NOTE: For predictable order of imports of torch/shapely/tensorflow
|
||||
# this must be the first import of the CLI!
|
||||
from ..eynollah_imports import imported_libs
|
||||
|
||||
from .cli_models import models_cli
|
||||
from .cli_binarize import binarize_cli
|
||||
|
||||
from .cli import main
|
||||
from .cli_binarize import binarize_cli
|
||||
from .cli_enhance import enhance_cli
|
||||
from .cli_extract_images import extract_images_cli
|
||||
from .cli_layout import layout_cli
|
||||
from .cli_ocr import ocr_cli
|
||||
from .cli_readingorder import readingorder_cli
|
||||
|
||||
main.add_command(binarize_cli, 'binarization')
|
||||
main.add_command(enhance_cli, 'enhancement')
|
||||
main.add_command(layout_cli, 'layout')
|
||||
main.add_command(readingorder_cli, 'machine-based-reading-order')
|
||||
main.add_command(models_cli, 'models')
|
||||
main.add_command(ocr_cli, 'ocr')
|
||||
main.add_command(extract_images_cli, 'extract-images')
|
||||
66
src/eynollah/cli/cli.py
Normal file
66
src/eynollah/cli/cli.py
Normal file
|
|
@ -0,0 +1,66 @@
|
|||
from dataclasses import dataclass
|
||||
import logging
|
||||
import sys
|
||||
import os
|
||||
from typing import Union
|
||||
|
||||
import click
|
||||
|
||||
from ..model_zoo import EynollahModelZoo
|
||||
from .cli_models import models_cli
|
||||
|
||||
@dataclass()
|
||||
class EynollahCliCtx:
|
||||
"""
|
||||
Holds options relevant for all eynollah subcommands
|
||||
"""
|
||||
model_zoo: EynollahModelZoo
|
||||
log_level : Union[str, None] = 'INFO'
|
||||
|
||||
|
||||
@click.group()
|
||||
@click.option(
|
||||
"--model-basedir",
|
||||
"-m",
|
||||
help="directory of models",
|
||||
# NOTE: not mandatory to exist so --help for subcommands works but will log a warning
|
||||
# and raise exception when trying to load models in the CLI
|
||||
# type=click.Path(exists=True),
|
||||
default=f'{os.getcwd()}/models_eynollah',
|
||||
)
|
||||
@click.option(
|
||||
"--model-overrides",
|
||||
"-mv",
|
||||
help="override default versions of model categories, syntax is 'CATEGORY VARIANT PATH', e.g 'region light /path/to/model'. See eynollah list-models for the full list",
|
||||
type=(str, str, str),
|
||||
multiple=True,
|
||||
)
|
||||
@click.option(
|
||||
"--log_level",
|
||||
"-l",
|
||||
type=click.Choice(['OFF', 'DEBUG', 'INFO', 'WARN', 'ERROR']),
|
||||
help="Override log level globally to this",
|
||||
)
|
||||
@click.pass_context
|
||||
def main(ctx, model_basedir, model_overrides, log_level):
|
||||
"""
|
||||
eynollah - Document Layout Analysis, Image Enhancement, OCR
|
||||
"""
|
||||
# Initialize logging
|
||||
console_handler = logging.StreamHandler(sys.stdout)
|
||||
console_handler.setLevel(logging.NOTSET)
|
||||
formatter = logging.Formatter('%(asctime)s.%(msecs)03d %(levelname)s %(name)s - %(message)s', datefmt='%H:%M:%S')
|
||||
console_handler.setFormatter(formatter)
|
||||
logging.getLogger('eynollah').addHandler(console_handler)
|
||||
logging.getLogger('eynollah').setLevel(log_level or logging.INFO)
|
||||
# Initialize model zoo
|
||||
model_zoo = EynollahModelZoo(basedir=model_basedir, model_overrides=model_overrides)
|
||||
# Initialize CLI context
|
||||
ctx.obj = EynollahCliCtx(
|
||||
model_zoo=model_zoo,
|
||||
log_level=log_level,
|
||||
)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
44
src/eynollah/cli/cli_binarize.py
Normal file
44
src/eynollah/cli/cli_binarize.py
Normal file
|
|
@ -0,0 +1,44 @@
|
|||
import click
|
||||
|
||||
@click.command()
|
||||
@click.option('--patches/--no-patches', default=True, help='by enabling this parameter you let the model to see the image in patches.')
|
||||
@click.option(
|
||||
"--input-image", "--image",
|
||||
"-i",
|
||||
help="input image filename",
|
||||
type=click.Path(exists=True, dir_okay=False)
|
||||
)
|
||||
@click.option(
|
||||
"--dir_in",
|
||||
"-di",
|
||||
help="directory of input images (instead of --image)",
|
||||
type=click.Path(exists=True, file_okay=False),
|
||||
)
|
||||
@click.option(
|
||||
"--output",
|
||||
"-o",
|
||||
help="output image (if using -i) or output image directory (if using -di)",
|
||||
type=click.Path(file_okay=True, dir_okay=True),
|
||||
required=True,
|
||||
)
|
||||
@click.pass_context
|
||||
def binarize_cli(
|
||||
ctx,
|
||||
patches,
|
||||
input_image,
|
||||
dir_in,
|
||||
output,
|
||||
):
|
||||
"""
|
||||
Binarize images with a ML model
|
||||
"""
|
||||
from ..sbb_binarize import SbbBinarizer
|
||||
assert bool(input_image) != bool(dir_in), "Either -i (single input) or -di (directory) must be provided, but not both."
|
||||
binarizer = SbbBinarizer(model_zoo=ctx.obj.model_zoo)
|
||||
binarizer.run(
|
||||
image_path=input_image,
|
||||
use_patches=patches,
|
||||
output=output,
|
||||
dir_in=dir_in
|
||||
)
|
||||
|
||||
63
src/eynollah/cli/cli_enhance.py
Normal file
63
src/eynollah/cli/cli_enhance.py
Normal file
|
|
@ -0,0 +1,63 @@
|
|||
import click
|
||||
|
||||
@click.command()
|
||||
@click.option(
|
||||
"--image",
|
||||
"-i",
|
||||
help="input image filename",
|
||||
type=click.Path(exists=True, dir_okay=False),
|
||||
)
|
||||
@click.option(
|
||||
"--out",
|
||||
"-o",
|
||||
help="directory for output PAGE-XML files",
|
||||
type=click.Path(exists=True, file_okay=False),
|
||||
required=True,
|
||||
)
|
||||
@click.option(
|
||||
"--overwrite",
|
||||
"-O",
|
||||
help="overwrite (instead of skipping) if output xml exists",
|
||||
is_flag=True,
|
||||
)
|
||||
@click.option(
|
||||
"--dir_in",
|
||||
"-di",
|
||||
help="directory of input images (instead of --image)",
|
||||
type=click.Path(exists=True, file_okay=False),
|
||||
)
|
||||
@click.option(
|
||||
"--num_col_upper",
|
||||
"-ncu",
|
||||
help="lower limit of columns in document image",
|
||||
)
|
||||
@click.option(
|
||||
"--num_col_lower",
|
||||
"-ncl",
|
||||
help="upper limit of columns in document image",
|
||||
)
|
||||
@click.option(
|
||||
"--save_org_scale/--no_save_org_scale",
|
||||
"-sos/-nosos",
|
||||
is_flag=True,
|
||||
help="if this parameter set to true, this tool will save the enhanced image in org scale.",
|
||||
)
|
||||
@click.pass_context
|
||||
def enhance_cli(ctx, image, out, overwrite, dir_in, num_col_upper, num_col_lower, save_org_scale):
|
||||
"""
|
||||
Enhance image
|
||||
"""
|
||||
assert bool(image) != bool(dir_in), "Either -i (single input) or -di (directory) must be provided, but not both."
|
||||
from ..image_enhancer import Enhancer
|
||||
enhancer = Enhancer(
|
||||
model_zoo=ctx.obj.model_zoo,
|
||||
num_col_upper=num_col_upper,
|
||||
num_col_lower=num_col_lower,
|
||||
save_org_scale=save_org_scale,
|
||||
)
|
||||
enhancer.run(overwrite=overwrite,
|
||||
dir_in=dir_in,
|
||||
image_filename=image,
|
||||
dir_out=out,
|
||||
)
|
||||
|
||||
167
src/eynollah/cli/cli_extract_images.py
Normal file
167
src/eynollah/cli/cli_extract_images.py
Normal file
|
|
@ -0,0 +1,167 @@
|
|||
import click
|
||||
|
||||
@click.command()
|
||||
@click.option(
|
||||
"--image",
|
||||
"-i",
|
||||
help="input image filename",
|
||||
type=click.Path(exists=True, dir_okay=False),
|
||||
)
|
||||
|
||||
@click.option(
|
||||
"--out",
|
||||
"-o",
|
||||
help="directory for output PAGE-XML files",
|
||||
type=click.Path(exists=True, file_okay=False),
|
||||
required=True,
|
||||
)
|
||||
@click.option(
|
||||
"--overwrite",
|
||||
"-O",
|
||||
help="overwrite (instead of skipping) if output xml exists",
|
||||
is_flag=True,
|
||||
)
|
||||
@click.option(
|
||||
"--dir_in",
|
||||
"-di",
|
||||
help="directory of input images (instead of --image)",
|
||||
type=click.Path(exists=True, file_okay=False),
|
||||
)
|
||||
@click.option(
|
||||
"--save_images",
|
||||
"-si",
|
||||
help="if a directory is given, images in documents will be cropped and saved there",
|
||||
type=click.Path(exists=True, file_okay=False),
|
||||
)
|
||||
@click.option(
|
||||
"--save_layout",
|
||||
"-sl",
|
||||
help="if a directory is given, plot of layout will be saved there",
|
||||
type=click.Path(exists=True, file_okay=False),
|
||||
)
|
||||
@click.option(
|
||||
"--save_deskewed",
|
||||
"-sd",
|
||||
help="if a directory is given, deskewed image will be saved there",
|
||||
type=click.Path(exists=True, file_okay=False),
|
||||
)
|
||||
@click.option(
|
||||
"--save_all",
|
||||
"-sa",
|
||||
help="if a directory is given, all plots needed for documentation will be saved there",
|
||||
type=click.Path(exists=True, file_okay=False),
|
||||
)
|
||||
@click.option(
|
||||
"--save_page",
|
||||
"-sp",
|
||||
help="if a directory is given, page crop of image will be saved there",
|
||||
type=click.Path(exists=True, file_okay=False),
|
||||
)
|
||||
@click.option(
|
||||
"--enable-plotting/--disable-plotting",
|
||||
"-ep/-noep",
|
||||
is_flag=True,
|
||||
help="If set, will plot intermediary files and images",
|
||||
)
|
||||
@click.option(
|
||||
"--input_binary/--input-RGB",
|
||||
"-ib/-irgb",
|
||||
is_flag=True,
|
||||
help="In general, eynollah uses RGB as input but if the input document is very dark, very bright or for any other reason you can turn on input binarization. When this flag is set, eynollah will binarize the RGB input document, you should always provide RGB images to eynollah.",
|
||||
)
|
||||
@click.option(
|
||||
"--ignore_page_extraction/--extract_page_included",
|
||||
"-ipe/-epi",
|
||||
is_flag=True,
|
||||
help="if this parameter set to true, this tool would ignore page extraction",
|
||||
)
|
||||
@click.option(
|
||||
"--reading_order_machine_based/--heuristic_reading_order",
|
||||
"-romb/-hro",
|
||||
is_flag=True,
|
||||
help="if this parameter set to true, this tool would apply machine based reading order detection",
|
||||
)
|
||||
@click.option(
|
||||
"--num_col_upper",
|
||||
"-ncu",
|
||||
help="lower limit of columns in document image",
|
||||
)
|
||||
@click.option(
|
||||
"--num_col_lower",
|
||||
"-ncl",
|
||||
help="upper limit of columns in document image",
|
||||
)
|
||||
@click.option(
|
||||
"--threshold_art_class_layout",
|
||||
"-tharl",
|
||||
help="threshold of artifical class in the case of layout detection. The default value is 0.1",
|
||||
)
|
||||
@click.option(
|
||||
"--threshold_art_class_textline",
|
||||
"-thart",
|
||||
help="threshold of artifical class in the case of textline detection. The default value is 0.1",
|
||||
)
|
||||
@click.option(
|
||||
"--skip_layout_and_reading_order",
|
||||
"-slro/-noslro",
|
||||
is_flag=True,
|
||||
help="if this parameter set to true, this tool will ignore layout detection and reading order. It means that textline detection will be done within printspace and contours of textline will be written in xml output file.",
|
||||
)
|
||||
@click.pass_context
|
||||
def extract_images_cli(
|
||||
ctx,
|
||||
image,
|
||||
out,
|
||||
overwrite,
|
||||
dir_in,
|
||||
save_images,
|
||||
save_layout,
|
||||
save_deskewed,
|
||||
save_all,
|
||||
save_page,
|
||||
enable_plotting,
|
||||
input_binary,
|
||||
reading_order_machine_based,
|
||||
num_col_upper,
|
||||
num_col_lower,
|
||||
threshold_art_class_textline,
|
||||
threshold_art_class_layout,
|
||||
skip_layout_and_reading_order,
|
||||
ignore_page_extraction,
|
||||
):
|
||||
"""
|
||||
Detect Layout (with optional image enhancement and reading order detection)
|
||||
"""
|
||||
assert enable_plotting or not save_layout, "Plotting with -sl also requires -ep"
|
||||
assert enable_plotting or not save_deskewed, "Plotting with -sd also requires -ep"
|
||||
assert enable_plotting or not save_all, "Plotting with -sa also requires -ep"
|
||||
assert enable_plotting or not save_page, "Plotting with -sp also requires -ep"
|
||||
assert enable_plotting or not save_images, "Plotting with -si also requires -ep"
|
||||
assert not enable_plotting or save_layout or save_deskewed or save_all or save_page or save_images, \
|
||||
"Plotting with -ep also requires -sl, -sd, -sa, -sp, -si or -ae"
|
||||
assert bool(image) != bool(dir_in), "Either -i (single input) or -di (directory) must be provided, but not both."
|
||||
|
||||
from ..extract_images import EynollahImageExtractor
|
||||
extractor = EynollahImageExtractor(
|
||||
model_zoo=ctx.obj.model_zoo,
|
||||
enable_plotting=enable_plotting,
|
||||
input_binary=input_binary,
|
||||
ignore_page_extraction=ignore_page_extraction,
|
||||
reading_order_machine_based=reading_order_machine_based,
|
||||
num_col_upper=num_col_upper,
|
||||
num_col_lower=num_col_lower,
|
||||
skip_layout_and_reading_order=skip_layout_and_reading_order,
|
||||
threshold_art_class_textline=threshold_art_class_textline,
|
||||
threshold_art_class_layout=threshold_art_class_layout,
|
||||
)
|
||||
extractor.run(overwrite=overwrite,
|
||||
image_filename=image,
|
||||
dir_in=dir_in,
|
||||
dir_out=out,
|
||||
dir_of_cropped_images=save_images,
|
||||
dir_of_layout=save_layout,
|
||||
dir_of_deskewed=save_deskewed,
|
||||
dir_of_all=save_all,
|
||||
dir_save_page=save_page,
|
||||
)
|
||||
|
||||
223
src/eynollah/cli/cli_layout.py
Normal file
223
src/eynollah/cli/cli_layout.py
Normal file
|
|
@ -0,0 +1,223 @@
|
|||
import click
|
||||
|
||||
@click.command()
|
||||
@click.option(
|
||||
"--image",
|
||||
"-i",
|
||||
help="input image filename",
|
||||
type=click.Path(exists=True, dir_okay=False),
|
||||
)
|
||||
|
||||
@click.option(
|
||||
"--out",
|
||||
"-o",
|
||||
help="directory for output PAGE-XML files",
|
||||
type=click.Path(exists=True, file_okay=False),
|
||||
required=True,
|
||||
)
|
||||
@click.option(
|
||||
"--overwrite",
|
||||
"-O",
|
||||
help="overwrite (instead of skipping) if output xml exists",
|
||||
is_flag=True,
|
||||
)
|
||||
@click.option(
|
||||
"--dir_in",
|
||||
"-di",
|
||||
help="directory of input images (instead of --image)",
|
||||
type=click.Path(exists=True, file_okay=False),
|
||||
)
|
||||
@click.option(
|
||||
"--save_images",
|
||||
"-si",
|
||||
help="if a directory is given, images in documents will be cropped and saved there",
|
||||
type=click.Path(exists=True, file_okay=False),
|
||||
)
|
||||
@click.option(
|
||||
"--save_layout",
|
||||
"-sl",
|
||||
help="if a directory is given, plot of layout will be saved there",
|
||||
type=click.Path(exists=True, file_okay=False),
|
||||
)
|
||||
@click.option(
|
||||
"--save_deskewed",
|
||||
"-sd",
|
||||
help="if a directory is given, deskewed image will be saved there",
|
||||
type=click.Path(exists=True, file_okay=False),
|
||||
)
|
||||
@click.option(
|
||||
"--save_all",
|
||||
"-sa",
|
||||
help="if a directory is given, all plots needed for documentation will be saved there",
|
||||
type=click.Path(exists=True, file_okay=False),
|
||||
)
|
||||
@click.option(
|
||||
"--save_page",
|
||||
"-sp",
|
||||
help="if a directory is given, page crop of image will be saved there",
|
||||
type=click.Path(exists=True, file_okay=False),
|
||||
)
|
||||
@click.option(
|
||||
"--enable-plotting/--disable-plotting",
|
||||
"-ep/-noep",
|
||||
is_flag=True,
|
||||
help="If set, will plot intermediary files and images",
|
||||
)
|
||||
@click.option(
|
||||
"--allow-enhancement/--no-allow-enhancement",
|
||||
"-ae/-noae",
|
||||
is_flag=True,
|
||||
help="if this parameter set to true, this tool would check that input image need resizing and enhancement or not. If so output of resized and enhanced image and corresponding layout data will be written in out directory",
|
||||
)
|
||||
@click.option(
|
||||
"--curved-line/--no-curvedline",
|
||||
"-cl/-nocl",
|
||||
is_flag=True,
|
||||
help="if this parameter set to true, this tool will try to return contoure of textlines instead of rectangle bounding box of textline. This should be taken into account that with this option the tool need more time to do process.",
|
||||
)
|
||||
@click.option(
|
||||
"--full-layout/--no-full-layout",
|
||||
"-fl/-nofl",
|
||||
is_flag=True,
|
||||
help="if this parameter set to true, this tool will try to return all elements of layout.",
|
||||
)
|
||||
@click.option(
|
||||
"--tables/--no-tables",
|
||||
"-tab/-notab",
|
||||
is_flag=True,
|
||||
help="if this parameter set to true, this tool will try to detect tables.",
|
||||
)
|
||||
@click.option(
|
||||
"--right2left/--left2right",
|
||||
"-r2l/-l2r",
|
||||
is_flag=True,
|
||||
help="if this parameter set to true, this tool will extract right-to-left reading order.",
|
||||
)
|
||||
@click.option(
|
||||
"--input_binary/--input-RGB",
|
||||
"-ib/-irgb",
|
||||
is_flag=True,
|
||||
help="In general, eynollah uses RGB as input but if the input document is very dark, very bright or for any other reason you can turn on input binarization. When this flag is set, eynollah will binarize the RGB input document, you should always provide RGB images to eynollah.",
|
||||
)
|
||||
@click.option(
|
||||
"--allow_scaling/--no-allow-scaling",
|
||||
"-as/-noas",
|
||||
is_flag=True,
|
||||
help="if this parameter set to true, this tool would check the scale and if needed it will scale it to perform better layout detection",
|
||||
)
|
||||
@click.option(
|
||||
"--headers_off/--headers-on",
|
||||
"-ho/-noho",
|
||||
is_flag=True,
|
||||
help="if this parameter set to true, this tool would ignore headers role in reading order",
|
||||
)
|
||||
@click.option(
|
||||
"--ignore_page_extraction/--extract_page_included",
|
||||
"-ipe/-epi",
|
||||
is_flag=True,
|
||||
help="if this parameter set to true, this tool would ignore page extraction",
|
||||
)
|
||||
@click.option(
|
||||
"--reading_order_machine_based/--heuristic_reading_order",
|
||||
"-romb/-hro",
|
||||
is_flag=True,
|
||||
help="if this parameter set to true, this tool would apply machine based reading order detection",
|
||||
)
|
||||
@click.option(
|
||||
"--num_col_upper",
|
||||
"-ncu",
|
||||
help="lower limit of columns in document image",
|
||||
)
|
||||
@click.option(
|
||||
"--num_col_lower",
|
||||
"-ncl",
|
||||
help="upper limit of columns in document image",
|
||||
)
|
||||
@click.option(
|
||||
"--threshold_art_class_layout",
|
||||
"-tharl",
|
||||
help="threshold of artifical class in the case of layout detection. The default value is 0.1",
|
||||
)
|
||||
@click.option(
|
||||
"--threshold_art_class_textline",
|
||||
"-thart",
|
||||
help="threshold of artifical class in the case of textline detection. The default value is 0.1",
|
||||
)
|
||||
@click.option(
|
||||
"--skip_layout_and_reading_order",
|
||||
"-slro/-noslro",
|
||||
is_flag=True,
|
||||
help="if this parameter set to true, this tool will ignore layout detection and reading order. It means that textline detection will be done within printspace and contours of textline will be written in xml output file.",
|
||||
)
|
||||
@click.pass_context
|
||||
def layout_cli(
|
||||
ctx,
|
||||
image,
|
||||
out,
|
||||
overwrite,
|
||||
dir_in,
|
||||
save_images,
|
||||
save_layout,
|
||||
save_deskewed,
|
||||
save_all,
|
||||
save_page,
|
||||
enable_plotting,
|
||||
allow_enhancement,
|
||||
curved_line,
|
||||
full_layout,
|
||||
tables,
|
||||
right2left,
|
||||
input_binary,
|
||||
allow_scaling,
|
||||
headers_off,
|
||||
reading_order_machine_based,
|
||||
num_col_upper,
|
||||
num_col_lower,
|
||||
threshold_art_class_textline,
|
||||
threshold_art_class_layout,
|
||||
skip_layout_and_reading_order,
|
||||
ignore_page_extraction,
|
||||
):
|
||||
"""
|
||||
Detect Layout (with optional image enhancement and reading order detection)
|
||||
"""
|
||||
from ..eynollah import Eynollah
|
||||
assert enable_plotting or not save_layout, "Plotting with -sl also requires -ep"
|
||||
assert enable_plotting or not save_deskewed, "Plotting with -sd also requires -ep"
|
||||
assert enable_plotting or not save_all, "Plotting with -sa also requires -ep"
|
||||
assert enable_plotting or not save_page, "Plotting with -sp also requires -ep"
|
||||
assert enable_plotting or not save_images, "Plotting with -si also requires -ep"
|
||||
assert enable_plotting or not allow_enhancement, "Plotting with -ae also requires -ep"
|
||||
assert not enable_plotting or save_layout or save_deskewed or save_all or save_page or save_images or allow_enhancement, \
|
||||
"Plotting with -ep also requires -sl, -sd, -sa, -sp, -si or -ae"
|
||||
assert bool(image) != bool(dir_in), "Either -i (single input) or -di (directory) must be provided, but not both."
|
||||
eynollah = Eynollah(
|
||||
model_zoo=ctx.obj.model_zoo,
|
||||
enable_plotting=enable_plotting,
|
||||
allow_enhancement=allow_enhancement,
|
||||
curved_line=curved_line,
|
||||
full_layout=full_layout,
|
||||
tables=tables,
|
||||
right2left=right2left,
|
||||
input_binary=input_binary,
|
||||
allow_scaling=allow_scaling,
|
||||
headers_off=headers_off,
|
||||
ignore_page_extraction=ignore_page_extraction,
|
||||
reading_order_machine_based=reading_order_machine_based,
|
||||
num_col_upper=num_col_upper,
|
||||
num_col_lower=num_col_lower,
|
||||
skip_layout_and_reading_order=skip_layout_and_reading_order,
|
||||
threshold_art_class_textline=threshold_art_class_textline,
|
||||
threshold_art_class_layout=threshold_art_class_layout,
|
||||
)
|
||||
eynollah.run(overwrite=overwrite,
|
||||
image_filename=image,
|
||||
dir_in=dir_in,
|
||||
dir_out=out,
|
||||
dir_of_cropped_images=save_images,
|
||||
dir_of_layout=save_layout,
|
||||
dir_of_deskewed=save_deskewed,
|
||||
dir_of_all=save_all,
|
||||
dir_save_page=save_page,
|
||||
)
|
||||
|
||||
111
src/eynollah/cli/cli_ocr.py
Normal file
111
src/eynollah/cli/cli_ocr.py
Normal file
|
|
@ -0,0 +1,111 @@
|
|||
import click
|
||||
|
||||
@click.command()
|
||||
@click.option(
|
||||
"--image",
|
||||
"-i",
|
||||
help="input image filename",
|
||||
type=click.Path(exists=True, dir_okay=False),
|
||||
)
|
||||
@click.option(
|
||||
"--dir_in",
|
||||
"-di",
|
||||
help="directory of input images (instead of --image)",
|
||||
type=click.Path(exists=True, file_okay=False),
|
||||
)
|
||||
@click.option(
|
||||
"--dir_in_bin",
|
||||
"-dib",
|
||||
help=("""
|
||||
directory of binarized images (in addition to --dir_in for RGB
|
||||
images; filename stems must match the RGB image files, with '.png'
|
||||
\n
|
||||
Perform prediction using both RGB and binary images.
|
||||
(This does not necessarily improve results, however it may be beneficial
|
||||
for certain document images.
|
||||
"""),
|
||||
|
||||
type=click.Path(exists=True, file_okay=False),
|
||||
)
|
||||
@click.option(
|
||||
"--dir_xmls",
|
||||
"-dx",
|
||||
help="directory of input PAGE-XML files (in addition to --dir_in; filename stems must match the image files, with '.xml' suffix).",
|
||||
type=click.Path(exists=True, file_okay=False),
|
||||
required=True,
|
||||
)
|
||||
@click.option(
|
||||
"--out",
|
||||
"-o",
|
||||
help="directory for output PAGE-XML files",
|
||||
type=click.Path(exists=True, file_okay=False),
|
||||
required=True,
|
||||
)
|
||||
@click.option(
|
||||
"--dir_out_image_text",
|
||||
"-doit",
|
||||
help="directory for output images, newly rendered with predicted text",
|
||||
type=click.Path(exists=True, file_okay=False),
|
||||
)
|
||||
@click.option(
|
||||
"--overwrite",
|
||||
"-O",
|
||||
help="overwrite (instead of skipping) if output xml exists",
|
||||
is_flag=True,
|
||||
)
|
||||
@click.option(
|
||||
"--tr_ocr",
|
||||
"-trocr/-notrocr",
|
||||
is_flag=True,
|
||||
help="if this parameter set to true, transformer ocr will be applied, otherwise cnn_rnn model.",
|
||||
)
|
||||
@click.option(
|
||||
"--do_not_mask_with_textline_contour",
|
||||
"-nmtc/-mtc",
|
||||
is_flag=True,
|
||||
help="if this parameter set to true, cropped textline images will not be masked with textline contour.",
|
||||
)
|
||||
@click.option(
|
||||
"--batch_size",
|
||||
"-bs",
|
||||
help="number of inference batch size. Default b_s for trocr and cnn_rnn models are 2 and 8 respectively",
|
||||
)
|
||||
@click.option(
|
||||
"--min_conf_value_of_textline_text",
|
||||
"-min_conf",
|
||||
help="minimum OCR confidence value. Text lines with a confidence value lower than this threshold will not be included in the output XML file.",
|
||||
)
|
||||
@click.pass_context
|
||||
def ocr_cli(
|
||||
ctx,
|
||||
image,
|
||||
dir_in,
|
||||
dir_in_bin,
|
||||
dir_xmls,
|
||||
out,
|
||||
dir_out_image_text,
|
||||
overwrite,
|
||||
tr_ocr,
|
||||
do_not_mask_with_textline_contour,
|
||||
batch_size,
|
||||
min_conf_value_of_textline_text,
|
||||
):
|
||||
"""
|
||||
Recognize text with a CNN/RNN or transformer ML model.
|
||||
"""
|
||||
assert bool(image) ^ bool(dir_in), "Either -i (single image) or -di (directory) must be provided, but not both."
|
||||
from ..eynollah_ocr import Eynollah_ocr
|
||||
eynollah_ocr = Eynollah_ocr(
|
||||
model_zoo=ctx.obj.model_zoo,
|
||||
tr_ocr=tr_ocr,
|
||||
do_not_mask_with_textline_contour=do_not_mask_with_textline_contour,
|
||||
batch_size=batch_size,
|
||||
min_conf_value_of_textline_text=min_conf_value_of_textline_text)
|
||||
eynollah_ocr.run(overwrite=overwrite,
|
||||
dir_in=dir_in,
|
||||
dir_in_bin=dir_in_bin,
|
||||
image_filename=image,
|
||||
dir_xmls=dir_xmls,
|
||||
dir_out_image_text=dir_out_image_text,
|
||||
dir_out=out,
|
||||
)
|
||||
35
src/eynollah/cli/cli_readingorder.py
Normal file
35
src/eynollah/cli/cli_readingorder.py
Normal file
|
|
@ -0,0 +1,35 @@
|
|||
import click
|
||||
|
||||
@click.command()
|
||||
@click.option(
|
||||
"--input",
|
||||
"-i",
|
||||
help="PAGE-XML input filename",
|
||||
type=click.Path(exists=True, dir_okay=False),
|
||||
)
|
||||
@click.option(
|
||||
"--dir_in",
|
||||
"-di",
|
||||
help="directory of PAGE-XML input files (instead of --input)",
|
||||
type=click.Path(exists=True, file_okay=False),
|
||||
)
|
||||
@click.option(
|
||||
"--out",
|
||||
"-o",
|
||||
help="directory for output images",
|
||||
type=click.Path(exists=True, file_okay=False),
|
||||
required=True,
|
||||
)
|
||||
@click.pass_context
|
||||
def readingorder_cli(ctx, input, dir_in, out):
|
||||
"""
|
||||
Generate ReadingOrder with a ML model
|
||||
"""
|
||||
from ..mb_ro_on_layout import machine_based_reading_order_on_layout
|
||||
assert bool(input) != bool(dir_in), "Either -i (single input) or -di (directory) must be provided, but not both."
|
||||
orderer = machine_based_reading_order_on_layout(model_zoo=ctx.obj.model_zoo)
|
||||
orderer.run(xml_filename=input,
|
||||
dir_in=dir_in,
|
||||
dir_out=out,
|
||||
)
|
||||
|
||||
272
src/eynollah/extract_images.py
Normal file
272
src/eynollah/extract_images.py
Normal file
|
|
@ -0,0 +1,272 @@
|
|||
"""
|
||||
extract images?
|
||||
"""
|
||||
|
||||
from concurrent.futures import ProcessPoolExecutor
|
||||
import logging
|
||||
from multiprocessing import cpu_count
|
||||
import os
|
||||
import time
|
||||
from typing import Optional
|
||||
from pathlib import Path
|
||||
import tensorflow as tf
|
||||
import numpy as np
|
||||
import cv2
|
||||
|
||||
from eynollah.utils.contour import filter_contours_area_of_image, return_contours_of_image, return_contours_of_interested_region
|
||||
from eynollah.utils.resize import resize_image
|
||||
|
||||
from .model_zoo.model_zoo import EynollahModelZoo
|
||||
from .eynollah import Eynollah
|
||||
from .utils import box2rect, is_image_filename
|
||||
from .plot import EynollahPlotter
|
||||
|
||||
class EynollahImageExtractor(Eynollah):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
*,
|
||||
model_zoo: EynollahModelZoo,
|
||||
enable_plotting : bool = False,
|
||||
input_binary : bool = False,
|
||||
ignore_page_extraction : bool = False,
|
||||
reading_order_machine_based : bool = False,
|
||||
num_col_upper : Optional[int] = None,
|
||||
num_col_lower : Optional[int] = None,
|
||||
threshold_art_class_layout: Optional[float] = None,
|
||||
threshold_art_class_textline: Optional[float] = None,
|
||||
skip_layout_and_reading_order : bool = False,
|
||||
):
|
||||
self.logger = logging.getLogger('eynollah.extract_images')
|
||||
self.model_zoo = model_zoo
|
||||
self.plotter = None
|
||||
|
||||
self.reading_order_machine_based = reading_order_machine_based
|
||||
self.enable_plotting = enable_plotting
|
||||
# --input-binary sensible if image is very dark, if layout is not working.
|
||||
self.input_binary = input_binary
|
||||
self.ignore_page_extraction = ignore_page_extraction
|
||||
self.skip_layout_and_reading_order = skip_layout_and_reading_order
|
||||
if num_col_upper:
|
||||
self.num_col_upper = int(num_col_upper)
|
||||
else:
|
||||
self.num_col_upper = num_col_upper
|
||||
if num_col_lower:
|
||||
self.num_col_lower = int(num_col_lower)
|
||||
else:
|
||||
self.num_col_lower = num_col_lower
|
||||
|
||||
# for parallelization of CPU-intensive tasks:
|
||||
self.executor = ProcessPoolExecutor(max_workers=cpu_count())
|
||||
|
||||
if threshold_art_class_layout:
|
||||
self.threshold_art_class_layout = float(threshold_art_class_layout)
|
||||
else:
|
||||
self.threshold_art_class_layout = 0.1
|
||||
|
||||
if threshold_art_class_textline:
|
||||
self.threshold_art_class_textline = float(threshold_art_class_textline)
|
||||
else:
|
||||
self.threshold_art_class_textline = 0.1
|
||||
|
||||
t_start = time.time()
|
||||
|
||||
try:
|
||||
for device in tf.config.list_physical_devices('GPU'):
|
||||
tf.config.experimental.set_memory_growth(device, True)
|
||||
except:
|
||||
self.logger.warning("no GPU device available")
|
||||
|
||||
self.logger.info("Loading models...")
|
||||
self.setup_models()
|
||||
self.logger.info(f"Model initialization complete ({time.time() - t_start:.1f}s)")
|
||||
|
||||
def setup_models(self):
|
||||
|
||||
loadable = [
|
||||
"col_classifier",
|
||||
"binarization",
|
||||
"page",
|
||||
"extract_images",
|
||||
]
|
||||
self.model_zoo.load_models(*loadable)
|
||||
|
||||
def get_regions_light_v_extract_only_images(self,img, num_col_classifier):
|
||||
self.logger.debug("enter get_regions_extract_images_only")
|
||||
erosion_hurts = False
|
||||
img_org = np.copy(img)
|
||||
img_height_h = img_org.shape[0]
|
||||
img_width_h = img_org.shape[1]
|
||||
|
||||
if num_col_classifier == 1:
|
||||
img_w_new = 700
|
||||
elif num_col_classifier == 2:
|
||||
img_w_new = 900
|
||||
elif num_col_classifier == 3:
|
||||
img_w_new = 1500
|
||||
elif num_col_classifier == 4:
|
||||
img_w_new = 1800
|
||||
elif num_col_classifier == 5:
|
||||
img_w_new = 2200
|
||||
elif num_col_classifier == 6:
|
||||
img_w_new = 2500
|
||||
else:
|
||||
raise ValueError("num_col_classifier must be in range 1..6")
|
||||
img_h_new = int(img.shape[0] / float(img.shape[1]) * img_w_new)
|
||||
img_resized = resize_image(img,img_h_new, img_w_new )
|
||||
|
||||
prediction_regions_org, _ = self.do_prediction_new_concept(True, img_resized, self.model_zoo.get("region"))
|
||||
|
||||
prediction_regions_org = resize_image(prediction_regions_org,img_height_h, img_width_h )
|
||||
image_page, page_coord, cont_page = self.extract_page()
|
||||
|
||||
prediction_regions_org = prediction_regions_org[page_coord[0] : page_coord[1], page_coord[2] : page_coord[3]]
|
||||
prediction_regions_org=prediction_regions_org[:,:,0]
|
||||
|
||||
mask_lines_only = (prediction_regions_org[:,:] ==3)*1
|
||||
mask_texts_only = (prediction_regions_org[:,:] ==1)*1
|
||||
mask_images_only=(prediction_regions_org[:,:] ==2)*1
|
||||
|
||||
polygons_seplines, hir_seplines = return_contours_of_image(mask_lines_only)
|
||||
polygons_seplines = filter_contours_area_of_image(
|
||||
mask_lines_only, polygons_seplines, hir_seplines, max_area=1, min_area=0.00001, dilate=1)
|
||||
|
||||
polygons_of_only_texts = return_contours_of_interested_region(mask_texts_only,1,0.00001)
|
||||
polygons_of_only_lines = return_contours_of_interested_region(mask_lines_only,1,0.00001)
|
||||
|
||||
text_regions_p_true = np.zeros(prediction_regions_org.shape)
|
||||
text_regions_p_true = cv2.fillPoly(text_regions_p_true, pts = polygons_of_only_lines, color=(3,3,3))
|
||||
|
||||
text_regions_p_true[:,:][mask_images_only[:,:] == 1] = 2
|
||||
text_regions_p_true = cv2.fillPoly(text_regions_p_true, pts=polygons_of_only_texts, color=(1,1,1))
|
||||
|
||||
text_regions_p_true[text_regions_p_true.shape[0]-15:text_regions_p_true.shape[0], :] = 0
|
||||
text_regions_p_true[:, text_regions_p_true.shape[1]-15:text_regions_p_true.shape[1]] = 0
|
||||
|
||||
##polygons_of_images = return_contours_of_interested_region(text_regions_p_true, 2, 0.0001)
|
||||
polygons_of_images = return_contours_of_interested_region(text_regions_p_true, 2, 0.001)
|
||||
|
||||
polygons_of_images_fin = []
|
||||
for ploy_img_ind in polygons_of_images:
|
||||
box = _, _, w, h = cv2.boundingRect(ploy_img_ind)
|
||||
if h < 150 or w < 150:
|
||||
pass
|
||||
else:
|
||||
page_coord_img = box2rect(box) # type: ignore
|
||||
polygons_of_images_fin.append(np.array([[page_coord_img[2], page_coord_img[0]],
|
||||
[page_coord_img[3], page_coord_img[0]],
|
||||
[page_coord_img[3], page_coord_img[1]],
|
||||
[page_coord_img[2], page_coord_img[1]]]))
|
||||
|
||||
self.logger.debug("exit get_regions_extract_images_only")
|
||||
return (text_regions_p_true,
|
||||
erosion_hurts,
|
||||
polygons_seplines,
|
||||
polygons_of_images_fin,
|
||||
image_page,
|
||||
page_coord,
|
||||
cont_page)
|
||||
|
||||
def run(self,
|
||||
overwrite: bool = False,
|
||||
image_filename: Optional[str] = None,
|
||||
dir_in: Optional[str] = None,
|
||||
dir_out: Optional[str] = None,
|
||||
dir_of_cropped_images: Optional[str] = None,
|
||||
dir_of_layout: Optional[str] = None,
|
||||
dir_of_deskewed: Optional[str] = None,
|
||||
dir_of_all: Optional[str] = None,
|
||||
dir_save_page: Optional[str] = None,
|
||||
):
|
||||
"""
|
||||
Get image and scales, then extract the page of scanned image
|
||||
"""
|
||||
self.logger.debug("enter run")
|
||||
t0_tot = time.time()
|
||||
|
||||
# Log enabled features directly
|
||||
enabled_modes = []
|
||||
if self.full_layout:
|
||||
enabled_modes.append("Full layout analysis")
|
||||
if self.tables:
|
||||
enabled_modes.append("Table detection")
|
||||
if enabled_modes:
|
||||
self.logger.info("Enabled modes: " + ", ".join(enabled_modes))
|
||||
if self.enable_plotting:
|
||||
self.logger.info("Saving debug plots")
|
||||
if dir_of_cropped_images:
|
||||
self.logger.info(f"Saving cropped images to: {dir_of_cropped_images}")
|
||||
if dir_of_layout:
|
||||
self.logger.info(f"Saving layout plots to: {dir_of_layout}")
|
||||
if dir_of_deskewed:
|
||||
self.logger.info(f"Saving deskewed images to: {dir_of_deskewed}")
|
||||
|
||||
if dir_in:
|
||||
ls_imgs = [os.path.join(dir_in, image_filename)
|
||||
for image_filename in filter(is_image_filename,
|
||||
os.listdir(dir_in))]
|
||||
elif image_filename:
|
||||
ls_imgs = [image_filename]
|
||||
else:
|
||||
raise ValueError("run requires either a single image filename or a directory")
|
||||
|
||||
for img_filename in ls_imgs:
|
||||
self.logger.info(img_filename)
|
||||
t0 = time.time()
|
||||
|
||||
self.reset_file_name_dir(img_filename, dir_out)
|
||||
if self.enable_plotting:
|
||||
self.plotter = EynollahPlotter(dir_out=dir_out,
|
||||
dir_of_all=dir_of_all,
|
||||
dir_save_page=dir_save_page,
|
||||
dir_of_deskewed=dir_of_deskewed,
|
||||
dir_of_cropped_images=dir_of_cropped_images,
|
||||
dir_of_layout=dir_of_layout,
|
||||
image_filename_stem=Path(img_filename).stem)
|
||||
#print("text region early -11 in %.1fs", time.time() - t0)
|
||||
if os.path.exists(self.writer.output_filename):
|
||||
if overwrite:
|
||||
self.logger.warning("will overwrite existing output file '%s'", self.writer.output_filename)
|
||||
else:
|
||||
self.logger.warning("will skip input for existing output file '%s'", self.writer.output_filename)
|
||||
continue
|
||||
|
||||
pcgts = self.run_single()
|
||||
self.logger.info("Job done in %.1fs", time.time() - t0)
|
||||
self.writer.write_pagexml(pcgts)
|
||||
|
||||
if dir_in:
|
||||
self.logger.info("All jobs done in %.1fs", time.time() - t0_tot)
|
||||
|
||||
def run_single(self):
|
||||
t0 = time.time()
|
||||
|
||||
self.logger.info(f"Processing file: {self.writer.image_filename}")
|
||||
self.logger.info("Step 1/5: Image Enhancement")
|
||||
|
||||
img_res, is_image_enhanced, num_col_classifier, _ = \
|
||||
self.run_enhancement()
|
||||
|
||||
self.logger.info(f"Image: {self.image.shape[1]}x{self.image.shape[0]}, "
|
||||
f"{self.dpi} DPI, {num_col_classifier} columns")
|
||||
if is_image_enhanced:
|
||||
self.logger.info("Enhancement applied")
|
||||
|
||||
self.logger.info(f"Enhancement complete ({time.time() - t0:.1f}s)")
|
||||
|
||||
|
||||
# Image Extraction Mode
|
||||
self.logger.info("Step 2/5: Image Extraction Mode")
|
||||
|
||||
_, _, _, polygons_of_images, \
|
||||
image_page, page_coord, cont_page = \
|
||||
self.get_regions_light_v_extract_only_images(img_res, num_col_classifier)
|
||||
pcgts = self.writer.build_pagexml_no_full_layout(
|
||||
[], page_coord, [], [], [], [],
|
||||
polygons_of_images, [], [], [], [], [], [], [], [], [],
|
||||
cont_page, [], [])
|
||||
if self.plotter:
|
||||
self.plotter.write_images_into_directory(polygons_of_images, image_page)
|
||||
|
||||
self.logger.info("Image extraction complete")
|
||||
return pcgts
|
||||
File diff suppressed because it is too large
Load diff
File diff suppressed because it is too large
Load diff
|
|
@ -10,14 +10,14 @@ Image enhancer. The output can be written as same scale of input or in new predi
|
|||
import logging
|
||||
import os
|
||||
import time
|
||||
from typing import Dict, Optional
|
||||
from typing import Optional
|
||||
from pathlib import Path
|
||||
import gc
|
||||
|
||||
import cv2
|
||||
from keras.models import Model
|
||||
import numpy as np
|
||||
import tensorflow as tf
|
||||
import tensorflow as tf # type: ignore
|
||||
from skimage.morphology import skeletonize
|
||||
|
||||
from .model_zoo import EynollahModelZoo
|
||||
|
|
@ -27,7 +27,6 @@ from .utils import (
|
|||
is_image_filename,
|
||||
crop_image_inside_box
|
||||
)
|
||||
from .patch_encoder import PatchEncoder, Patches
|
||||
|
||||
DPI_THRESHOLD = 298
|
||||
KERNEL = np.ones((5, 5), np.uint8)
|
||||
|
|
@ -43,7 +42,6 @@ class Enhancer:
|
|||
save_org_scale : bool = False,
|
||||
):
|
||||
self.input_binary = False
|
||||
self.light_version = False
|
||||
self.save_org_scale = save_org_scale
|
||||
if num_col_upper:
|
||||
self.num_col_upper = int(num_col_upper)
|
||||
|
|
@ -69,16 +67,10 @@ class Enhancer:
|
|||
ret = {}
|
||||
if image_filename:
|
||||
ret['img'] = cv2.imread(image_filename)
|
||||
if self.light_version:
|
||||
self.dpi = 100
|
||||
else:
|
||||
self.dpi = 0#check_dpi(image_filename)
|
||||
self.dpi = 100
|
||||
else:
|
||||
ret['img'] = pil2cv(image_pil)
|
||||
if self.light_version:
|
||||
self.dpi = 100
|
||||
else:
|
||||
self.dpi = 0#check_dpi(image_pil)
|
||||
self.dpi = 100
|
||||
ret['img_grayscale'] = cv2.cvtColor(ret['img'], cv2.COLOR_BGR2GRAY)
|
||||
for prefix in ('', '_grayscale'):
|
||||
ret[f'img{prefix}_uint8'] = ret[f'img{prefix}'].astype(np.uint8)
|
||||
|
|
@ -98,9 +90,6 @@ class Enhancer:
|
|||
key += '_uint8'
|
||||
return self._imgs[key].copy()
|
||||
|
||||
def isNaN(self, num):
|
||||
return num != num
|
||||
|
||||
def predict_enhancement(self, img):
|
||||
self.logger.debug("enter predict_enhancement")
|
||||
|
||||
|
|
@ -271,7 +260,7 @@ class Enhancer:
|
|||
|
||||
return img_new, num_column_is_classified
|
||||
|
||||
def resize_and_enhance_image_with_column_classifier(self, light_version):
|
||||
def resize_and_enhance_image_with_column_classifier(self):
|
||||
self.logger.debug("enter resize_and_enhance_image_with_column_classifier")
|
||||
dpi = 0#self.dpi
|
||||
self.logger.info("Detected %s DPI", dpi)
|
||||
|
|
@ -354,16 +343,13 @@ class Enhancer:
|
|||
self.logger.info("Found %d columns (%s)", num_col, np.around(label_p_pred, decimals=5))
|
||||
|
||||
if dpi < DPI_THRESHOLD:
|
||||
if light_version and num_col in (1,2):
|
||||
if num_col in (1,2):
|
||||
img_new, num_column_is_classified = self.calculate_width_height_by_columns_1_2(
|
||||
img, num_col, width_early, label_p_pred)
|
||||
else:
|
||||
img_new, num_column_is_classified = self.calculate_width_height_by_columns(
|
||||
img, num_col, width_early, label_p_pred)
|
||||
if light_version:
|
||||
image_res = np.copy(img_new)
|
||||
else:
|
||||
image_res = self.predict_enhancement(img_new)
|
||||
image_res = np.copy(img_new)
|
||||
is_image_enhanced = True
|
||||
|
||||
else:
|
||||
|
|
@ -657,11 +643,11 @@ class Enhancer:
|
|||
gc.collect()
|
||||
return prediction_true
|
||||
|
||||
def run_enhancement(self, light_version):
|
||||
def run_enhancement(self):
|
||||
t_in = time.time()
|
||||
self.logger.info("Resizing and enhancing image...")
|
||||
is_image_enhanced, img_org, img_res, num_col_classifier, num_column_is_classified, img_bin = \
|
||||
self.resize_and_enhance_image_with_column_classifier(light_version)
|
||||
self.resize_and_enhance_image_with_column_classifier()
|
||||
|
||||
self.logger.info("Image was %senhanced.", '' if is_image_enhanced else 'not ')
|
||||
return img_res, is_image_enhanced, num_col_classifier, num_column_is_classified
|
||||
|
|
@ -669,7 +655,7 @@ class Enhancer:
|
|||
|
||||
def run_single(self):
|
||||
t0 = time.time()
|
||||
img_res, is_image_enhanced, num_col_classifier, num_column_is_classified = self.run_enhancement(light_version=False)
|
||||
img_res, is_image_enhanced, num_col_classifier, num_column_is_classified = self.run_enhancement()
|
||||
|
||||
return img_res, is_image_enhanced
|
||||
|
||||
|
|
|
|||
|
|
@ -49,8 +49,6 @@ class machine_based_reading_order_on_layout:
|
|||
self.logger.warning("no GPU device available")
|
||||
|
||||
self.model_zoo.load_model('reading_order')
|
||||
# FIXME: light_version is always true, no need for checks in the code
|
||||
self.light_version = True
|
||||
|
||||
def read_xml(self, xml_file):
|
||||
tree1 = ET.parse(xml_file, parser = ET.XMLParser(encoding='utf-8'))
|
||||
|
|
@ -517,7 +515,7 @@ class machine_based_reading_order_on_layout:
|
|||
|
||||
|
||||
min_cont_size_to_be_dilated = 10
|
||||
if len(contours_only_text_parent)>min_cont_size_to_be_dilated and self.light_version:
|
||||
if len(contours_only_text_parent)>min_cont_size_to_be_dilated:
|
||||
cx_conts, cy_conts, x_min_conts, x_max_conts, y_min_conts, y_max_conts, _ = find_new_features_of_contours(contours_only_text_parent)
|
||||
args_cont_located = np.array(range(len(contours_only_text_parent)))
|
||||
|
||||
|
|
@ -617,13 +615,13 @@ class machine_based_reading_order_on_layout:
|
|||
img_header_and_sep[int(y_max_main[j]):int(y_max_main[j])+12,
|
||||
int(x_min_main[j]):int(x_max_main[j])] = 1
|
||||
co_text_all_org = contours_only_text_parent + contours_only_text_parent_h
|
||||
if len(contours_only_text_parent)>min_cont_size_to_be_dilated and self.light_version:
|
||||
if len(contours_only_text_parent)>min_cont_size_to_be_dilated:
|
||||
co_text_all = contours_only_dilated + contours_only_text_parent_h
|
||||
else:
|
||||
co_text_all = contours_only_text_parent + contours_only_text_parent_h
|
||||
else:
|
||||
co_text_all_org = contours_only_text_parent
|
||||
if len(contours_only_text_parent)>min_cont_size_to_be_dilated and self.light_version:
|
||||
if len(contours_only_text_parent)>min_cont_size_to_be_dilated:
|
||||
co_text_all = contours_only_dilated
|
||||
else:
|
||||
co_text_all = contours_only_text_parent
|
||||
|
|
@ -702,7 +700,7 @@ class machine_based_reading_order_on_layout:
|
|||
##id_all_text = np.array(id_all_text)[index_sort]
|
||||
|
||||
|
||||
if len(contours_only_text_parent)>min_cont_size_to_be_dilated and self.light_version:
|
||||
if len(contours_only_text_parent)>min_cont_size_to_be_dilated:
|
||||
org_contours_indexes = []
|
||||
for ind in range(len(ordered)):
|
||||
region_with_curr_order = ordered[ind]
|
||||
|
|
|
|||
|
|
@ -4,7 +4,7 @@ from .specs import EynollahModelSpec, EynollahModelSpecSet
|
|||
ZENODO = "https://zenodo.org/records/17295988/files"
|
||||
MODELS_VERSION = "v0_7_0"
|
||||
|
||||
def dist_url(dist_name: str) -> str:
|
||||
def dist_url(dist_name: str="layout") -> str:
|
||||
return f'{ZENODO}/models_{dist_name}_{MODELS_VERSION}.zip'
|
||||
|
||||
DEFAULT_MODEL_SPECS = EynollahModelSpecSet([
|
||||
|
|
@ -13,8 +13,7 @@ DEFAULT_MODEL_SPECS = EynollahModelSpecSet([
|
|||
category="enhancement",
|
||||
variant='',
|
||||
filename="models_eynollah/eynollah-enhancement_20210425",
|
||||
dists=['enhancement', 'layout', 'ci'],
|
||||
dist_url=dist_url("enhancement"),
|
||||
dist_url=dist_url(),
|
||||
type='Keras',
|
||||
),
|
||||
|
||||
|
|
@ -22,8 +21,7 @@ DEFAULT_MODEL_SPECS = EynollahModelSpecSet([
|
|||
category="binarization",
|
||||
variant='hybrid',
|
||||
filename="models_eynollah/eynollah-binarization-hybrid_20230504/model_bin_hybrid_trans_cnn_sbb_ens",
|
||||
dists=['layout', 'binarization', ],
|
||||
dist_url=dist_url("binarization"),
|
||||
dist_url=dist_url(),
|
||||
type='Keras',
|
||||
),
|
||||
|
||||
|
|
@ -31,8 +29,7 @@ DEFAULT_MODEL_SPECS = EynollahModelSpecSet([
|
|||
category="binarization",
|
||||
variant='20210309',
|
||||
filename="models_eynollah/eynollah-binarization_20210309",
|
||||
dists=['binarization'],
|
||||
dist_url=dist_url("binarization"),
|
||||
dist_url=dist_url("extra"),
|
||||
type='Keras',
|
||||
),
|
||||
|
||||
|
|
@ -40,44 +37,7 @@ DEFAULT_MODEL_SPECS = EynollahModelSpecSet([
|
|||
category="binarization",
|
||||
variant='',
|
||||
filename="models_eynollah/eynollah-binarization_20210425",
|
||||
dists=['binarization'],
|
||||
dist_url=dist_url("binarization"),
|
||||
type='Keras',
|
||||
),
|
||||
|
||||
EynollahModelSpec(
|
||||
category="binarization_multi_1",
|
||||
variant='',
|
||||
filename="models_eynollah/eynollah-binarization-multi_2020_01_16/model_bin1",
|
||||
dist_url=dist_url("binarization"),
|
||||
dists=['binarization'],
|
||||
type='Keras',
|
||||
),
|
||||
|
||||
EynollahModelSpec(
|
||||
category="binarization_multi_2",
|
||||
variant='',
|
||||
filename="models_eynollah/eynollah-binarization-multi_2020_01_16/model_bin2",
|
||||
dist_url=dist_url("binarization"),
|
||||
dists=['binarization'],
|
||||
type='Keras',
|
||||
),
|
||||
|
||||
EynollahModelSpec(
|
||||
category="binarization_multi_3",
|
||||
variant='',
|
||||
filename="models_eynollah/eynollah-binarization-multi_2020_01_16/model_bin3",
|
||||
dist_url=dist_url("binarization"),
|
||||
dists=['binarization'],
|
||||
type='Keras',
|
||||
),
|
||||
|
||||
EynollahModelSpec(
|
||||
category="binarization_multi_4",
|
||||
variant='',
|
||||
filename="models_eynollah/eynollah-binarization-multi_2020_01_16/model_bin4",
|
||||
dist_url=dist_url("binarization"),
|
||||
dists=['binarization'],
|
||||
dist_url=dist_url("extra"),
|
||||
type='Keras',
|
||||
),
|
||||
|
||||
|
|
@ -85,8 +45,7 @@ DEFAULT_MODEL_SPECS = EynollahModelSpecSet([
|
|||
category="col_classifier",
|
||||
variant='',
|
||||
filename="models_eynollah/eynollah-column-classifier_20210425",
|
||||
dist_url=dist_url("layout"),
|
||||
dists=['layout'],
|
||||
dist_url=dist_url(),
|
||||
type='Keras',
|
||||
),
|
||||
|
||||
|
|
@ -94,8 +53,7 @@ DEFAULT_MODEL_SPECS = EynollahModelSpecSet([
|
|||
category="page",
|
||||
variant='',
|
||||
filename="models_eynollah/model_eynollah_page_extraction_20250915",
|
||||
dist_url=dist_url("layout"),
|
||||
dists=['layout'],
|
||||
dist_url=dist_url(),
|
||||
type='Keras',
|
||||
),
|
||||
|
||||
|
|
@ -103,37 +61,33 @@ DEFAULT_MODEL_SPECS = EynollahModelSpecSet([
|
|||
category="region",
|
||||
variant='',
|
||||
filename="models_eynollah/eynollah-main-regions-ensembled_20210425",
|
||||
dist_url=dist_url("layout"),
|
||||
dists=['layout'],
|
||||
dist_url=dist_url(),
|
||||
type='Keras',
|
||||
),
|
||||
|
||||
EynollahModelSpec(
|
||||
category="region",
|
||||
variant='extract_only_images',
|
||||
category="extract_images",
|
||||
variant='',
|
||||
filename="models_eynollah/eynollah-main-regions_20231127_672_org_ens_11_13_16_17_18",
|
||||
dist_url=dist_url("layout"),
|
||||
dists=['layout'],
|
||||
dist_url=dist_url(),
|
||||
type='Keras',
|
||||
),
|
||||
|
||||
EynollahModelSpec(
|
||||
category="region",
|
||||
variant='light',
|
||||
variant='',
|
||||
filename="models_eynollah/eynollah-main-regions_20220314",
|
||||
dist_url=dist_url("layout"),
|
||||
dist_url=dist_url(),
|
||||
help="early layout",
|
||||
dists=['layout'],
|
||||
type='Keras',
|
||||
),
|
||||
|
||||
EynollahModelSpec(
|
||||
category="region_p2",
|
||||
variant='',
|
||||
variant='non-light',
|
||||
filename="models_eynollah/eynollah-main-regions-aug-rotation_20210425",
|
||||
dist_url=dist_url("layout"),
|
||||
dist_url=dist_url('extra'),
|
||||
help="early layout, non-light, 2nd part",
|
||||
dists=['layout'],
|
||||
type='Keras',
|
||||
),
|
||||
|
||||
|
|
@ -147,7 +101,6 @@ DEFAULT_MODEL_SPECS = EynollahModelSpecSet([
|
|||
#filename="models_eynollah/model_3_eraly_layout_no_patches_1_2_spaltige",
|
||||
filename="models_eynollah/modelens_e_l_all_sp_0_1_2_3_4_171024",
|
||||
dist_url=dist_url("layout"),
|
||||
dists=['layout'],
|
||||
help="early layout, light, 1-or-2-column",
|
||||
type='Keras',
|
||||
),
|
||||
|
|
@ -162,9 +115,8 @@ DEFAULT_MODEL_SPECS = EynollahModelSpecSet([
|
|||
#'filename="models_eynollah/modelens_full_lay_1_2_221024",
|
||||
#'filename="models_eynollah/eynollah-full-regions-1column_20210425",
|
||||
filename="models_eynollah/modelens_full_lay_1__4_3_091124",
|
||||
dist_url=dist_url("layout"),
|
||||
dist_url=dist_url(),
|
||||
help="full layout / no patches",
|
||||
dists=['layout'],
|
||||
type='Keras',
|
||||
),
|
||||
|
||||
|
|
@ -182,9 +134,8 @@ DEFAULT_MODEL_SPECS = EynollahModelSpecSet([
|
|||
# filename="models_eynollah/modelens_full_layout_24_till_28",
|
||||
# filename="models_eynollah/model_2_full_layout_new_trans",
|
||||
filename="models_eynollah/modelens_full_lay_1__4_3_091124",
|
||||
dist_url=dist_url("layout"),
|
||||
dist_url=dist_url(),
|
||||
help="full layout / with patches",
|
||||
dists=['layout'],
|
||||
type='Keras',
|
||||
),
|
||||
|
||||
|
|
@ -197,14 +148,13 @@ DEFAULT_MODEL_SPECS = EynollahModelSpecSet([
|
|||
#filename="models_eynollah/model_mb_ro_aug_ens_8",
|
||||
#filename="models_eynollah/model_ens_reading_order_machine_based",
|
||||
filename="models_eynollah/model_eynollah_reading_order_20250824",
|
||||
dist_url=dist_url("reading_order"),
|
||||
dists=['layout', 'reading_order'],
|
||||
dist_url=dist_url(),
|
||||
type='Keras',
|
||||
),
|
||||
|
||||
EynollahModelSpec(
|
||||
category="textline",
|
||||
variant='',
|
||||
variant='non-light',
|
||||
#filename="models_eynollah/modelens_textline_1_4_16092024",
|
||||
#filename="models_eynollah/model_textline_ens_3_4_5_6_artificial",
|
||||
#filename="models_eynollah/modelens_textline_1_3_4_20240915",
|
||||
|
|
@ -212,36 +162,32 @@ DEFAULT_MODEL_SPECS = EynollahModelSpecSet([
|
|||
#filename="models_eynollah/modelens_textline_9_12_13_14_15",
|
||||
#filename="models_eynollah/eynollah-textline_20210425",
|
||||
filename="models_eynollah/modelens_textline_0_1__2_4_16092024",
|
||||
dist_url=dist_url("layout"),
|
||||
dists=['layout'],
|
||||
dist_url=dist_url('extra'),
|
||||
type='Keras',
|
||||
),
|
||||
|
||||
EynollahModelSpec(
|
||||
category="textline",
|
||||
variant='light',
|
||||
variant='',
|
||||
#filename="models_eynollah/eynollah-textline_light_20210425",
|
||||
filename="models_eynollah/modelens_textline_0_1__2_4_16092024",
|
||||
dist_url=dist_url("layout"),
|
||||
dists=['layout'],
|
||||
dist_url=dist_url(),
|
||||
type='Keras',
|
||||
),
|
||||
|
||||
EynollahModelSpec(
|
||||
category="table",
|
||||
variant='non-light',
|
||||
filename="models_eynollah/eynollah-tables_20210319",
|
||||
dist_url=dist_url('extra'),
|
||||
type='Keras',
|
||||
),
|
||||
|
||||
EynollahModelSpec(
|
||||
category="table",
|
||||
variant='',
|
||||
filename="models_eynollah/eynollah-tables_20210319",
|
||||
dist_url=dist_url("layout"),
|
||||
dists=['layout'],
|
||||
type='Keras',
|
||||
),
|
||||
|
||||
EynollahModelSpec(
|
||||
category="table",
|
||||
variant='light',
|
||||
filename="models_eynollah/modelens_table_0t4_201124",
|
||||
dist_url=dist_url("layout"),
|
||||
dists=['layout'],
|
||||
dist_url=dist_url(),
|
||||
type='Keras',
|
||||
),
|
||||
|
||||
|
|
@ -250,7 +196,6 @@ DEFAULT_MODEL_SPECS = EynollahModelSpecSet([
|
|||
variant='',
|
||||
filename="models_eynollah/model_eynollah_ocr_cnnrnn_20250930",
|
||||
dist_url=dist_url("ocr"),
|
||||
dists=['layout', 'ocr'],
|
||||
type='Keras',
|
||||
),
|
||||
|
||||
|
|
@ -260,7 +205,6 @@ DEFAULT_MODEL_SPECS = EynollahModelSpecSet([
|
|||
filename="models_eynollah/model_eynollah_ocr_cnnrnn__degraded_20250805/",
|
||||
help="slightly better at degraded Fraktur",
|
||||
dist_url=dist_url("ocr"),
|
||||
dists=['ocr'],
|
||||
type='Keras',
|
||||
),
|
||||
|
||||
|
|
@ -269,7 +213,6 @@ DEFAULT_MODEL_SPECS = EynollahModelSpecSet([
|
|||
variant='',
|
||||
filename="characters_org.txt",
|
||||
dist_url=dist_url("ocr"),
|
||||
dists=['ocr'],
|
||||
type='decoder',
|
||||
),
|
||||
|
||||
|
|
@ -278,7 +221,6 @@ DEFAULT_MODEL_SPECS = EynollahModelSpecSet([
|
|||
variant='',
|
||||
filename="characters_org.txt",
|
||||
dist_url=dist_url("ocr"),
|
||||
dists=['ocr'],
|
||||
type='List[str]',
|
||||
),
|
||||
|
||||
|
|
@ -286,9 +228,8 @@ DEFAULT_MODEL_SPECS = EynollahModelSpecSet([
|
|||
category="ocr",
|
||||
variant='tr',
|
||||
filename="models_eynollah/model_eynollah_ocr_trocr_20250919",
|
||||
dist_url=dist_url("trocr"),
|
||||
dist_url=dist_url("ocr"),
|
||||
help='much slower transformer-based',
|
||||
dists=['trocr'],
|
||||
type='Keras',
|
||||
),
|
||||
|
||||
|
|
@ -296,8 +237,7 @@ DEFAULT_MODEL_SPECS = EynollahModelSpecSet([
|
|||
category="trocr_processor",
|
||||
variant='',
|
||||
filename="models_eynollah/model_eynollah_ocr_trocr_20250919",
|
||||
dist_url=dist_url("trocr"),
|
||||
dists=['trocr'],
|
||||
dist_url=dist_url("ocr"),
|
||||
type='TrOCRProcessor',
|
||||
),
|
||||
|
||||
|
|
@ -305,8 +245,7 @@ DEFAULT_MODEL_SPECS = EynollahModelSpecSet([
|
|||
category="trocr_processor",
|
||||
variant='htr',
|
||||
filename="models_eynollah/microsoft/trocr-base-handwritten",
|
||||
dist_url=dist_url("trocr"),
|
||||
dists=['trocr'],
|
||||
dist_url=dist_url("extra"),
|
||||
type='TrOCRProcessor',
|
||||
),
|
||||
|
||||
|
|
|
|||
|
|
@ -176,13 +176,12 @@ class EynollahModelZoo:
|
|||
spec.category,
|
||||
spec.variant,
|
||||
spec.help,
|
||||
', '.join(spec.dists),
|
||||
f'Yes, at {self.model_path(spec.category, spec.variant)}'
|
||||
if self.model_path(spec.category, spec.variant).exists()
|
||||
else f'No, download {spec.dist_url}',
|
||||
# self.model_path(spec.category, spec.variant),
|
||||
]
|
||||
for spec in self.specs.specs
|
||||
for spec in sorted(self.specs.specs, key=lambda x: x.dist_url)
|
||||
],
|
||||
headers=[
|
||||
'Type',
|
||||
|
|
|
|||
|
|
@ -10,8 +10,6 @@ class EynollahModelSpec():
|
|||
category: str
|
||||
# Relative filename to the models_eynollah directory in the dists
|
||||
filename: str
|
||||
# basename of the ZIP files that should contain this model
|
||||
dists: List[str]
|
||||
# URL to the smallest model distribution containing this model (link to Zenodo)
|
||||
dist_url: str
|
||||
type: str
|
||||
|
|
|
|||
|
|
@ -29,16 +29,6 @@
|
|||
"type": "boolean",
|
||||
"default": true,
|
||||
"description": "Try to detect all element subtypes, including drop-caps and headings"
|
||||
},
|
||||
"light_version": {
|
||||
"type": "boolean",
|
||||
"default": true,
|
||||
"description": "Try to detect all element subtypes in light version (faster+simpler method for main region detection and deskewing)"
|
||||
},
|
||||
"textline_light": {
|
||||
"type": "boolean",
|
||||
"default": true,
|
||||
"description": "Light version need textline light. If this parameter set to true, this tool will try to return contoure of textlines instead of rectangle bounding box of textline with a faster method."
|
||||
},
|
||||
"tables": {
|
||||
"type": "boolean",
|
||||
|
|
|
|||
|
|
@ -1,3 +1,6 @@
|
|||
# NOTE: For predictable order of imports of torch/shapely/tensorflow
|
||||
# this must be the first import of the CLI!
|
||||
from .eynollah_imports import imported_libs
|
||||
from .processor import EynollahProcessor
|
||||
from click import command
|
||||
from ocrd.decorators import ocrd_cli_options, ocrd_cli_wrap_processor
|
||||
|
|
|
|||
|
|
@ -40,7 +40,7 @@ class SbbBinarizeProcessor(Processor):
|
|||
# resolve relative path via OCR-D ResourceManager
|
||||
assert isinstance(self.parameter, frozendict)
|
||||
model_zoo = EynollahModelZoo(basedir=self.parameter['model'])
|
||||
self.binarizer = SbbBinarizer(model_zoo=model_zoo, mode='single', logger=self.logger)
|
||||
self.binarizer = SbbBinarizer(model_zoo=model_zoo, logger=self.logger)
|
||||
|
||||
def process_page_pcgts(self, *input_pcgts: Optional[OcrdPage], page_id: Optional[str] = None) -> OcrdPageResult:
|
||||
"""
|
||||
|
|
@ -103,7 +103,7 @@ class SbbBinarizeProcessor(Processor):
|
|||
line_image_bin = cv2pil(self.binarizer.run(image=pil2cv(line_image), use_patches=True))
|
||||
# update PAGE (reference the image file):
|
||||
line_image_ref = AlternativeImageType(comments=line_xywh['features'] + ',binarized')
|
||||
line.add_AlternativeImage(region_image_ref)
|
||||
line.add_AlternativeImage(line_image_ref)
|
||||
result.images.append(OcrdPageResultImage(line_image_bin, line.id + '.IMG-BIN', line_image_ref))
|
||||
|
||||
return result
|
||||
|
|
|
|||
|
|
@ -18,9 +18,6 @@ class EynollahProcessor(Processor):
|
|||
|
||||
def setup(self) -> None:
|
||||
assert self.parameter
|
||||
if self.parameter['textline_light'] != self.parameter['light_version']:
|
||||
raise ValueError("Error: You must set or unset both parameter 'textline_light' (to enable light textline detection), "
|
||||
"and parameter 'light_version' (faster+simpler method for main region detection and deskewing)")
|
||||
model_zoo = EynollahModelZoo(basedir=self.parameter['models'])
|
||||
self.eynollah = Eynollah(
|
||||
model_zoo=model_zoo,
|
||||
|
|
@ -29,8 +26,6 @@ class EynollahProcessor(Processor):
|
|||
right2left=self.parameter['right_to_left'],
|
||||
reading_order_machine_based=self.parameter['reading_order_machine_based'],
|
||||
ignore_page_extraction=self.parameter['ignore_page_extraction'],
|
||||
light_version=self.parameter['light_version'],
|
||||
textline_light=self.parameter['textline_light'],
|
||||
full_layout=self.parameter['full_layout'],
|
||||
allow_scaling=self.parameter['allow_scaling'],
|
||||
headers_off=self.parameter['headers_off'],
|
||||
|
|
@ -93,7 +88,6 @@ class EynollahProcessor(Processor):
|
|||
dir_out=None,
|
||||
image_filename=image_filename,
|
||||
curved_line=self.eynollah.curved_line,
|
||||
textline_light=self.eynollah.textline_light,
|
||||
pcgts=pcgts)
|
||||
self.eynollah.run_single()
|
||||
return result
|
||||
|
|
|
|||
|
|
@ -9,15 +9,13 @@ Tool to load model and binarize a given image.
|
|||
|
||||
import os
|
||||
import logging
|
||||
from pathlib import Path
|
||||
from typing import Dict, Optional
|
||||
from typing import Optional
|
||||
|
||||
import numpy as np
|
||||
import cv2
|
||||
from ocrd_utils import tf_disable_interactive_logs
|
||||
|
||||
from eynollah.model_zoo import EynollahModelZoo
|
||||
from eynollah.model_zoo.types import AnyModel
|
||||
tf_disable_interactive_logs()
|
||||
import tensorflow as tf
|
||||
from tensorflow.python.keras import backend as tensorflow_backend
|
||||
|
|
@ -33,12 +31,10 @@ class SbbBinarizer:
|
|||
self,
|
||||
*,
|
||||
model_zoo: EynollahModelZoo,
|
||||
mode: str,
|
||||
logger: Optional[logging.Logger] = None,
|
||||
):
|
||||
self.logger = logger if logger else logging.getLogger('eynollah.binarization')
|
||||
self.model_zoo = model_zoo
|
||||
self.models = self.setup_models(mode)
|
||||
self.models = (model_zoo.model_path('binarization'), model_zoo.load_model('binarization'))
|
||||
self.session = self.start_new_session()
|
||||
|
||||
def start_new_session(self):
|
||||
|
|
@ -49,12 +45,6 @@ class SbbBinarizer:
|
|||
tensorflow_backend.set_session(session)
|
||||
return session
|
||||
|
||||
def setup_models(self, mode: str) -> Dict[Path, AnyModel]:
|
||||
return {
|
||||
self.model_zoo.model_path(v): self.model_zoo.load_model(v)
|
||||
for v in (['binarization'] if mode == 'single' else [f'binarization_multi_{i}' for i in range(1, 5)])
|
||||
}
|
||||
|
||||
def end_session(self):
|
||||
tensorflow_backend.clear_session()
|
||||
self.session.close()
|
||||
|
|
@ -330,8 +320,38 @@ class SbbBinarizer:
|
|||
if image_path is not None:
|
||||
image = cv2.imread(image_path)
|
||||
img_last = 0
|
||||
for n, (model_file, model) in enumerate(self.models.items()):
|
||||
self.logger.info('Predicting %s with model %s [%s/%s]', image_path if image_path else '[image]', model_file, n + 1, len(self.models.keys()))
|
||||
model_file, model = self.models
|
||||
self.logger.info('Predicting %s with model %s', image_path if image_path else '[image]', model_file)
|
||||
res = self.predict(model, image, use_patches)
|
||||
|
||||
img_fin = np.zeros((res.shape[0], res.shape[1], 3))
|
||||
res[:, :][res[:, :] == 0] = 2
|
||||
res = res - 1
|
||||
res = res * 255
|
||||
img_fin[:, :, 0] = res
|
||||
img_fin[:, :, 1] = res
|
||||
img_fin[:, :, 2] = res
|
||||
|
||||
img_fin = img_fin.astype(np.uint8)
|
||||
img_fin = (res[:, :] == 0) * 255
|
||||
img_last = img_last + img_fin
|
||||
|
||||
img_last[:, :][img_last[:, :] > 0] = 255
|
||||
img_last = (img_last[:, :] == 0) * 255
|
||||
if output:
|
||||
self.logger.info('Writing binarized image to %s', output)
|
||||
cv2.imwrite(output, img_last)
|
||||
return img_last
|
||||
else:
|
||||
ls_imgs = list(filter(is_image_filename, os.listdir(dir_in)))
|
||||
self.logger.info("Found %d image files to binarize in %s", len(ls_imgs), dir_in)
|
||||
for i, image_path in enumerate(ls_imgs):
|
||||
self.logger.info('Binarizing [%3d/%d] %s', i + 1, len(ls_imgs), image_path)
|
||||
image_stem = image_path.split('.')[0]
|
||||
image = cv2.imread(os.path.join(dir_in,image_path) )
|
||||
img_last = 0
|
||||
model_file, model = self.models
|
||||
self.logger.info('Predicting %s with model %s', image_path if image_path else '[image]', model_file)
|
||||
res = self.predict(model, image, use_patches)
|
||||
|
||||
img_fin = np.zeros((res.shape[0], res.shape[1], 3))
|
||||
|
|
@ -346,39 +366,6 @@ class SbbBinarizer:
|
|||
img_fin = (res[:, :] == 0) * 255
|
||||
img_last = img_last + img_fin
|
||||
|
||||
kernel = np.ones((5, 5), np.uint8)
|
||||
img_last[:, :][img_last[:, :] > 0] = 255
|
||||
img_last = (img_last[:, :] == 0) * 255
|
||||
if output:
|
||||
self.logger.info('Writing binarized image to %s', output)
|
||||
cv2.imwrite(output, img_last)
|
||||
return img_last
|
||||
else:
|
||||
ls_imgs = list(filter(is_image_filename, os.listdir(dir_in)))
|
||||
self.logger.info("Found %d image files to binarize in %s", len(ls_imgs), dir_in)
|
||||
for i, image_name in enumerate(ls_imgs):
|
||||
image_stem = image_name.split('.')[0]
|
||||
self.logger.info('Binarizing [%3d/%d] %s', i + 1, len(ls_imgs), image_name)
|
||||
image = cv2.imread(os.path.join(dir_in,image_name) )
|
||||
img_last = 0
|
||||
for n, (model_file, model) in enumerate(self.models.items()):
|
||||
self.logger.info('Predicting %s with model %s [%s/%s]', image_name, model_file, n + 1, len(self.models.keys()))
|
||||
|
||||
res = self.predict(model, image, use_patches)
|
||||
|
||||
img_fin = np.zeros((res.shape[0], res.shape[1], 3))
|
||||
res[:, :][res[:, :] == 0] = 2
|
||||
res = res - 1
|
||||
res = res * 255
|
||||
img_fin[:, :, 0] = res
|
||||
img_fin[:, :, 1] = res
|
||||
img_fin[:, :, 2] = res
|
||||
|
||||
img_fin = img_fin.astype(np.uint8)
|
||||
img_fin = (res[:, :] == 0) * 255
|
||||
img_last = img_last + img_fin
|
||||
|
||||
kernel = np.ones((5, 5), np.uint8)
|
||||
img_last[:, :][img_last[:, :] > 0] = 255
|
||||
img_last = (img_last[:, :] == 0) * 255
|
||||
|
||||
|
|
|
|||
|
|
@ -8,6 +8,7 @@ from .build_model_load_pretrained_weights_and_save import build_model_load_pretr
|
|||
from .generate_gt_for_training import main as generate_gt_cli
|
||||
from .inference import main as inference_cli
|
||||
from .train import ex
|
||||
from .extract_line_gt import linegt_cli
|
||||
|
||||
@click.command(context_settings=dict(
|
||||
ignore_unknown_options=True,
|
||||
|
|
@ -24,3 +25,4 @@ main.add_command(build_model_load_pretrained_weights_and_save)
|
|||
main.add_command(generate_gt_cli, 'generate-gt')
|
||||
main.add_command(inference_cli, 'inference')
|
||||
main.add_command(train_cli, 'train')
|
||||
main.add_command(linegt_cli, 'export_textline_images_and_text')
|
||||
|
|
|
|||
136
src/eynollah/training/extract_line_gt.py
Normal file
136
src/eynollah/training/extract_line_gt.py
Normal file
|
|
@ -0,0 +1,136 @@
|
|||
from logging import Logger, getLogger
|
||||
from typing import Optional
|
||||
from pathlib import Path
|
||||
import os
|
||||
|
||||
import click
|
||||
import cv2
|
||||
import xml.etree.ElementTree as ET
|
||||
import numpy as np
|
||||
|
||||
from ..utils import is_image_filename
|
||||
|
||||
@click.command()
|
||||
@click.option(
|
||||
"--image",
|
||||
"-i",
|
||||
help="input image filename",
|
||||
type=click.Path(exists=True, dir_okay=False),
|
||||
)
|
||||
@click.option(
|
||||
"--dir_in",
|
||||
"-di",
|
||||
'image_filename',
|
||||
help="directory of input images (instead of --image)",
|
||||
type=click.Path(exists=True, file_okay=False),
|
||||
)
|
||||
@click.option(
|
||||
"--dir_xmls",
|
||||
"-dx",
|
||||
help="directory of input PAGE-XML files (in addition to --dir_in; filename stems must match the image files, with '.xml' suffix).",
|
||||
type=click.Path(exists=True, file_okay=False),
|
||||
required=True,
|
||||
)
|
||||
@click.option(
|
||||
"--out",
|
||||
"-o",
|
||||
'dir_out',
|
||||
help="directory for output PAGE-XML files",
|
||||
type=click.Path(exists=True, file_okay=False),
|
||||
required=True,
|
||||
)
|
||||
@click.option(
|
||||
"--dataset_abbrevation",
|
||||
"-ds_pref",
|
||||
'pref_of_dataset',
|
||||
help="in the case of extracting textline and text from a xml GT file user can add an abbrevation of dataset name to generated dataset",
|
||||
)
|
||||
@click.option(
|
||||
"--do_not_mask_with_textline_contour",
|
||||
"-nmtc/-mtc",
|
||||
is_flag=True,
|
||||
help="if this parameter set to true, cropped textline images will not be masked with textline contour.",
|
||||
)
|
||||
def linegt_cli(
|
||||
image_filename,
|
||||
dir_in,
|
||||
dir_xmls,
|
||||
dir_out,
|
||||
pref_of_dataset,
|
||||
do_not_mask_with_textline_contour,
|
||||
):
|
||||
assert bool(dir_in) ^ bool(image_filename), "Set --dir-in or --image-filename, not both"
|
||||
if dir_in:
|
||||
ls_imgs = [
|
||||
os.path.join(dir_in, image_filename) for image_filename in filter(is_image_filename, os.listdir(dir_in))
|
||||
]
|
||||
else:
|
||||
assert image_filename
|
||||
ls_imgs = [image_filename]
|
||||
|
||||
for dir_img in ls_imgs:
|
||||
file_name = Path(dir_img).stem
|
||||
dir_xml = os.path.join(dir_xmls, file_name + '.xml')
|
||||
|
||||
img = cv2.imread(dir_img)
|
||||
|
||||
total_bb_coordinates = []
|
||||
|
||||
tree1 = ET.parse(dir_xml, parser=ET.XMLParser(encoding="utf-8"))
|
||||
root1 = tree1.getroot()
|
||||
alltags = [elem.tag for elem in root1.iter()]
|
||||
|
||||
name_space = alltags[0].split('}')[0]
|
||||
name_space = name_space.split('{')[1]
|
||||
|
||||
region_tags = [x for x in alltags if x.endswith('TextRegion')][0]
|
||||
|
||||
cropped_lines_region_indexer = []
|
||||
|
||||
indexer_text_region = 0
|
||||
indexer_textlines = 0
|
||||
# FIXME: non recursive, use OCR-D PAGE generateDS API. Or use an existing tool for this purpose altogether
|
||||
for nn in root1.iter(region_tags):
|
||||
for child_textregion in nn:
|
||||
if child_textregion.tag.endswith("TextLine"):
|
||||
for child_textlines in child_textregion:
|
||||
if child_textlines.tag.endswith("Coords"):
|
||||
cropped_lines_region_indexer.append(indexer_text_region)
|
||||
p_h = child_textlines.attrib['points'].split(' ')
|
||||
textline_coords = np.array([[int(x.split(',')[0]), int(x.split(',')[1])] for x in p_h])
|
||||
|
||||
x, y, w, h = cv2.boundingRect(textline_coords)
|
||||
|
||||
total_bb_coordinates.append([x, y, w, h])
|
||||
|
||||
img_poly_on_img = np.copy(img)
|
||||
|
||||
mask_poly = np.zeros(img.shape)
|
||||
mask_poly = cv2.fillPoly(mask_poly, pts=[textline_coords], color=(1, 1, 1))
|
||||
|
||||
mask_poly = mask_poly[y : y + h, x : x + w, :]
|
||||
img_crop = img_poly_on_img[y : y + h, x : x + w, :]
|
||||
|
||||
if not do_not_mask_with_textline_contour:
|
||||
img_crop[mask_poly == 0] = 255
|
||||
|
||||
if img_crop.shape[0] == 0 or img_crop.shape[1] == 0:
|
||||
continue
|
||||
|
||||
if child_textlines.tag.endswith("TextEquiv"):
|
||||
for cheild_text in child_textlines:
|
||||
if cheild_text.tag.endswith("Unicode"):
|
||||
textline_text = cheild_text.text
|
||||
if textline_text:
|
||||
base_name = os.path.join(
|
||||
dir_out, file_name + '_line_' + str(indexer_textlines)
|
||||
)
|
||||
if pref_of_dataset:
|
||||
base_name += '_' + pref_of_dataset
|
||||
if not do_not_mask_with_textline_contour:
|
||||
base_name += '_masked'
|
||||
|
||||
with open(base_name + '.txt', 'w') as text_file:
|
||||
text_file.write(textline_text)
|
||||
cv2.imwrite(base_name + '.png', img_crop)
|
||||
indexer_textlines += 1
|
||||
|
|
@ -19,7 +19,6 @@ def adhere_drop_capital_region_into_corresponding_textline(
|
|||
all_found_textline_polygons_h,
|
||||
kernel=None,
|
||||
curved_line=False,
|
||||
textline_light=False,
|
||||
):
|
||||
# print(np.shape(all_found_textline_polygons),np.shape(all_found_textline_polygons[3]),'all_found_textline_polygonsshape')
|
||||
# print(all_found_textline_polygons[3])
|
||||
|
|
@ -79,7 +78,7 @@ def adhere_drop_capital_region_into_corresponding_textline(
|
|||
# region_with_intersected_drop=region_with_intersected_drop/3
|
||||
region_with_intersected_drop = region_with_intersected_drop.astype(np.uint8)
|
||||
# print(np.unique(img_con_all_copy[:,:,0]))
|
||||
if curved_line or textline_light:
|
||||
if curved_line:
|
||||
|
||||
if len(region_with_intersected_drop) > 1:
|
||||
sum_pixels_of_intersection = []
|
||||
|
|
|
|||
16
src/eynollah/utils/font.py
Normal file
16
src/eynollah/utils/font.py
Normal file
|
|
@ -0,0 +1,16 @@
|
|||
|
||||
# cannot use importlib.resources until we move to 3.9+ forimportlib.resources.files
|
||||
import sys
|
||||
from PIL import ImageFont
|
||||
|
||||
if sys.version_info < (3, 10):
|
||||
import importlib_resources
|
||||
else:
|
||||
import importlib.resources as importlib_resources
|
||||
|
||||
|
||||
def get_font():
|
||||
#font_path = "Charis-7.000/Charis-Regular.ttf" # Make sure this file exists!
|
||||
font = importlib_resources.files(__package__) / "../Charis-Regular.ttf"
|
||||
with importlib_resources.as_file(font) as font:
|
||||
return ImageFont.truetype(font=font, size=40)
|
||||
|
|
@ -6,7 +6,7 @@ from .contour import find_new_features_of_contours, return_contours_of_intereste
|
|||
from .resize import resize_image
|
||||
from .rotate import rotate_image
|
||||
|
||||
def get_marginals(text_with_lines, text_regions, num_col, slope_deskew, light_version=False, kernel=None):
|
||||
def get_marginals(text_with_lines, text_regions, num_col, slope_deskew, kernel=None):
|
||||
mask_marginals=np.zeros((text_with_lines.shape[0],text_with_lines.shape[1]))
|
||||
mask_marginals=mask_marginals.astype(np.uint8)
|
||||
|
||||
|
|
@ -27,9 +27,8 @@ def get_marginals(text_with_lines, text_regions, num_col, slope_deskew, light_ve
|
|||
text_with_lines=resize_image(text_with_lines,text_with_lines_eroded.shape[0],text_with_lines_eroded.shape[1])
|
||||
|
||||
|
||||
if light_version:
|
||||
kernel_hor = np.ones((1, 5), dtype=np.uint8)
|
||||
text_with_lines = cv2.erode(text_with_lines,kernel_hor,iterations=6)
|
||||
kernel_hor = np.ones((1, 5), dtype=np.uint8)
|
||||
text_with_lines = cv2.erode(text_with_lines,kernel_hor,iterations=6)
|
||||
|
||||
text_with_lines_y=text_with_lines.sum(axis=0)
|
||||
text_with_lines_y_eroded=text_with_lines_eroded.sum(axis=0)
|
||||
|
|
@ -43,10 +42,7 @@ def get_marginals(text_with_lines, text_regions, num_col, slope_deskew, light_ve
|
|||
elif thickness_along_y_percent>=30 and thickness_along_y_percent<50:
|
||||
min_textline_thickness=20
|
||||
else:
|
||||
if light_version:
|
||||
min_textline_thickness=45
|
||||
else:
|
||||
min_textline_thickness=40
|
||||
min_textline_thickness=45
|
||||
|
||||
|
||||
if thickness_along_y_percent>=14:
|
||||
|
|
@ -128,92 +124,39 @@ def get_marginals(text_with_lines, text_regions, num_col, slope_deskew, light_ve
|
|||
if max_point_of_right_marginal>=text_regions.shape[1]:
|
||||
max_point_of_right_marginal=text_regions.shape[1]-1
|
||||
|
||||
if light_version:
|
||||
text_regions_org = np.copy(text_regions)
|
||||
text_regions[text_regions[:,:]==1]=4
|
||||
text_regions_org = np.copy(text_regions)
|
||||
text_regions[text_regions[:,:]==1]=4
|
||||
|
||||
pixel_img=4
|
||||
min_area_text=0.00001
|
||||
pixel_img=4
|
||||
min_area_text=0.00001
|
||||
|
||||
polygon_mask_marginals_rotated = return_contours_of_interested_region(mask_marginals,1,min_area_text)
|
||||
polygon_mask_marginals_rotated = return_contours_of_interested_region(mask_marginals,1,min_area_text)
|
||||
|
||||
polygon_mask_marginals_rotated = polygon_mask_marginals_rotated[0]
|
||||
polygon_mask_marginals_rotated = polygon_mask_marginals_rotated[0]
|
||||
|
||||
polygons_of_marginals=return_contours_of_interested_region(text_regions,pixel_img,min_area_text)
|
||||
polygons_of_marginals=return_contours_of_interested_region(text_regions,pixel_img,min_area_text)
|
||||
|
||||
cx_text_only,cy_text_only ,x_min_text_only,x_max_text_only, y_min_text_only ,y_max_text_only,y_cor_x_min_main=find_new_features_of_contours(polygons_of_marginals)
|
||||
cx_text_only,cy_text_only ,x_min_text_only,x_max_text_only, y_min_text_only ,y_max_text_only,y_cor_x_min_main=find_new_features_of_contours(polygons_of_marginals)
|
||||
|
||||
text_regions[(text_regions[:,:]==4)]=1
|
||||
text_regions[(text_regions[:,:]==4)]=1
|
||||
|
||||
marginlas_should_be_main_text=[]
|
||||
marginlas_should_be_main_text=[]
|
||||
|
||||
x_min_marginals_left=[]
|
||||
x_min_marginals_right=[]
|
||||
x_min_marginals_left=[]
|
||||
x_min_marginals_right=[]
|
||||
|
||||
for i in range(len(cx_text_only)):
|
||||
results = cv2.pointPolygonTest(polygon_mask_marginals_rotated, (cx_text_only[i], cy_text_only[i]), False)
|
||||
for i in range(len(cx_text_only)):
|
||||
results = cv2.pointPolygonTest(polygon_mask_marginals_rotated, (cx_text_only[i], cy_text_only[i]), False)
|
||||
|
||||
if results == -1:
|
||||
marginlas_should_be_main_text.append(polygons_of_marginals[i])
|
||||
if results == -1:
|
||||
marginlas_should_be_main_text.append(polygons_of_marginals[i])
|
||||
|
||||
|
||||
|
||||
text_regions_org=cv2.fillPoly(text_regions_org, pts =marginlas_should_be_main_text, color=(4,4))
|
||||
text_regions = np.copy(text_regions_org)
|
||||
text_regions_org=cv2.fillPoly(text_regions_org, pts =marginlas_should_be_main_text, color=(4,4))
|
||||
text_regions = np.copy(text_regions_org)
|
||||
|
||||
|
||||
else:
|
||||
|
||||
text_regions[(mask_marginals_rotated[:,:]!=1) & (text_regions[:,:]==1)]=4
|
||||
|
||||
pixel_img=4
|
||||
min_area_text=0.00001
|
||||
|
||||
polygons_of_marginals=return_contours_of_interested_region(text_regions,pixel_img,min_area_text)
|
||||
|
||||
cx_text_only,cy_text_only ,x_min_text_only,x_max_text_only, y_min_text_only ,y_max_text_only,y_cor_x_min_main=find_new_features_of_contours(polygons_of_marginals)
|
||||
|
||||
text_regions[(text_regions[:,:]==4)]=1
|
||||
|
||||
marginlas_should_be_main_text=[]
|
||||
|
||||
x_min_marginals_left=[]
|
||||
x_min_marginals_right=[]
|
||||
|
||||
for i in range(len(cx_text_only)):
|
||||
x_width_mar=abs(x_min_text_only[i]-x_max_text_only[i])
|
||||
y_height_mar=abs(y_min_text_only[i]-y_max_text_only[i])
|
||||
|
||||
if x_width_mar>16 and y_height_mar/x_width_mar<18:
|
||||
marginlas_should_be_main_text.append(polygons_of_marginals[i])
|
||||
if x_min_text_only[i]<(mid_point-one_third_left):
|
||||
x_min_marginals_left_new=x_min_text_only[i]
|
||||
if len(x_min_marginals_left)==0:
|
||||
x_min_marginals_left.append(x_min_marginals_left_new)
|
||||
else:
|
||||
x_min_marginals_left[0]=min(x_min_marginals_left[0],x_min_marginals_left_new)
|
||||
else:
|
||||
x_min_marginals_right_new=x_min_text_only[i]
|
||||
if len(x_min_marginals_right)==0:
|
||||
x_min_marginals_right.append(x_min_marginals_right_new)
|
||||
else:
|
||||
x_min_marginals_right[0]=min(x_min_marginals_right[0],x_min_marginals_right_new)
|
||||
|
||||
if len(x_min_marginals_left)==0:
|
||||
x_min_marginals_left=[0]
|
||||
if len(x_min_marginals_right)==0:
|
||||
x_min_marginals_right=[text_regions.shape[1]-1]
|
||||
|
||||
|
||||
text_regions=cv2.fillPoly(text_regions, pts =marginlas_should_be_main_text, color=(4,4))
|
||||
|
||||
|
||||
#text_regions[:,:int(x_min_marginals_left[0])][text_regions[:,:int(x_min_marginals_left[0])]==1]=0
|
||||
#text_regions[:,int(x_min_marginals_right[0]):][text_regions[:,int(x_min_marginals_right[0]):]==1]=0
|
||||
|
||||
|
||||
text_regions[:,:int(min_point_of_left_marginal)][text_regions[:,:int(min_point_of_left_marginal)]==1]=0
|
||||
text_regions[:,int(max_point_of_right_marginal):][text_regions[:,int(max_point_of_right_marginal):]==1]=0
|
||||
|
||||
###text_regions[:,0:point_left][text_regions[:,0:point_left]==1]=4
|
||||
|
||||
|
|
|
|||
|
|
@ -5,8 +5,6 @@ import numpy as np
|
|||
import cv2
|
||||
from scipy.signal import find_peaks
|
||||
from scipy.ndimage import gaussian_filter1d
|
||||
from multiprocessing import Process, Queue, cpu_count
|
||||
from multiprocessing import Pool
|
||||
from .rotate import rotate_image
|
||||
from .resize import resize_image
|
||||
from .contour import (
|
||||
|
|
@ -20,9 +18,7 @@ from .contour import (
|
|||
from .shm import share_ndarray, wrap_ndarray_shared
|
||||
from . import (
|
||||
find_num_col_deskew,
|
||||
crop_image_inside_box,
|
||||
box2rect,
|
||||
box2slice,
|
||||
)
|
||||
|
||||
def dedup_separate_lines(img_patch, contour_text_interest, thetha, axis):
|
||||
|
|
@ -1590,65 +1586,6 @@ def get_smallest_skew(img, sigma_des, angles, logger=None, plotter=None, map=map
|
|||
var = 0
|
||||
return angle, var
|
||||
|
||||
@wrap_ndarray_shared(kw='textline_mask_tot_ea')
|
||||
def do_work_of_slopes_new(
|
||||
box_text, contour, contour_par,
|
||||
textline_mask_tot_ea=None, slope_deskew=0.0,
|
||||
logger=None, MAX_SLOPE=999, KERNEL=None, plotter=None
|
||||
):
|
||||
if KERNEL is None:
|
||||
KERNEL = np.ones((5, 5), np.uint8)
|
||||
if logger is None:
|
||||
logger = getLogger(__package__)
|
||||
logger.debug('enter do_work_of_slopes_new')
|
||||
|
||||
x, y, w, h = box_text
|
||||
crop_coor = box2rect(box_text)
|
||||
mask_textline = np.zeros(textline_mask_tot_ea.shape)
|
||||
mask_textline = cv2.fillPoly(mask_textline, pts=[contour], color=(1,1,1))
|
||||
all_text_region_raw = textline_mask_tot_ea * mask_textline
|
||||
all_text_region_raw = all_text_region_raw[y: y + h, x: x + w].astype(np.uint8)
|
||||
img_int_p = all_text_region_raw[:,:]
|
||||
img_int_p = cv2.erode(img_int_p, KERNEL, iterations=2)
|
||||
|
||||
if not np.prod(img_int_p.shape) or img_int_p.shape[0] /img_int_p.shape[1] < 0.1:
|
||||
slope = 0
|
||||
slope_for_all = slope_deskew
|
||||
all_text_region_raw = textline_mask_tot_ea[y: y + h, x: x + w]
|
||||
cnt_clean_rot = textline_contours_postprocessing(all_text_region_raw, slope_for_all, contour_par, box_text, 0)
|
||||
else:
|
||||
try:
|
||||
textline_con, hierarchy = return_contours_of_image(img_int_p)
|
||||
textline_con_fil = filter_contours_area_of_image(img_int_p, textline_con,
|
||||
hierarchy,
|
||||
max_area=1, min_area=0.00008)
|
||||
y_diff_mean = find_contours_mean_y_diff(textline_con_fil) if len(textline_con_fil) > 1 else np.NaN
|
||||
if np.isnan(y_diff_mean):
|
||||
slope_for_all = MAX_SLOPE
|
||||
else:
|
||||
sigma_des = max(1, int(y_diff_mean * (4.0 / 40.0)))
|
||||
img_int_p[img_int_p > 0] = 1
|
||||
slope_for_all = return_deskew_slop(img_int_p, sigma_des, logger=logger, plotter=plotter)
|
||||
if abs(slope_for_all) <= 0.5:
|
||||
slope_for_all = slope_deskew
|
||||
except:
|
||||
logger.exception("cannot determine angle of contours")
|
||||
slope_for_all = MAX_SLOPE
|
||||
|
||||
if slope_for_all == MAX_SLOPE:
|
||||
slope_for_all = slope_deskew
|
||||
slope = slope_for_all
|
||||
mask_only_con_region = np.zeros(textline_mask_tot_ea.shape)
|
||||
mask_only_con_region = cv2.fillPoly(mask_only_con_region, pts=[contour_par], color=(1, 1, 1))
|
||||
|
||||
all_text_region_raw = textline_mask_tot_ea[y: y + h, x: x + w].copy()
|
||||
mask_only_con_region = mask_only_con_region[y: y + h, x: x + w]
|
||||
|
||||
all_text_region_raw[mask_only_con_region == 0] = 0
|
||||
cnt_clean_rot = textline_contours_postprocessing(all_text_region_raw, slope_for_all, contour_par, box_text)
|
||||
|
||||
return cnt_clean_rot, crop_coor, slope
|
||||
|
||||
@wrap_ndarray_shared(kw='textline_mask_tot_ea')
|
||||
@wrap_ndarray_shared(kw='mask_texts_only')
|
||||
def do_work_of_slopes_new_curved(
|
||||
|
|
@ -1748,7 +1685,7 @@ def do_work_of_slopes_new_curved(
|
|||
@wrap_ndarray_shared(kw='textline_mask_tot_ea')
|
||||
def do_work_of_slopes_new_light(
|
||||
box_text, contour, contour_par,
|
||||
textline_mask_tot_ea=None, slope_deskew=0, textline_light=True,
|
||||
textline_mask_tot_ea=None, slope_deskew=0,
|
||||
logger=None
|
||||
):
|
||||
if logger is None:
|
||||
|
|
@ -1765,16 +1702,10 @@ def do_work_of_slopes_new_light(
|
|||
mask_only_con_region = np.zeros(textline_mask_tot_ea.shape)
|
||||
mask_only_con_region = cv2.fillPoly(mask_only_con_region, pts=[contour_par], color=(1, 1, 1))
|
||||
|
||||
if textline_light:
|
||||
all_text_region_raw = np.copy(textline_mask_tot_ea)
|
||||
all_text_region_raw[mask_only_con_region == 0] = 0
|
||||
cnt_clean_rot_raw, hir_on_cnt_clean_rot = return_contours_of_image(all_text_region_raw)
|
||||
cnt_clean_rot = filter_contours_area_of_image(all_text_region_raw, cnt_clean_rot_raw, hir_on_cnt_clean_rot,
|
||||
max_area=1, min_area=0.00001)
|
||||
else:
|
||||
all_text_region_raw = np.copy(textline_mask_tot_ea[y: y + h, x: x + w])
|
||||
mask_only_con_region = mask_only_con_region[y: y + h, x: x + w]
|
||||
all_text_region_raw[mask_only_con_region == 0] = 0
|
||||
cnt_clean_rot = textline_contours_postprocessing(all_text_region_raw, slope_deskew, contour_par, box_text)
|
||||
all_text_region_raw = np.copy(textline_mask_tot_ea)
|
||||
all_text_region_raw[mask_only_con_region == 0] = 0
|
||||
cnt_clean_rot_raw, hir_on_cnt_clean_rot = return_contours_of_image(all_text_region_raw)
|
||||
cnt_clean_rot = filter_contours_area_of_image(all_text_region_raw, cnt_clean_rot_raw, hir_on_cnt_clean_rot,
|
||||
max_area=1, min_area=0.00001)
|
||||
|
||||
return cnt_clean_rot, crop_coor, slope_deskew
|
||||
|
|
|
|||
|
|
@ -128,6 +128,7 @@ def return_textlines_split_if_needed(textline_image, textline_image_bin=None):
|
|||
return [image1, image2], None
|
||||
else:
|
||||
return None, None
|
||||
|
||||
def preprocess_and_resize_image_for_ocrcnn_model(img, image_height, image_width):
|
||||
if img.shape[0]==0 or img.shape[1]==0:
|
||||
img_fin = np.ones((image_height, image_width, 3))
|
||||
|
|
@ -379,7 +380,6 @@ def return_rnn_cnn_ocr_of_given_textlines(image,
|
|||
all_box_coord,
|
||||
prediction_model,
|
||||
b_s_ocr, num_to_char,
|
||||
textline_light=False,
|
||||
curved_line=False):
|
||||
max_len = 512
|
||||
padding_token = 299
|
||||
|
|
@ -404,7 +404,7 @@ def return_rnn_cnn_ocr_of_given_textlines(image,
|
|||
else:
|
||||
for indexing2, ind_poly in enumerate(ind_poly_first):
|
||||
cropped_lines_region_indexer.append(indexer_text_region)
|
||||
if not (textline_light or curved_line):
|
||||
if not curved_line:
|
||||
ind_poly = copy.deepcopy(ind_poly)
|
||||
box_ind = all_box_coord[indexing]
|
||||
|
||||
|
|
|
|||
|
|
@ -88,3 +88,7 @@ def order_and_id_of_texts(found_polygons_text_region, found_polygons_text_region
|
|||
order_of_texts.append(interest)
|
||||
|
||||
return order_of_texts, id_of_texts
|
||||
|
||||
def etree_namespace_for_element_tag(tag: str):
|
||||
right = tag.find('}')
|
||||
return tag[1:right]
|
||||
|
|
|
|||
|
|
@ -4,7 +4,6 @@ from pathlib import Path
|
|||
import os.path
|
||||
from typing import Optional
|
||||
import logging
|
||||
import xml.etree.ElementTree as ET
|
||||
from .utils.xml import create_page_xml, xml_reading_order
|
||||
from .utils.counter import EynollahIdCounter
|
||||
|
||||
|
|
@ -19,18 +18,16 @@ from ocrd_models.ocrd_page import (
|
|||
SeparatorRegionType,
|
||||
to_xml
|
||||
)
|
||||
import numpy as np
|
||||
|
||||
class EynollahXmlWriter:
|
||||
|
||||
def __init__(self, *, dir_out, image_filename, curved_line,textline_light, pcgts=None):
|
||||
def __init__(self, *, dir_out, image_filename, curved_line, pcgts=None):
|
||||
self.logger = logging.getLogger('eynollah.writer')
|
||||
self.counter = EynollahIdCounter()
|
||||
self.dir_out = dir_out
|
||||
self.image_filename = image_filename
|
||||
self.output_filename = os.path.join(self.dir_out or "", self.image_filename_stem) + ".xml"
|
||||
self.curved_line = curved_line
|
||||
self.textline_light = textline_light
|
||||
self.pcgts = pcgts
|
||||
self.scale_x: Optional[float] = None # XXX set outside __init__
|
||||
self.scale_y: Optional[float] = None # XXX set outside __init__
|
||||
|
|
@ -73,13 +70,9 @@ class EynollahXmlWriter:
|
|||
point = point[0]
|
||||
point_x = point[0] + page_coord[2]
|
||||
point_y = point[1] + page_coord[0]
|
||||
# FIXME: or actually... not self.textline_light and not self.curved_line or np.abs(slopes[region_idx]) > 45?
|
||||
if not self.textline_light and not (self.curved_line and np.abs(slopes[region_idx]) <= 45):
|
||||
point_x += region_bboxes[2]
|
||||
point_y += region_bboxes[0]
|
||||
point_x = max(0, int(point_x / self.scale_x))
|
||||
point_y = max(0, int(point_y / self.scale_y))
|
||||
points_co += str(point_x) + ',' + str(point_y) + ' '
|
||||
points_co += f'{point_x},{point_y} '
|
||||
coords.set_points(points_co[:-1])
|
||||
|
||||
def write_pagexml(self, pcgts):
|
||||
|
|
@ -88,48 +81,88 @@ class EynollahXmlWriter:
|
|||
f.write(to_xml(pcgts))
|
||||
|
||||
def build_pagexml_no_full_layout(
|
||||
self, found_polygons_text_region,
|
||||
page_coord, order_of_texts, id_of_texts,
|
||||
all_found_textline_polygons,
|
||||
all_box_coord,
|
||||
found_polygons_text_region_img,
|
||||
found_polygons_marginals_left, found_polygons_marginals_right,
|
||||
all_found_textline_polygons_marginals_left, all_found_textline_polygons_marginals_right,
|
||||
all_box_coord_marginals_left, all_box_coord_marginals_right,
|
||||
slopes, slopes_marginals_left, slopes_marginals_right,
|
||||
cont_page, polygons_seplines,
|
||||
found_polygons_tables,
|
||||
**kwargs):
|
||||
self,
|
||||
*,
|
||||
found_polygons_text_region,
|
||||
page_coord,
|
||||
order_of_texts,
|
||||
all_found_textline_polygons,
|
||||
all_box_coord,
|
||||
found_polygons_text_region_img,
|
||||
found_polygons_marginals_left,
|
||||
found_polygons_marginals_right,
|
||||
all_found_textline_polygons_marginals_left,
|
||||
all_found_textline_polygons_marginals_right,
|
||||
all_box_coord_marginals_left,
|
||||
all_box_coord_marginals_right,
|
||||
slopes,
|
||||
slopes_marginals_left,
|
||||
slopes_marginals_right,
|
||||
cont_page,
|
||||
polygons_seplines,
|
||||
found_polygons_tables,
|
||||
):
|
||||
return self.build_pagexml_full_layout(
|
||||
found_polygons_text_region, [],
|
||||
page_coord, order_of_texts, id_of_texts,
|
||||
all_found_textline_polygons, [],
|
||||
all_box_coord, [],
|
||||
found_polygons_text_region_img, found_polygons_tables, [],
|
||||
found_polygons_marginals_left, found_polygons_marginals_right,
|
||||
all_found_textline_polygons_marginals_left, all_found_textline_polygons_marginals_right,
|
||||
all_box_coord_marginals_left, all_box_coord_marginals_right,
|
||||
slopes, [], slopes_marginals_left, slopes_marginals_right,
|
||||
cont_page, polygons_seplines,
|
||||
**kwargs)
|
||||
found_polygons_text_region=found_polygons_text_region,
|
||||
found_polygons_text_region_h=[],
|
||||
page_coord=page_coord,
|
||||
order_of_texts=order_of_texts,
|
||||
all_found_textline_polygons=all_found_textline_polygons,
|
||||
all_found_textline_polygons_h=[],
|
||||
all_box_coord=all_box_coord,
|
||||
all_box_coord_h=[],
|
||||
found_polygons_text_region_img=found_polygons_text_region_img,
|
||||
found_polygons_tables=found_polygons_tables,
|
||||
found_polygons_drop_capitals=[],
|
||||
found_polygons_marginals_left=found_polygons_marginals_left,
|
||||
found_polygons_marginals_right=found_polygons_marginals_right,
|
||||
all_found_textline_polygons_marginals_left=all_found_textline_polygons_marginals_left,
|
||||
all_found_textline_polygons_marginals_right=all_found_textline_polygons_marginals_right,
|
||||
all_box_coord_marginals_left=all_box_coord_marginals_left,
|
||||
all_box_coord_marginals_right=all_box_coord_marginals_right,
|
||||
slopes=slopes,
|
||||
slopes_h=[],
|
||||
slopes_marginals_left=slopes_marginals_left,
|
||||
slopes_marginals_right=slopes_marginals_right,
|
||||
cont_page=cont_page,
|
||||
polygons_seplines=polygons_seplines,
|
||||
)
|
||||
|
||||
def build_pagexml_full_layout(
|
||||
self,
|
||||
found_polygons_text_region, found_polygons_text_region_h,
|
||||
page_coord, order_of_texts, id_of_texts,
|
||||
all_found_textline_polygons, all_found_textline_polygons_h,
|
||||
all_box_coord, all_box_coord_h,
|
||||
found_polygons_text_region_img, found_polygons_tables, found_polygons_drop_capitals,
|
||||
found_polygons_marginals_left,found_polygons_marginals_right,
|
||||
all_found_textline_polygons_marginals_left, all_found_textline_polygons_marginals_right,
|
||||
all_box_coord_marginals_left, all_box_coord_marginals_right,
|
||||
slopes, slopes_h, slopes_marginals_left, slopes_marginals_right,
|
||||
cont_page, polygons_seplines,
|
||||
ocr_all_textlines=None, ocr_all_textlines_h=None,
|
||||
ocr_all_textlines_marginals_left=None, ocr_all_textlines_marginals_right=None,
|
||||
ocr_all_textlines_drop=None,
|
||||
conf_contours_textregions=None, conf_contours_textregions_h=None,
|
||||
skip_layout_reading_order=False):
|
||||
self,
|
||||
*,
|
||||
found_polygons_text_region,
|
||||
found_polygons_text_region_h,
|
||||
page_coord,
|
||||
order_of_texts,
|
||||
all_found_textline_polygons,
|
||||
all_found_textline_polygons_h,
|
||||
all_box_coord,
|
||||
all_box_coord_h,
|
||||
found_polygons_text_region_img,
|
||||
found_polygons_tables,
|
||||
found_polygons_drop_capitals,
|
||||
found_polygons_marginals_left,
|
||||
found_polygons_marginals_right,
|
||||
all_found_textline_polygons_marginals_left,
|
||||
all_found_textline_polygons_marginals_right,
|
||||
all_box_coord_marginals_left,
|
||||
all_box_coord_marginals_right,
|
||||
slopes,
|
||||
slopes_h,
|
||||
slopes_marginals_left,
|
||||
slopes_marginals_right,
|
||||
cont_page,
|
||||
polygons_seplines,
|
||||
ocr_all_textlines=None,
|
||||
ocr_all_textlines_h=None,
|
||||
ocr_all_textlines_marginals_left=None,
|
||||
ocr_all_textlines_marginals_right=None,
|
||||
ocr_all_textlines_drop=None,
|
||||
conf_contours_textregions=None,
|
||||
conf_contours_textregions_h=None,
|
||||
skip_layout_reading_order=False,
|
||||
):
|
||||
self.logger.debug('enter build_pagexml')
|
||||
|
||||
# create the file structure
|
||||
|
|
|
|||
|
|
@ -9,16 +9,8 @@ from ocrd_models.constants import NAMESPACES as NS
|
|||
#["--allow_scaling", "--curved-line"],
|
||||
["--allow_scaling", "--curved-line", "--full-layout"],
|
||||
["--allow_scaling", "--curved-line", "--full-layout", "--reading_order_machine_based"],
|
||||
["--allow_scaling", "--curved-line", "--full-layout", "--reading_order_machine_based",
|
||||
"--textline_light", "--light_version"],
|
||||
# -ep ...
|
||||
# -eoi ...
|
||||
# FIXME: find out whether OCR extra was installed, otherwise skip these
|
||||
["--do_ocr"],
|
||||
["--do_ocr", "--light_version", "--textline_light"],
|
||||
["--do_ocr", "--transformer_ocr"],
|
||||
#["--do_ocr", "--transformer_ocr", "--light_version", "--textline_light"],
|
||||
["--do_ocr", "--transformer_ocr", "--light_version", "--textline_light", "--full-layout"],
|
||||
# --skip_layout_and_reading_order
|
||||
], ids=str)
|
||||
def test_run_eynollah_layout_filename(
|
||||
|
|
@ -53,7 +45,6 @@ def test_run_eynollah_layout_filename(
|
|||
[
|
||||
["--tables"],
|
||||
["--tables", "--full-layout"],
|
||||
["--tables", "--full-layout", "--textline_light", "--light_version"],
|
||||
], ids=str)
|
||||
def test_run_eynollah_layout_filename2(
|
||||
tmp_path,
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue