mirror of
				https://github.com/qurator-spk/eynollah.git
				synced 2025-10-31 01:34:17 +01:00 
			
		
		
		
	🎨 remove extraneous empty lines, simplify elif to else where possible
This commit is contained in:
		
							parent
							
								
									dfb294eb25
								
							
						
					
					
						commit
						ae1d335010
					
				
					 1 changed files with 28 additions and 235 deletions
				
			
		|  | @ -207,18 +207,17 @@ class eynollah: | ||||||
| 
 | 
 | ||||||
|             for i in range(nxf): |             for i in range(nxf): | ||||||
|                 for j in range(nyf): |                 for j in range(nyf): | ||||||
| 
 |  | ||||||
|                     if i == 0: |                     if i == 0: | ||||||
|                         index_x_d = i * width_mid |                         index_x_d = i * width_mid | ||||||
|                         index_x_u = index_x_d + img_width_model |                         index_x_u = index_x_d + img_width_model | ||||||
|                     elif i > 0: |                     else: | ||||||
|                         index_x_d = i * width_mid |                         index_x_d = i * width_mid | ||||||
|                         index_x_u = index_x_d + img_width_model |                         index_x_u = index_x_d + img_width_model | ||||||
| 
 | 
 | ||||||
|                     if j == 0: |                     if j == 0: | ||||||
|                         index_y_d = j * height_mid |                         index_y_d = j * height_mid | ||||||
|                         index_y_u = index_y_d + img_height_model |                         index_y_u = index_y_d + img_height_model | ||||||
|                     elif j > 0: |                     else: | ||||||
|                         index_y_d = j * height_mid |                         index_y_d = j * height_mid | ||||||
|                         index_y_u = index_y_d + img_height_model |                         index_y_u = index_y_d + img_height_model | ||||||
| 
 | 
 | ||||||
|  | @ -230,7 +229,6 @@ class eynollah: | ||||||
|                         index_y_d = img_h - img_height_model |                         index_y_d = img_h - img_height_model | ||||||
| 
 | 
 | ||||||
|                     img_patch = img[index_y_d:index_y_u, index_x_d:index_x_u, :] |                     img_patch = img[index_y_d:index_y_u, index_x_d:index_x_u, :] | ||||||
| 
 |  | ||||||
|                     label_p_pred = model_enhancement.predict(img_patch.reshape(1, img_patch.shape[0], img_patch.shape[1], img_patch.shape[2])) |                     label_p_pred = model_enhancement.predict(img_patch.reshape(1, img_patch.shape[0], img_patch.shape[1], img_patch.shape[2])) | ||||||
| 
 | 
 | ||||||
|                     seg = label_p_pred[0, :, :, :] |                     seg = label_p_pred[0, :, :, :] | ||||||
|  | @ -239,43 +237,29 @@ class eynollah: | ||||||
|                     if i == 0 and j == 0: |                     if i == 0 and j == 0: | ||||||
|                         seg = seg[0 : seg.shape[0] - margin, 0 : seg.shape[1] - margin] |                         seg = seg[0 : seg.shape[0] - margin, 0 : seg.shape[1] - margin] | ||||||
|                         prediction_true[index_y_d + 0 : index_y_u - margin, index_x_d + 0 : index_x_u - margin, :] = seg |                         prediction_true[index_y_d + 0 : index_y_u - margin, index_x_d + 0 : index_x_u - margin, :] = seg | ||||||
| 
 |  | ||||||
|                     elif i == nxf - 1 and j == nyf - 1: |                     elif i == nxf - 1 and j == nyf - 1: | ||||||
|                         seg = seg[margin : seg.shape[0] - 0, margin : seg.shape[1] - 0] |                         seg = seg[margin : seg.shape[0] - 0, margin : seg.shape[1] - 0] | ||||||
|                         prediction_true[index_y_d + margin : index_y_u - 0, index_x_d + margin : index_x_u - 0, :] = seg |                         prediction_true[index_y_d + margin : index_y_u - 0, index_x_d + margin : index_x_u - 0, :] = seg | ||||||
| 
 |  | ||||||
|                     elif i == 0 and j == nyf - 1: |                     elif i == 0 and j == nyf - 1: | ||||||
|                         seg = seg[margin : seg.shape[0] - 0, 0 : seg.shape[1] - margin] |                         seg = seg[margin : seg.shape[0] - 0, 0 : seg.shape[1] - margin] | ||||||
| 
 |  | ||||||
|                         prediction_true[index_y_d + margin : index_y_u - 0, index_x_d + 0 : index_x_u - margin, :] = seg |                         prediction_true[index_y_d + margin : index_y_u - 0, index_x_d + 0 : index_x_u - margin, :] = seg | ||||||
| 
 |  | ||||||
|                     elif i == nxf - 1 and j == 0: |                     elif i == nxf - 1 and j == 0: | ||||||
|                         seg = seg[0 : seg.shape[0] - margin, margin : seg.shape[1] - 0] |                         seg = seg[0 : seg.shape[0] - margin, margin : seg.shape[1] - 0] | ||||||
| 
 |  | ||||||
|                         prediction_true[index_y_d + 0 : index_y_u - margin, index_x_d + margin : index_x_u - 0, :] = seg |                         prediction_true[index_y_d + 0 : index_y_u - margin, index_x_d + margin : index_x_u - 0, :] = seg | ||||||
| 
 |  | ||||||
|                     elif i == 0 and j != 0 and j != nyf - 1: |                     elif i == 0 and j != 0 and j != nyf - 1: | ||||||
|                         seg = seg[margin : seg.shape[0] - margin, 0 : seg.shape[1] - margin] |                         seg = seg[margin : seg.shape[0] - margin, 0 : seg.shape[1] - margin] | ||||||
| 
 |  | ||||||
|                         prediction_true[index_y_d + margin : index_y_u - margin, index_x_d + 0 : index_x_u - margin, :] = seg |                         prediction_true[index_y_d + margin : index_y_u - margin, index_x_d + 0 : index_x_u - margin, :] = seg | ||||||
| 
 |  | ||||||
|                     elif i == nxf - 1 and j != 0 and j != nyf - 1: |                     elif i == nxf - 1 and j != 0 and j != nyf - 1: | ||||||
|                         seg = seg[margin : seg.shape[0] - margin, margin : seg.shape[1] - 0] |                         seg = seg[margin : seg.shape[0] - margin, margin : seg.shape[1] - 0] | ||||||
| 
 |  | ||||||
|                         prediction_true[index_y_d + margin : index_y_u - margin, index_x_d + margin : index_x_u - 0, :] = seg |                         prediction_true[index_y_d + margin : index_y_u - margin, index_x_d + margin : index_x_u - 0, :] = seg | ||||||
| 
 |  | ||||||
|                     elif i != 0 and i != nxf - 1 and j == 0: |                     elif i != 0 and i != nxf - 1 and j == 0: | ||||||
|                         seg = seg[0 : seg.shape[0] - margin, margin : seg.shape[1] - margin] |                         seg = seg[0 : seg.shape[0] - margin, margin : seg.shape[1] - margin] | ||||||
|                         prediction_true[index_y_d + 0 : index_y_u - margin, index_x_d + margin : index_x_u - margin, :] = seg |                         prediction_true[index_y_d + 0 : index_y_u - margin, index_x_d + margin : index_x_u - margin, :] = seg | ||||||
| 
 |  | ||||||
|                     elif i != 0 and i != nxf - 1 and j == nyf - 1: |                     elif i != 0 and i != nxf - 1 and j == nyf - 1: | ||||||
|                         seg = seg[margin : seg.shape[0] - 0, margin : seg.shape[1] - margin] |                         seg = seg[margin : seg.shape[0] - 0, margin : seg.shape[1] - margin] | ||||||
| 
 |  | ||||||
|                         prediction_true[index_y_d + margin : index_y_u - 0, index_x_d + margin : index_x_u - margin, :] = seg |                         prediction_true[index_y_d + margin : index_y_u - 0, index_x_d + margin : index_x_u - margin, :] = seg | ||||||
| 
 |  | ||||||
|                     else: |                     else: | ||||||
|                         seg = seg[margin : seg.shape[0] - margin, margin : seg.shape[1] - margin] |                         seg = seg[margin : seg.shape[0] - margin, margin : seg.shape[1] - margin] | ||||||
| 
 |  | ||||||
|                         prediction_true[index_y_d + margin : index_y_u - margin, index_x_d + margin : index_x_u - margin, :] = seg |                         prediction_true[index_y_d + margin : index_y_u - margin, index_x_d + margin : index_x_u - margin, :] = seg | ||||||
| 
 | 
 | ||||||
|             prediction_true = prediction_true.astype(int) |             prediction_true = prediction_true.astype(int) | ||||||
|  | @ -297,9 +281,7 @@ class eynollah: | ||||||
|         model_num_classifier, session_col_classifier = self.start_new_session_and_model(self.model_dir_of_col_classifier) |         model_num_classifier, session_col_classifier = self.start_new_session_and_model(self.model_dir_of_col_classifier) | ||||||
| 
 | 
 | ||||||
|         img_1ch = cv2.imread(self.image_filename, 0) |         img_1ch = cv2.imread(self.image_filename, 0) | ||||||
| 
 |  | ||||||
|         width_early = img_1ch.shape[1] |         width_early = img_1ch.shape[1] | ||||||
| 
 |  | ||||||
|         img_1ch = img_1ch[page_coord[0] : page_coord[1], page_coord[2] : page_coord[3]] |         img_1ch = img_1ch[page_coord[0] : page_coord[1], page_coord[2] : page_coord[3]] | ||||||
| 
 | 
 | ||||||
|         # plt.imshow(img_1ch) |         # plt.imshow(img_1ch) | ||||||
|  | @ -329,66 +311,51 @@ class eynollah: | ||||||
|         if num_col == 1 and width_early < 1100: |         if num_col == 1 and width_early < 1100: | ||||||
|             img_w_new = 2000 |             img_w_new = 2000 | ||||||
|             img_h_new = int(img.shape[0] / float(img.shape[1]) * 2000) |             img_h_new = int(img.shape[0] / float(img.shape[1]) * 2000) | ||||||
| 
 |  | ||||||
|         elif num_col == 1 and width_early >= 2500: |         elif num_col == 1 and width_early >= 2500: | ||||||
|             img_w_new = 2000 |             img_w_new = 2000 | ||||||
|             img_h_new = int(img.shape[0] / float(img.shape[1]) * 2000) |             img_h_new = int(img.shape[0] / float(img.shape[1]) * 2000) | ||||||
|         elif num_col == 1 and width_early >= 1100 and width_early < 2500: |         elif num_col == 1 and width_early >= 1100 and width_early < 2500: | ||||||
|             img_w_new = width_early |             img_w_new = width_early | ||||||
|             img_h_new = int(img.shape[0] / float(img.shape[1]) * width_early) |             img_h_new = int(img.shape[0] / float(img.shape[1]) * width_early) | ||||||
| 
 |  | ||||||
|         elif num_col == 2 and width_early < 2000: |         elif num_col == 2 and width_early < 2000: | ||||||
|             img_w_new = 2400 |             img_w_new = 2400 | ||||||
|             img_h_new = int(img.shape[0] / float(img.shape[1]) * 2400) |             img_h_new = int(img.shape[0] / float(img.shape[1]) * 2400) | ||||||
| 
 |  | ||||||
|         elif num_col == 2 and width_early >= 3500: |         elif num_col == 2 and width_early >= 3500: | ||||||
|             img_w_new = 2400 |             img_w_new = 2400 | ||||||
|             img_h_new = int(img.shape[0] / float(img.shape[1]) * 2400) |             img_h_new = int(img.shape[0] / float(img.shape[1]) * 2400) | ||||||
| 
 |  | ||||||
|         elif num_col == 2 and width_early >= 2000 and width_early < 3500: |         elif num_col == 2 and width_early >= 2000 and width_early < 3500: | ||||||
|             img_w_new = width_early |             img_w_new = width_early | ||||||
|             img_h_new = int(img.shape[0] / float(img.shape[1]) * width_early) |             img_h_new = int(img.shape[0] / float(img.shape[1]) * width_early) | ||||||
| 
 |  | ||||||
|         elif num_col == 3 and width_early < 2000: |         elif num_col == 3 and width_early < 2000: | ||||||
|             img_w_new = 3000 |             img_w_new = 3000 | ||||||
|             img_h_new = int(img.shape[0] / float(img.shape[1]) * 3000) |             img_h_new = int(img.shape[0] / float(img.shape[1]) * 3000) | ||||||
| 
 |  | ||||||
|         elif num_col == 3 and width_early >= 4000: |         elif num_col == 3 and width_early >= 4000: | ||||||
|             img_w_new = 3000 |             img_w_new = 3000 | ||||||
|             img_h_new = int(img.shape[0] / float(img.shape[1]) * 3000) |             img_h_new = int(img.shape[0] / float(img.shape[1]) * 3000) | ||||||
| 
 |  | ||||||
|         elif num_col == 3 and width_early >= 2000 and width_early < 4000: |         elif num_col == 3 and width_early >= 2000 and width_early < 4000: | ||||||
|             img_w_new = width_early |             img_w_new = width_early | ||||||
|             img_h_new = int(img.shape[0] / float(img.shape[1]) * width_early) |             img_h_new = int(img.shape[0] / float(img.shape[1]) * width_early) | ||||||
| 
 |  | ||||||
|         elif num_col == 4 and width_early < 2500: |         elif num_col == 4 and width_early < 2500: | ||||||
|             img_w_new = 4000 |             img_w_new = 4000 | ||||||
|             img_h_new = int(img.shape[0] / float(img.shape[1]) * 4000) |             img_h_new = int(img.shape[0] / float(img.shape[1]) * 4000) | ||||||
| 
 |  | ||||||
|         elif num_col == 4 and width_early >= 5000: |         elif num_col == 4 and width_early >= 5000: | ||||||
|             img_w_new = 4000 |             img_w_new = 4000 | ||||||
|             img_h_new = int(img.shape[0] / float(img.shape[1]) * 4000) |             img_h_new = int(img.shape[0] / float(img.shape[1]) * 4000) | ||||||
| 
 |  | ||||||
|         elif num_col == 4 and width_early >= 2500 and width_early < 5000: |         elif num_col == 4 and width_early >= 2500 and width_early < 5000: | ||||||
|             img_w_new = width_early |             img_w_new = width_early | ||||||
|             img_h_new = int(img.shape[0] / float(img.shape[1]) * width_early) |             img_h_new = int(img.shape[0] / float(img.shape[1]) * width_early) | ||||||
| 
 |  | ||||||
|         elif num_col == 5 and width_early < 3700: |         elif num_col == 5 and width_early < 3700: | ||||||
|             img_w_new = 5000 |             img_w_new = 5000 | ||||||
|             img_h_new = int(img.shape[0] / float(img.shape[1]) * 5000) |             img_h_new = int(img.shape[0] / float(img.shape[1]) * 5000) | ||||||
| 
 |  | ||||||
|         elif num_col == 5 and width_early >= 7000: |         elif num_col == 5 and width_early >= 7000: | ||||||
|             img_w_new = 5000 |             img_w_new = 5000 | ||||||
|             img_h_new = int(img.shape[0] / float(img.shape[1]) * 5000) |             img_h_new = int(img.shape[0] / float(img.shape[1]) * 5000) | ||||||
| 
 |  | ||||||
|         elif num_col == 5 and width_early >= 3700 and width_early < 7000: |         elif num_col == 5 and width_early >= 3700 and width_early < 7000: | ||||||
|             img_w_new = width_early |             img_w_new = width_early | ||||||
|             img_h_new = int(img.shape[0] / float(img.shape[1]) * width_early) |             img_h_new = int(img.shape[0] / float(img.shape[1]) * width_early) | ||||||
| 
 |  | ||||||
|         elif num_col == 6 and width_early < 4500: |         elif num_col == 6 and width_early < 4500: | ||||||
|             img_w_new = 6500  # 5400 |             img_w_new = 6500  # 5400 | ||||||
|             img_h_new = int(img.shape[0] / float(img.shape[1]) * 6500) |             img_h_new = int(img.shape[0] / float(img.shape[1]) * 6500) | ||||||
| 
 |  | ||||||
|         else: |         else: | ||||||
|             img_w_new = width_early |             img_w_new = width_early | ||||||
|             img_h_new = int(img.shape[0] / float(img.shape[1]) * width_early) |             img_h_new = int(img.shape[0] / float(img.shape[1]) * width_early) | ||||||
|  | @ -459,66 +426,51 @@ class eynollah: | ||||||
|             if num_col == 1 and width_early < 1100: |             if num_col == 1 and width_early < 1100: | ||||||
|                 img_w_new = 2000 |                 img_w_new = 2000 | ||||||
|                 img_h_new = int(img.shape[0] / float(img.shape[1]) * 2000) |                 img_h_new = int(img.shape[0] / float(img.shape[1]) * 2000) | ||||||
| 
 |  | ||||||
|             elif num_col == 1 and width_early >= 2500: |             elif num_col == 1 and width_early >= 2500: | ||||||
|                 img_w_new = 2000 |                 img_w_new = 2000 | ||||||
|                 img_h_new = int(img.shape[0] / float(img.shape[1]) * 2000) |                 img_h_new = int(img.shape[0] / float(img.shape[1]) * 2000) | ||||||
|             elif num_col == 1 and width_early >= 1100 and width_early < 2500: |             elif num_col == 1 and width_early >= 1100 and width_early < 2500: | ||||||
|                 img_w_new = width_early |                 img_w_new = width_early | ||||||
|                 img_h_new = int(img.shape[0] / float(img.shape[1]) * width_early) |                 img_h_new = int(img.shape[0] / float(img.shape[1]) * width_early) | ||||||
| 
 |  | ||||||
|             elif num_col == 2 and width_early < 2000: |             elif num_col == 2 and width_early < 2000: | ||||||
|                 img_w_new = 2400 |                 img_w_new = 2400 | ||||||
|                 img_h_new = int(img.shape[0] / float(img.shape[1]) * 2400) |                 img_h_new = int(img.shape[0] / float(img.shape[1]) * 2400) | ||||||
| 
 |  | ||||||
|             elif num_col == 2 and width_early >= 3500: |             elif num_col == 2 and width_early >= 3500: | ||||||
|                 img_w_new = 2400 |                 img_w_new = 2400 | ||||||
|                 img_h_new = int(img.shape[0] / float(img.shape[1]) * 2400) |                 img_h_new = int(img.shape[0] / float(img.shape[1]) * 2400) | ||||||
| 
 |  | ||||||
|             elif num_col == 2 and width_early >= 2000 and width_early < 3500: |             elif num_col == 2 and width_early >= 2000 and width_early < 3500: | ||||||
|                 img_w_new = width_early |                 img_w_new = width_early | ||||||
|                 img_h_new = int(img.shape[0] / float(img.shape[1]) * width_early) |                 img_h_new = int(img.shape[0] / float(img.shape[1]) * width_early) | ||||||
| 
 |  | ||||||
|             elif num_col == 3 and width_early < 2000: |             elif num_col == 3 and width_early < 2000: | ||||||
|                 img_w_new = 3000 |                 img_w_new = 3000 | ||||||
|                 img_h_new = int(img.shape[0] / float(img.shape[1]) * 3000) |                 img_h_new = int(img.shape[0] / float(img.shape[1]) * 3000) | ||||||
| 
 |  | ||||||
|             elif num_col == 3 and width_early >= 4000: |             elif num_col == 3 and width_early >= 4000: | ||||||
|                 img_w_new = 3000 |                 img_w_new = 3000 | ||||||
|                 img_h_new = int(img.shape[0] / float(img.shape[1]) * 3000) |                 img_h_new = int(img.shape[0] / float(img.shape[1]) * 3000) | ||||||
| 
 |  | ||||||
|             elif num_col == 3 and width_early >= 2000 and width_early < 4000: |             elif num_col == 3 and width_early >= 2000 and width_early < 4000: | ||||||
|                 img_w_new = width_early |                 img_w_new = width_early | ||||||
|                 img_h_new = int(img.shape[0] / float(img.shape[1]) * width_early) |                 img_h_new = int(img.shape[0] / float(img.shape[1]) * width_early) | ||||||
| 
 |  | ||||||
|             elif num_col == 4 and width_early < 2500: |             elif num_col == 4 and width_early < 2500: | ||||||
|                 img_w_new = 4000 |                 img_w_new = 4000 | ||||||
|                 img_h_new = int(img.shape[0] / float(img.shape[1]) * 4000) |                 img_h_new = int(img.shape[0] / float(img.shape[1]) * 4000) | ||||||
| 
 |  | ||||||
|             elif num_col == 4 and width_early >= 5000: |             elif num_col == 4 and width_early >= 5000: | ||||||
|                 img_w_new = 4000 |                 img_w_new = 4000 | ||||||
|                 img_h_new = int(img.shape[0] / float(img.shape[1]) * 4000) |                 img_h_new = int(img.shape[0] / float(img.shape[1]) * 4000) | ||||||
| 
 |  | ||||||
|             elif num_col == 4 and width_early >= 2500 and width_early < 5000: |             elif num_col == 4 and width_early >= 2500 and width_early < 5000: | ||||||
|                 img_w_new = width_early |                 img_w_new = width_early | ||||||
|                 img_h_new = int(img.shape[0] / float(img.shape[1]) * width_early) |                 img_h_new = int(img.shape[0] / float(img.shape[1]) * width_early) | ||||||
| 
 |  | ||||||
|             elif num_col == 5 and width_early < 3700: |             elif num_col == 5 and width_early < 3700: | ||||||
|                 img_w_new = 5000 |                 img_w_new = 5000 | ||||||
|                 img_h_new = int(img.shape[0] / float(img.shape[1]) * 5000) |                 img_h_new = int(img.shape[0] / float(img.shape[1]) * 5000) | ||||||
| 
 |  | ||||||
|             elif num_col == 5 and width_early >= 7000: |             elif num_col == 5 and width_early >= 7000: | ||||||
|                 img_w_new = 5000 |                 img_w_new = 5000 | ||||||
|                 img_h_new = int(img.shape[0] / float(img.shape[1]) * 5000) |                 img_h_new = int(img.shape[0] / float(img.shape[1]) * 5000) | ||||||
| 
 |  | ||||||
|             elif num_col == 5 and width_early >= 3700 and width_early < 7000: |             elif num_col == 5 and width_early >= 3700 and width_early < 7000: | ||||||
|                 img_w_new = width_early |                 img_w_new = width_early | ||||||
|                 img_h_new = int(img.shape[0] / float(img.shape[1]) * width_early) |                 img_h_new = int(img.shape[0] / float(img.shape[1]) * width_early) | ||||||
| 
 |  | ||||||
|             elif num_col == 6 and width_early < 4500: |             elif num_col == 6 and width_early < 4500: | ||||||
|                 img_w_new = 6500  # 5400 |                 img_w_new = 6500  # 5400 | ||||||
|                 img_h_new = int(img.shape[0] / float(img.shape[1]) * 6500) |                 img_h_new = int(img.shape[0] / float(img.shape[1]) * 6500) | ||||||
| 
 |  | ||||||
|             else: |             else: | ||||||
|                 img_w_new = width_early |                 img_w_new = width_early | ||||||
|                 img_h_new = int(img.shape[0] / float(img.shape[1]) * width_early) |                 img_h_new = int(img.shape[0] / float(img.shape[1]) * width_early) | ||||||
|  | @ -626,14 +578,14 @@ class eynollah: | ||||||
|                     if i == 0: |                     if i == 0: | ||||||
|                         index_x_d = i * width_mid |                         index_x_d = i * width_mid | ||||||
|                         index_x_u = index_x_d + img_width_model |                         index_x_u = index_x_d + img_width_model | ||||||
|                     elif i > 0: |                     else: | ||||||
|                         index_x_d = i * width_mid |                         index_x_d = i * width_mid | ||||||
|                         index_x_u = index_x_d + img_width_model |                         index_x_u = index_x_d + img_width_model | ||||||
| 
 | 
 | ||||||
|                     if j == 0: |                     if j == 0: | ||||||
|                         index_y_d = j * height_mid |                         index_y_d = j * height_mid | ||||||
|                         index_y_u = index_y_d + img_height_model |                         index_y_u = index_y_d + img_height_model | ||||||
|                     elif j > 0: |                     else: | ||||||
|                         index_y_d = j * height_mid |                         index_y_d = j * height_mid | ||||||
|                         index_y_u = index_y_d + img_height_model |                         index_y_u = index_y_d + img_height_model | ||||||
| 
 | 
 | ||||||
|  | @ -652,63 +604,46 @@ class eynollah: | ||||||
|                     if i == 0 and j == 0: |                     if i == 0 and j == 0: | ||||||
|                         seg_color = seg_color[0 : seg_color.shape[0] - margin, 0 : seg_color.shape[1] - margin, :] |                         seg_color = seg_color[0 : seg_color.shape[0] - margin, 0 : seg_color.shape[1] - margin, :] | ||||||
|                         seg = seg[0 : seg.shape[0] - margin, 0 : seg.shape[1] - margin] |                         seg = seg[0 : seg.shape[0] - margin, 0 : seg.shape[1] - margin] | ||||||
| 
 |  | ||||||
|                         mask_true[index_y_d + 0 : index_y_u - margin, index_x_d + 0 : index_x_u - margin] = seg |                         mask_true[index_y_d + 0 : index_y_u - margin, index_x_d + 0 : index_x_u - margin] = seg | ||||||
|                         prediction_true[index_y_d + 0 : index_y_u - margin, index_x_d + 0 : index_x_u - margin, :] = seg_color |                         prediction_true[index_y_d + 0 : index_y_u - margin, index_x_d + 0 : index_x_u - margin, :] = seg_color | ||||||
| 
 |  | ||||||
|                     elif i == nxf - 1 and j == nyf - 1: |                     elif i == nxf - 1 and j == nyf - 1: | ||||||
|                         seg_color = seg_color[margin : seg_color.shape[0] - 0, margin : seg_color.shape[1] - 0, :] |                         seg_color = seg_color[margin : seg_color.shape[0] - 0, margin : seg_color.shape[1] - 0, :] | ||||||
|                         seg = seg[margin : seg.shape[0] - 0, margin : seg.shape[1] - 0] |                         seg = seg[margin : seg.shape[0] - 0, margin : seg.shape[1] - 0] | ||||||
| 
 |  | ||||||
|                         mask_true[index_y_d + margin : index_y_u - 0, index_x_d + margin : index_x_u - 0] = seg |                         mask_true[index_y_d + margin : index_y_u - 0, index_x_d + margin : index_x_u - 0] = seg | ||||||
|                         prediction_true[index_y_d + margin : index_y_u - 0, index_x_d + margin : index_x_u - 0, :] = seg_color |                         prediction_true[index_y_d + margin : index_y_u - 0, index_x_d + margin : index_x_u - 0, :] = seg_color | ||||||
| 
 |  | ||||||
|                     elif i == 0 and j == nyf - 1: |                     elif i == 0 and j == nyf - 1: | ||||||
|                         seg_color = seg_color[margin : seg_color.shape[0] - 0, 0 : seg_color.shape[1] - margin, :] |                         seg_color = seg_color[margin : seg_color.shape[0] - 0, 0 : seg_color.shape[1] - margin, :] | ||||||
|                         seg = seg[margin : seg.shape[0] - 0, 0 : seg.shape[1] - margin] |                         seg = seg[margin : seg.shape[0] - 0, 0 : seg.shape[1] - margin] | ||||||
| 
 |  | ||||||
|                         mask_true[index_y_d + margin : index_y_u - 0, index_x_d + 0 : index_x_u - margin] = seg |                         mask_true[index_y_d + margin : index_y_u - 0, index_x_d + 0 : index_x_u - margin] = seg | ||||||
|                         prediction_true[index_y_d + margin : index_y_u - 0, index_x_d + 0 : index_x_u - margin, :] = seg_color |                         prediction_true[index_y_d + margin : index_y_u - 0, index_x_d + 0 : index_x_u - margin, :] = seg_color | ||||||
| 
 |  | ||||||
|                     elif i == nxf - 1 and j == 0: |                     elif i == nxf - 1 and j == 0: | ||||||
|                         seg_color = seg_color[0 : seg_color.shape[0] - margin, margin : seg_color.shape[1] - 0, :] |                         seg_color = seg_color[0 : seg_color.shape[0] - margin, margin : seg_color.shape[1] - 0, :] | ||||||
|                         seg = seg[0 : seg.shape[0] - margin, margin : seg.shape[1] - 0] |                         seg = seg[0 : seg.shape[0] - margin, margin : seg.shape[1] - 0] | ||||||
| 
 |  | ||||||
|                         mask_true[index_y_d + 0 : index_y_u - margin, index_x_d + margin : index_x_u - 0] = seg |                         mask_true[index_y_d + 0 : index_y_u - margin, index_x_d + margin : index_x_u - 0] = seg | ||||||
|                         prediction_true[index_y_d + 0 : index_y_u - margin, index_x_d + margin : index_x_u - 0, :] = seg_color |                         prediction_true[index_y_d + 0 : index_y_u - margin, index_x_d + margin : index_x_u - 0, :] = seg_color | ||||||
| 
 |  | ||||||
|                     elif i == 0 and j != 0 and j != nyf - 1: |                     elif i == 0 and j != 0 and j != nyf - 1: | ||||||
|                         seg_color = seg_color[margin : seg_color.shape[0] - margin, 0 : seg_color.shape[1] - margin, :] |                         seg_color = seg_color[margin : seg_color.shape[0] - margin, 0 : seg_color.shape[1] - margin, :] | ||||||
|                         seg = seg[margin : seg.shape[0] - margin, 0 : seg.shape[1] - margin] |                         seg = seg[margin : seg.shape[0] - margin, 0 : seg.shape[1] - margin] | ||||||
| 
 |  | ||||||
|                         mask_true[index_y_d + margin : index_y_u - margin, index_x_d + 0 : index_x_u - margin] = seg |                         mask_true[index_y_d + margin : index_y_u - margin, index_x_d + 0 : index_x_u - margin] = seg | ||||||
|                         prediction_true[index_y_d + margin : index_y_u - margin, index_x_d + 0 : index_x_u - margin, :] = seg_color |                         prediction_true[index_y_d + margin : index_y_u - margin, index_x_d + 0 : index_x_u - margin, :] = seg_color | ||||||
| 
 |  | ||||||
|                     elif i == nxf - 1 and j != 0 and j != nyf - 1: |                     elif i == nxf - 1 and j != 0 and j != nyf - 1: | ||||||
|                         seg_color = seg_color[margin : seg_color.shape[0] - margin, margin : seg_color.shape[1] - 0, :] |                         seg_color = seg_color[margin : seg_color.shape[0] - margin, margin : seg_color.shape[1] - 0, :] | ||||||
|                         seg = seg[margin : seg.shape[0] - margin, margin : seg.shape[1] - 0] |                         seg = seg[margin : seg.shape[0] - margin, margin : seg.shape[1] - 0] | ||||||
| 
 |  | ||||||
|                         mask_true[index_y_d + margin : index_y_u - margin, index_x_d + margin : index_x_u - 0] = seg |                         mask_true[index_y_d + margin : index_y_u - margin, index_x_d + margin : index_x_u - 0] = seg | ||||||
|                         prediction_true[index_y_d + margin : index_y_u - margin, index_x_d + margin : index_x_u - 0, :] = seg_color |                         prediction_true[index_y_d + margin : index_y_u - margin, index_x_d + margin : index_x_u - 0, :] = seg_color | ||||||
| 
 |  | ||||||
|                     elif i != 0 and i != nxf - 1 and j == 0: |                     elif i != 0 and i != nxf - 1 and j == 0: | ||||||
|                         seg_color = seg_color[0 : seg_color.shape[0] - margin, margin : seg_color.shape[1] - margin, :] |                         seg_color = seg_color[0 : seg_color.shape[0] - margin, margin : seg_color.shape[1] - margin, :] | ||||||
|                         seg = seg[0 : seg.shape[0] - margin, margin : seg.shape[1] - margin] |                         seg = seg[0 : seg.shape[0] - margin, margin : seg.shape[1] - margin] | ||||||
| 
 |  | ||||||
|                         mask_true[index_y_d + 0 : index_y_u - margin, index_x_d + margin : index_x_u - margin] = seg |                         mask_true[index_y_d + 0 : index_y_u - margin, index_x_d + margin : index_x_u - margin] = seg | ||||||
|                         prediction_true[index_y_d + 0 : index_y_u - margin, index_x_d + margin : index_x_u - margin, :] = seg_color |                         prediction_true[index_y_d + 0 : index_y_u - margin, index_x_d + margin : index_x_u - margin, :] = seg_color | ||||||
| 
 |  | ||||||
|                     elif i != 0 and i != nxf - 1 and j == nyf - 1: |                     elif i != 0 and i != nxf - 1 and j == nyf - 1: | ||||||
|                         seg_color = seg_color[margin : seg_color.shape[0] - 0, margin : seg_color.shape[1] - margin, :] |                         seg_color = seg_color[margin : seg_color.shape[0] - 0, margin : seg_color.shape[1] - margin, :] | ||||||
|                         seg = seg[margin : seg.shape[0] - 0, margin : seg.shape[1] - margin] |                         seg = seg[margin : seg.shape[0] - 0, margin : seg.shape[1] - margin] | ||||||
| 
 |  | ||||||
|                         mask_true[index_y_d + margin : index_y_u - 0, index_x_d + margin : index_x_u - margin] = seg |                         mask_true[index_y_d + margin : index_y_u - 0, index_x_d + margin : index_x_u - margin] = seg | ||||||
|                         prediction_true[index_y_d + margin : index_y_u - 0, index_x_d + margin : index_x_u - margin, :] = seg_color |                         prediction_true[index_y_d + margin : index_y_u - 0, index_x_d + margin : index_x_u - margin, :] = seg_color | ||||||
| 
 |  | ||||||
|                     else: |                     else: | ||||||
|                         seg_color = seg_color[margin : seg_color.shape[0] - margin, margin : seg_color.shape[1] - margin, :] |                         seg_color = seg_color[margin : seg_color.shape[0] - margin, margin : seg_color.shape[1] - margin, :] | ||||||
|                         seg = seg[margin : seg.shape[0] - margin, margin : seg.shape[1] - margin] |                         seg = seg[margin : seg.shape[0] - margin, margin : seg.shape[1] - margin] | ||||||
| 
 |  | ||||||
|                         mask_true[index_y_d + margin : index_y_u - margin, index_x_d + margin : index_x_u - margin] = seg |                         mask_true[index_y_d + margin : index_y_u - margin, index_x_d + margin : index_x_u - margin] = seg | ||||||
|                         prediction_true[index_y_d + margin : index_y_u - margin, index_x_d + margin : index_x_u - margin, :] = seg_color |                         prediction_true[index_y_d + margin : index_y_u - margin, index_x_d + margin : index_x_u - margin, :] = seg_color | ||||||
| 
 | 
 | ||||||
|  | @ -753,20 +688,13 @@ class eynollah: | ||||||
| 
 | 
 | ||||||
|         imgray = cv2.cvtColor(img_page_prediction, cv2.COLOR_BGR2GRAY) |         imgray = cv2.cvtColor(img_page_prediction, cv2.COLOR_BGR2GRAY) | ||||||
|         _, thresh = cv2.threshold(imgray, 0, 255, 0) |         _, thresh = cv2.threshold(imgray, 0, 255, 0) | ||||||
| 
 |  | ||||||
|         thresh = cv2.dilate(thresh, self.kernel, iterations=3) |         thresh = cv2.dilate(thresh, self.kernel, iterations=3) | ||||||
|         contours, _ = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) |         contours, _ = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) | ||||||
| 
 |  | ||||||
|         cnt_size = np.array([cv2.contourArea(contours[j]) for j in range(len(contours))]) |         cnt_size = np.array([cv2.contourArea(contours[j]) for j in range(len(contours))]) | ||||||
| 
 |  | ||||||
|         cnt = contours[np.argmax(cnt_size)] |         cnt = contours[np.argmax(cnt_size)] | ||||||
| 
 |  | ||||||
|         x, y, w, h = cv2.boundingRect(cnt) |         x, y, w, h = cv2.boundingRect(cnt) | ||||||
| 
 |  | ||||||
|         box = [x, y, w, h] |         box = [x, y, w, h] | ||||||
| 
 |  | ||||||
|         croped_page, page_coord = crop_image_inside_box(box, img) |         croped_page, page_coord = crop_image_inside_box(box, img) | ||||||
| 
 |  | ||||||
|         session_page.close() |         session_page.close() | ||||||
|         del model_page |         del model_page | ||||||
|         del session_page |         del session_page | ||||||
|  | @ -801,9 +729,7 @@ class eynollah: | ||||||
|         contours, _ = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) |         contours, _ = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) | ||||||
| 
 | 
 | ||||||
|         cnt_size = np.array([cv2.contourArea(contours[j]) for j in range(len(contours))]) |         cnt_size = np.array([cv2.contourArea(contours[j]) for j in range(len(contours))]) | ||||||
| 
 |  | ||||||
|         cnt = contours[np.argmax(cnt_size)] |         cnt = contours[np.argmax(cnt_size)] | ||||||
| 
 |  | ||||||
|         x, y, w, h = cv2.boundingRect(cnt) |         x, y, w, h = cv2.boundingRect(cnt) | ||||||
| 
 | 
 | ||||||
|         if x <= 30: |         if x <= 30: | ||||||
|  | @ -811,7 +737,6 @@ class eynollah: | ||||||
|             x = 0 |             x = 0 | ||||||
|         if (self.image.shape[1] - (x + w)) <= 30: |         if (self.image.shape[1] - (x + w)) <= 30: | ||||||
|             w = w + (self.image.shape[1] - (x + w)) |             w = w + (self.image.shape[1] - (x + w)) | ||||||
| 
 |  | ||||||
|         if y <= 30: |         if y <= 30: | ||||||
|             h = h + y |             h = h + y | ||||||
|             y = 0 |             y = 0 | ||||||
|  | @ -819,7 +744,6 @@ class eynollah: | ||||||
|             h = h + (self.image.shape[0] - (y + h)) |             h = h + (self.image.shape[0] - (y + h)) | ||||||
| 
 | 
 | ||||||
|         box = [x, y, w, h] |         box = [x, y, w, h] | ||||||
| 
 |  | ||||||
|         croped_page, page_coord = crop_image_inside_box(box, self.image) |         croped_page, page_coord = crop_image_inside_box(box, self.image) | ||||||
| 
 | 
 | ||||||
|         self.cont_page.append(np.array([[page_coord[2], page_coord[0]], [page_coord[3], page_coord[0]], [page_coord[3], page_coord[1]], [page_coord[2], page_coord[1]]])) |         self.cont_page.append(np.array([[page_coord[2], page_coord[0]], [page_coord[3], page_coord[0]], [page_coord[3], page_coord[1]], [page_coord[2], page_coord[1]]])) | ||||||
|  | @ -1811,63 +1735,45 @@ class eynollah: | ||||||
|                  |                  | ||||||
|                  |                  | ||||||
|                 for j in range(len(all_found_texline_polygons[mm])): |                 for j in range(len(all_found_texline_polygons[mm])): | ||||||
|      |  | ||||||
|                     textline=ET.SubElement(textregion, 'TextLine') |                     textline=ET.SubElement(textregion, 'TextLine') | ||||||
|                      |  | ||||||
|                     textline.set('id', 'l' + str(id_indexer_l)) |                     textline.set('id', 'l' + str(id_indexer_l)) | ||||||
|                      |  | ||||||
|                     id_indexer_l += 1 |                     id_indexer_l += 1 | ||||||
|                      |  | ||||||
|      |  | ||||||
|                     coord = ET.SubElement(textline, 'Coords') |                     coord = ET.SubElement(textline, 'Coords') | ||||||
|      |  | ||||||
|                     texteq=ET.SubElement(textline, 'TextEquiv') |                     texteq=ET.SubElement(textline, 'TextEquiv') | ||||||
|      |  | ||||||
|                     uni=ET.SubElement(texteq, 'Unicode') |                     uni=ET.SubElement(texteq, 'Unicode') | ||||||
|                     uni.text = ' '  |                     uni.text = ' '  | ||||||
|      |  | ||||||
|                     #points = ET.SubElement(coord, 'Points')  |                     #points = ET.SubElement(coord, 'Points')  | ||||||
|      |  | ||||||
|                     points_co='' |                     points_co='' | ||||||
|                     for l in range(len(all_found_texline_polygons[mm][j])): |                     for l in range(len(all_found_texline_polygons[mm][j])): | ||||||
|                         #point = ET.SubElement(coord, 'Point')  |                         #point = ET.SubElement(coord, 'Point')  | ||||||
|      |  | ||||||
|      |  | ||||||
|                         if not curved_line: |                         if not curved_line: | ||||||
|                             #point.set('x',str(found_polygons[j][l][0]))   |                             #point.set('x',str(found_polygons[j][l][0]))   | ||||||
|                             #point.set('y',str(found_polygons[j][l][1])) |                             #point.set('y',str(found_polygons[j][l][1])) | ||||||
|                             if len(all_found_texline_polygons[mm][j][l]) == 2: |                             if len(all_found_texline_polygons[mm][j][l]) == 2: | ||||||
|                                  |  | ||||||
|                                 textline_x_coord = int( (all_found_texline_polygons[mm][j][l][0] |                                 textline_x_coord = int( (all_found_texline_polygons[mm][j][l][0] | ||||||
|                                                         + all_box_coord[mm][2] + page_coord[2]) / self.scale_x) |                                                         + all_box_coord[mm][2] + page_coord[2]) / self.scale_x) | ||||||
|                                 textline_y_coord=int( (all_found_texline_polygons[mm][j][l][1]  |                                 textline_y_coord=int( (all_found_texline_polygons[mm][j][l][1]  | ||||||
|                                                         + all_box_coord[mm][0] + page_coord[0]) / self.scale_y) |                                                         + all_box_coord[mm][0] + page_coord[0]) / self.scale_y) | ||||||
|                                  |  | ||||||
|                                 if textline_x_coord < 0: |                                 if textline_x_coord < 0: | ||||||
|                                     textline_x_coord = 0 |                                     textline_x_coord = 0 | ||||||
|                                 if textline_y_coord < 0: |                                 if textline_y_coord < 0: | ||||||
|                                     textline_y_coord = 0 |                                     textline_y_coord = 0 | ||||||
|                                      |  | ||||||
|                                 points_co = points_co + str( textline_x_coord ) |                                 points_co = points_co + str( textline_x_coord ) | ||||||
|                                 points_co = points_co + ',' |                                 points_co = points_co + ',' | ||||||
|                                 points_co = points_co + str( textline_y_coord ) |                                 points_co = points_co + str( textline_y_coord ) | ||||||
|                             else: |                             else: | ||||||
|                                  |  | ||||||
|                                 textline_x_coord = int( ( all_found_texline_polygons[mm][j][l][0][0]  |                                 textline_x_coord = int( ( all_found_texline_polygons[mm][j][l][0][0]  | ||||||
|                                                         + all_box_coord[mm][2]+page_coord[2])/self.scale_x ) |                                                         + all_box_coord[mm][2]+page_coord[2])/self.scale_x ) | ||||||
|                                  |  | ||||||
|                                 textline_y_coord=int( ( all_found_texline_polygons[mm][j][l][0][1]  |                                 textline_y_coord=int( ( all_found_texline_polygons[mm][j][l][0][1]  | ||||||
|                                                         +all_box_coord[mm][0]+page_coord[0])/self.scale_y) |                                                         +all_box_coord[mm][0]+page_coord[0])/self.scale_y) | ||||||
|                                  |  | ||||||
|                                 if textline_x_coord < 0: |                                 if textline_x_coord < 0: | ||||||
|                                     textline_x_coord = 0 |                                     textline_x_coord = 0 | ||||||
|                                 if textline_y_coord < 0: |                                 if textline_y_coord < 0: | ||||||
|                                     textline_y_coord = 0 |                                     textline_y_coord = 0 | ||||||
|                                      |  | ||||||
|                                 points_co = points_co + str( textline_x_coord ) |                                 points_co = points_co + str( textline_x_coord ) | ||||||
|                                 points_co = points_co + ',' |                                 points_co = points_co + ',' | ||||||
|                                 points_co = points_co + str( textline_y_coord )  |                                 points_co = points_co + str( textline_y_coord )  | ||||||
|                                                  | 
 | ||||||
|                         if (self.curved_line) and abs(slopes[mm]) <= 45: |                         if (self.curved_line) and abs(slopes[mm]) <= 45: | ||||||
|                             if len(all_found_texline_polygons[mm][j][l]) == 2: |                             if len(all_found_texline_polygons[mm][j][l]) == 2: | ||||||
|                                 points_co=points_co + str( int( (all_found_texline_polygons[mm][j][l][0] |                                 points_co=points_co + str( int( (all_found_texline_polygons[mm][j][l][0] | ||||||
|  | @ -1904,11 +1810,8 @@ class eynollah: | ||||||
|                 texteqreg = ET.SubElement(textregion, 'TextEquiv') |                 texteqreg = ET.SubElement(textregion, 'TextEquiv') | ||||||
|                 unireg = ET.SubElement(texteqreg, 'Unicode') |                 unireg = ET.SubElement(texteqreg, 'Unicode') | ||||||
|                 unireg.text = ' '  |                 unireg.text = ' '  | ||||||
|                  |  | ||||||
| 
 |  | ||||||
|         try: |         try: | ||||||
|             #id_indexer_l=0 |             #id_indexer_l=0 | ||||||
|              |  | ||||||
|             try: |             try: | ||||||
|                 id_indexer_l = id_indexer_l |                 id_indexer_l = id_indexer_l | ||||||
|             except: |             except: | ||||||
|  | @ -1916,40 +1819,21 @@ class eynollah: | ||||||
|      |      | ||||||
|             for mm in range(len(found_polygons_marginals)): |             for mm in range(len(found_polygons_marginals)): | ||||||
|                 textregion = ET.SubElement(page, 'TextRegion') |                 textregion = ET.SubElement(page, 'TextRegion') | ||||||
|      |  | ||||||
|                 textregion.set('id', id_of_marginalia[mm]) |                 textregion.set('id', id_of_marginalia[mm]) | ||||||
|                  |  | ||||||
|                 textregion.set('type', 'marginalia') |                 textregion.set('type', 'marginalia') | ||||||
|                 #if mm==0: |  | ||||||
|                 #    textregion.set('type','header') |  | ||||||
|                 #else: |  | ||||||
|                 #    textregion.set('type','paragraph') |  | ||||||
|                 coord_text = ET.SubElement(textregion, 'Coords') |                 coord_text = ET.SubElement(textregion, 'Coords') | ||||||
|                 coord_text.set('points', self.calculate_polygon_coords(found_polygons_marginals, mm, lmm, page_coord) |                 coord_text.set('points', self.calculate_polygon_coords(found_polygons_marginals, mm, lmm, page_coord) | ||||||
|                  |  | ||||||
|                 for j in range(len(all_found_texline_polygons_marginals[mm])): |                 for j in range(len(all_found_texline_polygons_marginals[mm])): | ||||||
|      |  | ||||||
|                     textline=ET.SubElement(textregion, 'TextLine') |                     textline=ET.SubElement(textregion, 'TextLine') | ||||||
|                      |  | ||||||
|                     textline.set('id','l'+str(id_indexer_l)) |                     textline.set('id','l'+str(id_indexer_l)) | ||||||
|                      |  | ||||||
|                     id_indexer_l+=1 |                     id_indexer_l+=1 | ||||||
|                      |  | ||||||
|      |  | ||||||
|                     coord = ET.SubElement(textline, 'Coords') |                     coord = ET.SubElement(textline, 'Coords') | ||||||
|      |                     texteq = ET.SubElement(textline, 'TextEquiv') | ||||||
|                     texteq=ET.SubElement(textline, 'TextEquiv') |                     uni = ET.SubElement(texteq, 'Unicode') | ||||||
|      |  | ||||||
|                     uni=ET.SubElement(texteq, 'Unicode') |  | ||||||
|                     uni.text = ' '  |                     uni.text = ' '  | ||||||
|      |  | ||||||
|                     #points = ET.SubElement(coord, 'Points')  |                     #points = ET.SubElement(coord, 'Points')  | ||||||
|      |  | ||||||
|                     points_co='' |                     points_co='' | ||||||
|                     for l in range(len(all_found_texline_polygons_marginals[mm][j])): |                     for l in range(len(all_found_texline_polygons_marginals[mm][j])): | ||||||
|                         #point = ET.SubElement(coord, 'Point')  |  | ||||||
|      |  | ||||||
|      |  | ||||||
|                         if not curved_line: |                         if not curved_line: | ||||||
|                             #point.set('x',str(found_polygons[j][l][0]))   |                             #point.set('x',str(found_polygons[j][l][0]))   | ||||||
|                             #point.set('y',str(found_polygons[j][l][1])) |                             #point.set('y',str(found_polygons[j][l][1])) | ||||||
|  | @ -1965,8 +1849,7 @@ class eynollah: | ||||||
|                                 points_co=points_co+',' |                                 points_co=points_co+',' | ||||||
|                                 points_co=points_co+str( int( ( all_found_texline_polygons_marginals[mm][j][l][0][1]  |                                 points_co=points_co+str( int( ( all_found_texline_polygons_marginals[mm][j][l][0][1]  | ||||||
|                                                         +all_box_coord_marginals[mm][0]+page_coord[0])/self.scale_y) )  |                                                         +all_box_coord_marginals[mm][0]+page_coord[0])/self.scale_y) )  | ||||||
|                                                  |                         else: | ||||||
|                         if curved_line: |  | ||||||
|                             if len(all_found_texline_polygons_marginals[mm][j][l])==2: |                             if len(all_found_texline_polygons_marginals[mm][j][l])==2: | ||||||
|                                 points_co=points_co+str( int( (all_found_texline_polygons_marginals[mm][j][l][0] |                                 points_co=points_co+str( int( (all_found_texline_polygons_marginals[mm][j][l][0] | ||||||
|                                                         +page_coord[2])/self.scale_x) ) |                                                         +page_coord[2])/self.scale_x) ) | ||||||
|  | @ -1979,7 +1862,6 @@ class eynollah: | ||||||
|                                 points_co=points_co+',' |                                 points_co=points_co+',' | ||||||
|                                 points_co=points_co+str( int( ( all_found_texline_polygons_marginals[mm][j][l][0][1]  |                                 points_co=points_co+str( int( ( all_found_texline_polygons_marginals[mm][j][l][0][1]  | ||||||
|                                                         +page_coord[0])/self.scale_y) )  |                                                         +page_coord[0])/self.scale_y) )  | ||||||
|      |  | ||||||
|                         if l<(len(all_found_texline_polygons_marginals[mm][j])-1): |                         if l<(len(all_found_texline_polygons_marginals[mm][j])-1): | ||||||
|                             points_co=points_co+' ' |                             points_co=points_co+' ' | ||||||
|                     #print(points_co) |                     #print(points_co) | ||||||
|  | @ -2005,8 +1887,6 @@ class eynollah: | ||||||
| 
 | 
 | ||||||
|                     if lmm<(len(found_polygons_text_region_img[mm])-1): |                     if lmm<(len(found_polygons_text_region_img[mm])-1): | ||||||
|                         points_co=points_co+' ' |                         points_co=points_co+' ' | ||||||
|                      |  | ||||||
|                      |  | ||||||
|                 coord_text.set('points',points_co) |                 coord_text.set('points',points_co) | ||||||
|         except: |         except: | ||||||
|             pass |             pass | ||||||
|  | @ -2019,75 +1899,58 @@ class eynollah: | ||||||
|         # cv2.imwrite(os.path.join(dir_of_image, self.image_filename_stem) + ".tif",self.image_org) |         # cv2.imwrite(os.path.join(dir_of_image, self.image_filename_stem) + ".tif",self.image_org) | ||||||
| 
 | 
 | ||||||
|     def get_regions_from_xy_2models(self,img,is_image_enhanced): |     def get_regions_from_xy_2models(self,img,is_image_enhanced): | ||||||
|         img_org=np.copy(img) |         img_org = np.copy(img) | ||||||
| 
 |         img_height_h = img_org.shape[0] | ||||||
|         img_height_h=img_org.shape[0] |         img_width_h = img_org.shape[1] | ||||||
|         img_width_h=img_org.shape[1] |  | ||||||
| 
 | 
 | ||||||
|         model_region, session_region = self.start_new_session_and_model(self.model_region_dir_p_ens) |         model_region, session_region = self.start_new_session_and_model(self.model_region_dir_p_ens) | ||||||
| 
 | 
 | ||||||
|         gaussian_filter=False |         gaussian_filter=False | ||||||
|         patches=True |         patches=True | ||||||
|         binary=False |         binary=False | ||||||
| 
 |  | ||||||
| 
 |  | ||||||
| 
 |  | ||||||
| 
 |  | ||||||
| 
 |  | ||||||
|         ratio_y=1.3 |         ratio_y=1.3 | ||||||
|         ratio_x=1 |         ratio_x=1 | ||||||
| 
 |  | ||||||
|         median_blur=False |         median_blur=False | ||||||
| 
 | 
 | ||||||
|         img= resize_image(img_org, int(img_org.shape[0]*ratio_y), int(img_org.shape[1]*ratio_x)) |         img = resize_image(img_org, int(img_org.shape[0]*ratio_y), int(img_org.shape[1]*ratio_x)) | ||||||
| 
 | 
 | ||||||
|         if binary: |         if binary: | ||||||
|             img = otsu_copy_binary(img)#self.otsu_copy(img) |             img = otsu_copy_binary(img) | ||||||
|             img = img.astype(np.uint16) |             img = img.astype(np.uint16) | ||||||
| 
 |  | ||||||
|         if median_blur: |         if median_blur: | ||||||
|             img=cv2.medianBlur(img,5) |             img = cv2.medianBlur(img,5) | ||||||
|         if gaussian_filter: |         if gaussian_filter: | ||||||
|             img= cv2.GaussianBlur(img,(5,5),0) |             img= cv2.GaussianBlur(img,(5,5),0) | ||||||
|             img = img.astype(np.uint16) |             img = img.astype(np.uint16) | ||||||
|         prediction_regions_org_y=self.do_prediction(patches,img,model_region) |  | ||||||
| 
 | 
 | ||||||
|  |         prediction_regions_org_y = self.do_prediction(patches,img,model_region) | ||||||
|         prediction_regions_org_y = resize_image(prediction_regions_org_y, img_height_h, img_width_h ) |         prediction_regions_org_y = resize_image(prediction_regions_org_y, img_height_h, img_width_h ) | ||||||
| 
 | 
 | ||||||
|         #plt.imshow(prediction_regions_org_y[:,:,0]) |         #plt.imshow(prediction_regions_org_y[:,:,0]) | ||||||
|         #plt.show() |         #plt.show() | ||||||
|         #sys.exit() |         #sys.exit() | ||||||
|         prediction_regions_org_y=prediction_regions_org_y[:,:,0] |         prediction_regions_org_y=prediction_regions_org_y[:,:,0] | ||||||
| 
 |  | ||||||
| 
 |  | ||||||
|         mask_zeros_y=(prediction_regions_org_y[:,:]==0)*1 |         mask_zeros_y=(prediction_regions_org_y[:,:]==0)*1 | ||||||
| 
 |  | ||||||
| 
 |  | ||||||
| 
 |  | ||||||
| 
 |  | ||||||
| 
 |  | ||||||
|         if is_image_enhanced: |         if is_image_enhanced: | ||||||
|             ratio_x=1.2 |             ratio_x = 1.2 | ||||||
|         else: |         else: | ||||||
|             ratio_x=1 |             ratio_x = 1 | ||||||
| 
 |         ratio_y = 1 | ||||||
|         ratio_y=1 |  | ||||||
|         median_blur=False |         median_blur=False | ||||||
| 
 | 
 | ||||||
|         img= resize_image(img_org, int(img_org.shape[0]*ratio_y), int(img_org.shape[1]*ratio_x)) |         img = resize_image(img_org, int(img_org.shape[0]*ratio_y), int(img_org.shape[1]*ratio_x)) | ||||||
| 
 | 
 | ||||||
|         if binary: |         if binary: | ||||||
|             img = otsu_copy_binary(img)#self.otsu_copy(img) |             img = otsu_copy_binary(img)#self.otsu_copy(img) | ||||||
|             img = img.astype(np.uint16) |             img = img.astype(np.uint16) | ||||||
| 
 |  | ||||||
|         if median_blur: |         if median_blur: | ||||||
|             img=cv2.medianBlur(img,5) |             img = cv2.medianBlur(img, 5) | ||||||
|         if gaussian_filter: |         if gaussian_filter: | ||||||
|             img= cv2.GaussianBlur(img,(5,5),0) |             img = cv2.GaussianBlur(img, (5,5 ), 0) | ||||||
|             img = img.astype(np.uint16) |             img = img.astype(np.uint16) | ||||||
|         prediction_regions_org=self.do_prediction(patches,img,model_region) |  | ||||||
| 
 | 
 | ||||||
|         prediction_regions_org=resize_image(prediction_regions_org, img_height_h, img_width_h ) |         prediction_regions_org = self.do_prediction(patches,img,model_region) | ||||||
|  |         prediction_regions_org = resize_image(prediction_regions_org, img_height_h, img_width_h ) | ||||||
| 
 | 
 | ||||||
|         ##plt.imshow(prediction_regions_org[:,:,0]) |         ##plt.imshow(prediction_regions_org[:,:,0]) | ||||||
|         ##plt.show() |         ##plt.show() | ||||||
|  | @ -2105,10 +1968,6 @@ class eynollah: | ||||||
|         gaussian_filter=False |         gaussian_filter=False | ||||||
|         patches=True |         patches=True | ||||||
|         binary=False |         binary=False | ||||||
| 
 |  | ||||||
| 
 |  | ||||||
| 
 |  | ||||||
| 
 |  | ||||||
|         ratio_x=1 |         ratio_x=1 | ||||||
|         ratio_y=1 |         ratio_y=1 | ||||||
|         median_blur=False |         median_blur=False | ||||||
|  | @ -2626,17 +2485,13 @@ class eynollah: | ||||||
|         img_g = img_g.astype(np.uint8) |         img_g = img_g.astype(np.uint8) | ||||||
| 
 | 
 | ||||||
|         img_g3 = np.zeros((img_g.shape[0], img_g.shape[1], 3)) |         img_g3 = np.zeros((img_g.shape[0], img_g.shape[1], 3)) | ||||||
| 
 |  | ||||||
|         img_g3 = img_g3.astype(np.uint8) |         img_g3 = img_g3.astype(np.uint8) | ||||||
| 
 |  | ||||||
|         img_g3[:, :, 0] = img_g[:, :] |         img_g3[:, :, 0] = img_g[:, :] | ||||||
|         img_g3[:, :, 1] = img_g[:, :] |         img_g3[:, :, 1] = img_g[:, :] | ||||||
|         img_g3[:, :, 2] = img_g[:, :] |         img_g3[:, :, 2] = img_g[:, :] | ||||||
| 
 | 
 | ||||||
|         image_page, page_coord = self.extract_page() |         image_page, page_coord = self.extract_page() | ||||||
| 
 |  | ||||||
|         # print(image_page.shape,'page') |         # print(image_page.shape,'page') | ||||||
| 
 |  | ||||||
|         if self.dir_of_all is not None: |         if self.dir_of_all is not None: | ||||||
|             cv2.imwrite(os.path.join(self.dir_of_all, self.image_filename_stem + "_page.png"), image_page) |             cv2.imwrite(os.path.join(self.dir_of_all, self.image_filename_stem + "_page.png"), image_page) | ||||||
|         K.clear_session() |         K.clear_session() | ||||||
|  | @ -2649,13 +2504,12 @@ class eynollah: | ||||||
|         text_regions_p_1 = text_regions_p_1[page_coord[0] : page_coord[1], page_coord[2] : page_coord[3]] |         text_regions_p_1 = text_regions_p_1[page_coord[0] : page_coord[1], page_coord[2] : page_coord[3]] | ||||||
| 
 | 
 | ||||||
|         mask_images = (text_regions_p_1[:, :] == 2) * 1 |         mask_images = (text_regions_p_1[:, :] == 2) * 1 | ||||||
|         mask_lines = (text_regions_p_1[:, :] == 3) * 1 |  | ||||||
| 
 |  | ||||||
|         mask_images = mask_images.astype(np.uint8) |         mask_images = mask_images.astype(np.uint8) | ||||||
|         mask_lines = mask_lines.astype(np.uint8) |  | ||||||
| 
 |  | ||||||
|         mask_images = cv2.erode(mask_images[:, :], self.kernel, iterations=10) |         mask_images = cv2.erode(mask_images[:, :], self.kernel, iterations=10) | ||||||
| 
 | 
 | ||||||
|  |         mask_lines = (text_regions_p_1[:, :] == 3) * 1 | ||||||
|  |         mask_lines = mask_lines.astype(np.uint8) | ||||||
|  | 
 | ||||||
|         img_only_regions_with_sep = ((text_regions_p_1[:, :] != 3) & (text_regions_p_1[:, :] != 0)) * 1 |         img_only_regions_with_sep = ((text_regions_p_1[:, :] != 3) & (text_regions_p_1[:, :] != 0)) * 1 | ||||||
|         img_only_regions_with_sep = img_only_regions_with_sep.astype(np.uint8) |         img_only_regions_with_sep = img_only_regions_with_sep.astype(np.uint8) | ||||||
|         img_only_regions = cv2.erode(img_only_regions_with_sep[:, :], self.kernel, iterations=6) |         img_only_regions = cv2.erode(img_only_regions_with_sep[:, :], self.kernel, iterations=6) | ||||||
|  | @ -2692,11 +2546,8 @@ class eynollah: | ||||||
| 
 | 
 | ||||||
|                 K.clear_session() |                 K.clear_session() | ||||||
|                 gc.collect() |                 gc.collect() | ||||||
| 
 |  | ||||||
|                 #print(np.unique(textline_mask_tot_ea[:, :]), "textline") |                 #print(np.unique(textline_mask_tot_ea[:, :]), "textline") | ||||||
| 
 |  | ||||||
|                 if self.dir_of_all is not None: |                 if self.dir_of_all is not None: | ||||||
| 
 |  | ||||||
|                     values = np.unique(textline_mask_tot_ea[:, :]) |                     values = np.unique(textline_mask_tot_ea[:, :]) | ||||||
|                     pixels = ["Background", "Textlines"] |                     pixels = ["Background", "Textlines"] | ||||||
|                     values_indexes = [0, 1] |                     values_indexes = [0, 1] | ||||||
|  | @ -2738,19 +2589,11 @@ class eynollah: | ||||||
|                 min_area = 0.00001 |                 min_area = 0.00001 | ||||||
|                 max_area = 0.0006 |                 max_area = 0.0006 | ||||||
|                 textline_mask_tot_small_size = return_contours_of_interested_region_by_size(textline_mask_tot, pixel_img, min_area, max_area) |                 textline_mask_tot_small_size = return_contours_of_interested_region_by_size(textline_mask_tot, pixel_img, min_area, max_area) | ||||||
| 
 |  | ||||||
|                 # text_regions_p_1[(textline_mask_tot[:,:]==1) & (text_regions_p_1[:,:]==2)]=1 |  | ||||||
| 
 |  | ||||||
|                 text_regions_p_1[mask_lines[:, :] == 1] = 3 |                 text_regions_p_1[mask_lines[:, :] == 1] = 3 | ||||||
| 
 |  | ||||||
|                 ##text_regions_p_1[textline_mask_tot_small_size[:,:]==1]=1 |  | ||||||
| 
 |  | ||||||
|                 text_regions_p = text_regions_p_1[:, :]  # long_short_region[:,:]#self.get_regions_from_2_models(image_page) |                 text_regions_p = text_regions_p_1[:, :]  # long_short_region[:,:]#self.get_regions_from_2_models(image_page) | ||||||
| 
 |  | ||||||
|                 text_regions_p = np.array(text_regions_p) |                 text_regions_p = np.array(text_regions_p) | ||||||
| 
 | 
 | ||||||
|                 if num_col_classifier == 1 or num_col_classifier == 2: |                 if num_col_classifier == 1 or num_col_classifier == 2: | ||||||
| 
 |  | ||||||
|                     try: |                     try: | ||||||
|                         regions_without_seperators = (text_regions_p[:, :] == 1) * 1 |                         regions_without_seperators = (text_regions_p[:, :] == 1) * 1 | ||||||
|                         regions_without_seperators = regions_without_seperators.astype(np.uint8) |                         regions_without_seperators = regions_without_seperators.astype(np.uint8) | ||||||
|  | @ -2759,8 +2602,6 @@ class eynollah: | ||||||
| 
 | 
 | ||||||
|                     except: |                     except: | ||||||
|                         pass |                         pass | ||||||
|                 else: |  | ||||||
|                     pass |  | ||||||
| 
 | 
 | ||||||
|                 # plt.imshow(text_regions_p) |                 # plt.imshow(text_regions_p) | ||||||
|                 # plt.show() |                 # plt.show() | ||||||
|  | @ -2776,12 +2617,9 @@ class eynollah: | ||||||
| 
 | 
 | ||||||
|                     if np.abs(slope_deskew) >= SLOPE_THRESHOLD: |                     if np.abs(slope_deskew) >= SLOPE_THRESHOLD: | ||||||
|                         image_page_rotated_n, textline_mask_tot_d, text_regions_p_1_n = rotation_not_90_func(image_page, textline_mask_tot, text_regions_p, slope_deskew) |                         image_page_rotated_n, textline_mask_tot_d, text_regions_p_1_n = rotation_not_90_func(image_page, textline_mask_tot, text_regions_p, slope_deskew) | ||||||
| 
 |  | ||||||
|                         text_regions_p_1_n = resize_image(text_regions_p_1_n, text_regions_p.shape[0], text_regions_p.shape[1]) |                         text_regions_p_1_n = resize_image(text_regions_p_1_n, text_regions_p.shape[0], text_regions_p.shape[1]) | ||||||
|                         textline_mask_tot_d = resize_image(textline_mask_tot_d, text_regions_p.shape[0], text_regions_p.shape[1]) |                         textline_mask_tot_d = resize_image(textline_mask_tot_d, text_regions_p.shape[0], text_regions_p.shape[1]) | ||||||
| 
 |  | ||||||
|                         regions_without_seperators_d = (text_regions_p_1_n[:, :] == 1) * 1 |                         regions_without_seperators_d = (text_regions_p_1_n[:, :] == 1) * 1 | ||||||
| 
 |  | ||||||
|                     regions_without_seperators = (text_regions_p[:, :] == 1) * 1  # ( (text_regions_p[:,:]==1) | (text_regions_p[:,:]==2) )*1 #self.return_regions_without_seperators_new(text_regions_p[:,:,0],img_only_regions) |                     regions_without_seperators = (text_regions_p[:, :] == 1) * 1  # ( (text_regions_p[:,:]==1) | (text_regions_p[:,:]==2) )*1 #self.return_regions_without_seperators_new(text_regions_p[:,:,0],img_only_regions) | ||||||
| 
 | 
 | ||||||
|                     pixel_lines = 3 |                     pixel_lines = 3 | ||||||
|  | @ -2794,31 +2632,24 @@ class eynollah: | ||||||
|                     gc.collect() |                     gc.collect() | ||||||
| 
 | 
 | ||||||
|                     # print(peaks_neg_fin,num_col,'num_col2') |                     # print(peaks_neg_fin,num_col,'num_col2') | ||||||
| 
 |  | ||||||
|                     print(num_col_classifier, "num_col_classifier") |                     print(num_col_classifier, "num_col_classifier") | ||||||
| 
 | 
 | ||||||
|                     if num_col_classifier >= 3: |                     if num_col_classifier >= 3: | ||||||
|                         if np.abs(slope_deskew) < SLOPE_THRESHOLD: |                         if np.abs(slope_deskew) < SLOPE_THRESHOLD: | ||||||
|                             regions_without_seperators = regions_without_seperators.astype(np.uint8) |                             regions_without_seperators = regions_without_seperators.astype(np.uint8) | ||||||
|                             regions_without_seperators = cv2.erode(regions_without_seperators[:, :], self.kernel, iterations=6) |                             regions_without_seperators = cv2.erode(regions_without_seperators[:, :], self.kernel, iterations=6) | ||||||
| 
 |  | ||||||
|                             #random_pixels_for_image = np.random.randn(regions_without_seperators.shape[0], regions_without_seperators.shape[1]) |                             #random_pixels_for_image = np.random.randn(regions_without_seperators.shape[0], regions_without_seperators.shape[1]) | ||||||
|                             #random_pixels_for_image[random_pixels_for_image < -0.5] = 0 |                             #random_pixels_for_image[random_pixels_for_image < -0.5] = 0 | ||||||
|                             #random_pixels_for_image[random_pixels_for_image != 0] = 1 |                             #random_pixels_for_image[random_pixels_for_image != 0] = 1 | ||||||
| 
 |  | ||||||
|                             #regions_without_seperators[(random_pixels_for_image[:, :] == 1) & (text_regions_p[:, :] == 2)] = 1 |                             #regions_without_seperators[(random_pixels_for_image[:, :] == 1) & (text_regions_p[:, :] == 2)] = 1 | ||||||
| 
 |                         else: | ||||||
|                         if np.abs(slope_deskew) >= SLOPE_THRESHOLD: |  | ||||||
|                             regions_without_seperators_d = regions_without_seperators_d.astype(np.uint8) |                             regions_without_seperators_d = regions_without_seperators_d.astype(np.uint8) | ||||||
|                             regions_without_seperators_d = cv2.erode(regions_without_seperators_d[:, :], self.kernel, iterations=6) |                             regions_without_seperators_d = cv2.erode(regions_without_seperators_d[:, :], self.kernel, iterations=6) | ||||||
| 
 |  | ||||||
|                             #random_pixels_for_image = np.random.randn(regions_without_seperators_d.shape[0], regions_without_seperators_d.shape[1]) |                             #random_pixels_for_image = np.random.randn(regions_without_seperators_d.shape[0], regions_without_seperators_d.shape[1]) | ||||||
|                             #random_pixels_for_image[random_pixels_for_image < -0.5] = 0 |                             #random_pixels_for_image[random_pixels_for_image < -0.5] = 0 | ||||||
|                             #random_pixels_for_image[random_pixels_for_image != 0] = 1 |                             #random_pixels_for_image[random_pixels_for_image != 0] = 1 | ||||||
| 
 | 
 | ||||||
|                             #regions_without_seperators_d[(random_pixels_for_image[:, :] == 1) & (text_regions_p_1_n[:, :] == 2)] = 1 |                             #regions_without_seperators_d[(random_pixels_for_image[:, :] == 1) & (text_regions_p_1_n[:, :] == 2)] = 1 | ||||||
|                     else: |  | ||||||
|                         pass |  | ||||||
| 
 | 
 | ||||||
|                     if np.abs(slope_deskew) < SLOPE_THRESHOLD: |                     if np.abs(slope_deskew) < SLOPE_THRESHOLD: | ||||||
|                         boxes = return_boxes_of_images_by_order_of_reading_new(spliter_y_new, regions_without_seperators, matrix_of_lines_ch, num_col_classifier) |                         boxes = return_boxes_of_images_by_order_of_reading_new(spliter_y_new, regions_without_seperators, matrix_of_lines_ch, num_col_classifier) | ||||||
|  | @ -2826,13 +2657,9 @@ class eynollah: | ||||||
|                         boxes_d = return_boxes_of_images_by_order_of_reading_new(spliter_y_new_d, regions_without_seperators_d, matrix_of_lines_ch_d, num_col_classifier) |                         boxes_d = return_boxes_of_images_by_order_of_reading_new(spliter_y_new_d, regions_without_seperators_d, matrix_of_lines_ch_d, num_col_classifier) | ||||||
| 
 | 
 | ||||||
|                     # print(len(boxes),'boxes') |                     # print(len(boxes),'boxes') | ||||||
| 
 |  | ||||||
|                     # sys.exit() |                     # sys.exit() | ||||||
| 
 |  | ||||||
|                     print("boxes in: " + str(time.time() - t1)) |                     print("boxes in: " + str(time.time() - t1)) | ||||||
|                     img_revised_tab = text_regions_p[:, :] |                     img_revised_tab = text_regions_p[:, :] | ||||||
|                      |  | ||||||
|                      |  | ||||||
|                     pixel_img = 2 |                     pixel_img = 2 | ||||||
|                     polygons_of_images = return_contours_of_interested_region(img_revised_tab, pixel_img) |                     polygons_of_images = return_contours_of_interested_region(img_revised_tab, pixel_img) | ||||||
| 
 | 
 | ||||||
|  | @ -2852,14 +2679,11 @@ class eynollah: | ||||||
| 
 | 
 | ||||||
|                     K.clear_session() |                     K.clear_session() | ||||||
|                     # gc.collect() |                     # gc.collect() | ||||||
| 
 |  | ||||||
|                     patches = True |                     patches = True | ||||||
| 
 |  | ||||||
|                     image_page = image_page.astype(np.uint8) |                     image_page = image_page.astype(np.uint8) | ||||||
| 
 | 
 | ||||||
|                     # print(type(image_page)) |                     # print(type(image_page)) | ||||||
|                     regions_fully, regions_fully_only_drop = self.extract_text_regions(image_page, patches, cols=num_col_classifier) |                     regions_fully, regions_fully_only_drop = self.extract_text_regions(image_page, patches, cols=num_col_classifier) | ||||||
|                      |  | ||||||
|                     text_regions_p[:,:][regions_fully[:,:,0]==6]=6 |                     text_regions_p[:,:][regions_fully[:,:,0]==6]=6 | ||||||
| 
 | 
 | ||||||
|                     regions_fully_only_drop = put_drop_out_from_only_drop_model(regions_fully_only_drop, text_regions_p) |                     regions_fully_only_drop = put_drop_out_from_only_drop_model(regions_fully_only_drop, text_regions_p) | ||||||
|  | @ -2903,7 +2727,6 @@ class eynollah: | ||||||
|                     # plt.show() |                     # plt.show() | ||||||
| 
 | 
 | ||||||
|                     text_regions_p[:, :][regions_fully[:, :, 0] == 4] = 4 |                     text_regions_p[:, :][regions_fully[:, :, 0] == 4] = 4 | ||||||
| 
 |  | ||||||
|                     text_regions_p[:, :][regions_fully_np[:, :, 0] == 4] = 4 |                     text_regions_p[:, :][regions_fully_np[:, :, 0] == 4] = 4 | ||||||
| 
 | 
 | ||||||
|                     # plt.imshow(text_regions_p) |                     # plt.imshow(text_regions_p) | ||||||
|  | @ -2915,18 +2738,14 @@ class eynollah: | ||||||
|                         text_regions_p_1_n = resize_image(text_regions_p_1_n, text_regions_p.shape[0], text_regions_p.shape[1]) |                         text_regions_p_1_n = resize_image(text_regions_p_1_n, text_regions_p.shape[0], text_regions_p.shape[1]) | ||||||
|                         textline_mask_tot_d = resize_image(textline_mask_tot_d, text_regions_p.shape[0], text_regions_p.shape[1]) |                         textline_mask_tot_d = resize_image(textline_mask_tot_d, text_regions_p.shape[0], text_regions_p.shape[1]) | ||||||
|                         regions_fully_n = resize_image(regions_fully_n, text_regions_p.shape[0], text_regions_p.shape[1]) |                         regions_fully_n = resize_image(regions_fully_n, text_regions_p.shape[0], text_regions_p.shape[1]) | ||||||
| 
 |  | ||||||
|                         regions_without_seperators_d = (text_regions_p_1_n[:, :] == 1) * 1 |                         regions_without_seperators_d = (text_regions_p_1_n[:, :] == 1) * 1 | ||||||
| 
 | 
 | ||||||
|                     regions_without_seperators = (text_regions_p[:, :] == 1) * 1  # ( (text_regions_p[:,:]==1) | (text_regions_p[:,:]==2) )*1 #self.return_regions_without_seperators_new(text_regions_p[:,:,0],img_only_regions) |                     regions_without_seperators = (text_regions_p[:, :] == 1) * 1  # ( (text_regions_p[:,:]==1) | (text_regions_p[:,:]==2) )*1 #self.return_regions_without_seperators_new(text_regions_p[:,:,0],img_only_regions) | ||||||
| 
 | 
 | ||||||
|                     K.clear_session() |                     K.clear_session() | ||||||
|                     gc.collect() |                     gc.collect() | ||||||
| 
 |  | ||||||
|                     img_revised_tab = np.copy(text_regions_p[:, :]) |                     img_revised_tab = np.copy(text_regions_p[:, :]) | ||||||
| 
 |  | ||||||
|                     print("full layout in: " + str(time.time() - t1)) |                     print("full layout in: " + str(time.time() - t1)) | ||||||
| 
 |  | ||||||
|                     pixel_img = 5 |                     pixel_img = 5 | ||||||
|                     polygons_of_images = return_contours_of_interested_region(img_revised_tab, pixel_img) |                     polygons_of_images = return_contours_of_interested_region(img_revised_tab, pixel_img) | ||||||
| 
 | 
 | ||||||
|  | @ -2950,16 +2769,11 @@ class eynollah: | ||||||
|                 # plt.show() |                 # plt.show() | ||||||
| 
 | 
 | ||||||
|                 min_con_area = 0.000005 |                 min_con_area = 0.000005 | ||||||
| 
 |  | ||||||
|                 if np.abs(slope_deskew) >= SLOPE_THRESHOLD: |                 if np.abs(slope_deskew) >= SLOPE_THRESHOLD: | ||||||
| 
 |  | ||||||
|                     contours_only_text, hir_on_text = return_contours_of_image(text_only) |                     contours_only_text, hir_on_text = return_contours_of_image(text_only) | ||||||
|                     contours_only_text_parent = return_parent_contours(contours_only_text, hir_on_text) |                     contours_only_text_parent = return_parent_contours(contours_only_text, hir_on_text) | ||||||
| 
 |  | ||||||
|                     areas_cnt_text = np.array([cv2.contourArea(contours_only_text_parent[j]) for j in range(len(contours_only_text_parent))]) |                     areas_cnt_text = np.array([cv2.contourArea(contours_only_text_parent[j]) for j in range(len(contours_only_text_parent))]) | ||||||
| 
 |  | ||||||
|                     areas_cnt_text = areas_cnt_text / float(text_only.shape[0] * text_only.shape[1]) |                     areas_cnt_text = areas_cnt_text / float(text_only.shape[0] * text_only.shape[1]) | ||||||
| 
 |  | ||||||
|                     contours_biggest = contours_only_text_parent[np.argmax(areas_cnt_text)] |                     contours_biggest = contours_only_text_parent[np.argmax(areas_cnt_text)] | ||||||
|                     contours_only_text_parent = [contours_only_text_parent[jz] for jz in range(len(contours_only_text_parent)) if areas_cnt_text[jz] > min_con_area] |                     contours_only_text_parent = [contours_only_text_parent[jz] for jz in range(len(contours_only_text_parent)) if areas_cnt_text[jz] > min_con_area] | ||||||
|                     areas_cnt_text_parent = [areas_cnt_text[jz] for jz in range(len(areas_cnt_text)) if areas_cnt_text[jz] > min_con_area] |                     areas_cnt_text_parent = [areas_cnt_text[jz] for jz in range(len(areas_cnt_text)) if areas_cnt_text[jz] > min_con_area] | ||||||
|  | @ -2975,26 +2789,20 @@ class eynollah: | ||||||
|                     contours_only_text_parent_d = return_parent_contours(contours_only_text_d, hir_on_text_d) |                     contours_only_text_parent_d = return_parent_contours(contours_only_text_d, hir_on_text_d) | ||||||
| 
 | 
 | ||||||
|                     areas_cnt_text_d = np.array([cv2.contourArea(contours_only_text_parent_d[j]) for j in range(len(contours_only_text_parent_d))]) |                     areas_cnt_text_d = np.array([cv2.contourArea(contours_only_text_parent_d[j]) for j in range(len(contours_only_text_parent_d))]) | ||||||
| 
 |  | ||||||
|                     areas_cnt_text_d = areas_cnt_text_d / float(text_only_d.shape[0] * text_only_d.shape[1]) |                     areas_cnt_text_d = areas_cnt_text_d / float(text_only_d.shape[0] * text_only_d.shape[1]) | ||||||
| 
 | 
 | ||||||
|                     contours_biggest_d = contours_only_text_parent_d[np.argmax(areas_cnt_text_d)] |                     contours_biggest_d = contours_only_text_parent_d[np.argmax(areas_cnt_text_d)] | ||||||
|                      |  | ||||||
|                     index_con_parents_d=np.argsort(areas_cnt_text_d) |                     index_con_parents_d=np.argsort(areas_cnt_text_d) | ||||||
|                     contours_only_text_parent_d=list(np.array(contours_only_text_parent_d)[index_con_parents_d] ) |                     contours_only_text_parent_d=list(np.array(contours_only_text_parent_d)[index_con_parents_d] ) | ||||||
|                     areas_cnt_text_d=list(np.array(areas_cnt_text_d)[index_con_parents_d] ) |                     areas_cnt_text_d=list(np.array(areas_cnt_text_d)[index_con_parents_d] ) | ||||||
| 
 | 
 | ||||||
|                     cx_bigest_d_big, cy_biggest_d_big, _, _, _, _, _ = find_new_features_of_contoures([contours_biggest_d]) |                     cx_bigest_d_big, cy_biggest_d_big, _, _, _, _, _ = find_new_features_of_contoures([contours_biggest_d]) | ||||||
|                     cx_bigest_d, cy_biggest_d, _, _, _, _, _ = find_new_features_of_contoures(contours_only_text_parent_d) |                     cx_bigest_d, cy_biggest_d, _, _, _, _, _ = find_new_features_of_contoures(contours_only_text_parent_d) | ||||||
|                      |  | ||||||
|                     try: |                     try: | ||||||
|                         cx_bigest_d_last5=cx_bigest_d[-5:] |                         cx_bigest_d_last5=cx_bigest_d[-5:] | ||||||
|                         cy_biggest_d_last5=cy_biggest_d[-5:] |                         cy_biggest_d_last5=cy_biggest_d[-5:] | ||||||
|                          |  | ||||||
|                         dists_d = [math.sqrt((cx_bigest_big[0]-cx_bigest_d_last5[j])**2 + (cy_biggest_big[0]-cy_biggest_d_last5[j])**2) for j in range(len(cy_biggest_d_last5))] |                         dists_d = [math.sqrt((cx_bigest_big[0]-cx_bigest_d_last5[j])**2 + (cy_biggest_big[0]-cy_biggest_d_last5[j])**2) for j in range(len(cy_biggest_d_last5))] | ||||||
|                          |  | ||||||
|                         ind_largest=len(cx_bigest_d)-5+np.argmin(dists_d) |                         ind_largest=len(cx_bigest_d)-5+np.argmin(dists_d) | ||||||
| 
 |  | ||||||
|                         cx_bigest_d_big[0]=cx_bigest_d[ind_largest] |                         cx_bigest_d_big[0]=cx_bigest_d[ind_largest] | ||||||
|                         cy_biggest_d_big[0]=cy_biggest_d[ind_largest] |                         cy_biggest_d_big[0]=cy_biggest_d[ind_largest] | ||||||
|                     except: |                     except: | ||||||
|  | @ -3032,18 +2840,15 @@ class eynollah: | ||||||
|                         dists = [math.sqrt((p[0] - cx_bigest_d[j]) ** 2 + (p[1] - cy_biggest_d[j]) ** 2) for j in range(len(cx_bigest_d))] |                         dists = [math.sqrt((p[0] - cx_bigest_d[j]) ** 2 + (p[1] - cy_biggest_d[j]) ** 2) for j in range(len(cx_bigest_d))] | ||||||
|                         # print(np.argmin(dists)) |                         # print(np.argmin(dists)) | ||||||
|                         contours_only_text_parent_d_ordered.append(contours_only_text_parent_d[np.argmin(dists)]) |                         contours_only_text_parent_d_ordered.append(contours_only_text_parent_d[np.argmin(dists)]) | ||||||
| 
 |  | ||||||
|                         # img2=np.zeros((text_only.shape[0],text_only.shape[1],3)) |                         # img2=np.zeros((text_only.shape[0],text_only.shape[1],3)) | ||||||
|                         # img2=cv2.fillPoly(img2,pts=[contours_only_text_parent_d[np.argmin(dists)]] ,color=(1,1,1)) |                         # img2=cv2.fillPoly(img2,pts=[contours_only_text_parent_d[np.argmin(dists)]] ,color=(1,1,1)) | ||||||
|                         # plt.imshow(img2[:,:,0]) |                         # plt.imshow(img2[:,:,0]) | ||||||
|                         # plt.show() |                         # plt.show() | ||||||
| 
 |  | ||||||
|                 else: |                 else: | ||||||
|                     contours_only_text, hir_on_text = return_contours_of_image(text_only) |                     contours_only_text, hir_on_text = return_contours_of_image(text_only) | ||||||
|                     contours_only_text_parent = return_parent_contours(contours_only_text, hir_on_text) |                     contours_only_text_parent = return_parent_contours(contours_only_text, hir_on_text) | ||||||
| 
 | 
 | ||||||
|                     areas_cnt_text = np.array([cv2.contourArea(contours_only_text_parent[j]) for j in range(len(contours_only_text_parent))]) |                     areas_cnt_text = np.array([cv2.contourArea(contours_only_text_parent[j]) for j in range(len(contours_only_text_parent))]) | ||||||
| 
 |  | ||||||
|                     areas_cnt_text = areas_cnt_text / float(text_only.shape[0] * text_only.shape[1]) |                     areas_cnt_text = areas_cnt_text / float(text_only.shape[0] * text_only.shape[1]) | ||||||
| 
 | 
 | ||||||
|                     contours_biggest = contours_only_text_parent[np.argmax(areas_cnt_text)] |                     contours_biggest = contours_only_text_parent[np.argmax(areas_cnt_text)] | ||||||
|  | @ -3061,42 +2866,32 @@ class eynollah: | ||||||
|                     # print(len(contours_only_text_parent),len(contours_only_text_parent_d),'vizzz') |                     # print(len(contours_only_text_parent),len(contours_only_text_parent_d),'vizzz') | ||||||
| 
 | 
 | ||||||
|                 txt_con_org = get_textregion_contours_in_org_image(contours_only_text_parent, self.image, slope_first) |                 txt_con_org = get_textregion_contours_in_org_image(contours_only_text_parent, self.image, slope_first) | ||||||
| 
 |  | ||||||
|                 boxes_text, _ = get_text_region_boxes_by_given_contours(contours_only_text_parent) |                 boxes_text, _ = get_text_region_boxes_by_given_contours(contours_only_text_parent) | ||||||
|                 boxes_marginals, _ = get_text_region_boxes_by_given_contours(polygons_of_marginals) |                 boxes_marginals, _ = get_text_region_boxes_by_given_contours(polygons_of_marginals) | ||||||
| 
 | 
 | ||||||
|                 if not self.curved_line: |                 if not self.curved_line: | ||||||
|                     slopes, all_found_texline_polygons, boxes_text, txt_con_org, contours_only_text_parent, all_box_coord, index_by_text_par_con = self.get_slopes_and_deskew_new(txt_con_org, contours_only_text_parent, textline_mask_tot_ea, image_page_rotated, boxes_text, slope_deskew) |                     slopes, all_found_texline_polygons, boxes_text, txt_con_org, contours_only_text_parent, all_box_coord, index_by_text_par_con = self.get_slopes_and_deskew_new(txt_con_org, contours_only_text_parent, textline_mask_tot_ea, image_page_rotated, boxes_text, slope_deskew) | ||||||
| 
 |  | ||||||
|                     slopes_marginals, all_found_texline_polygons_marginals, boxes_marginals, _, polygons_of_marginals, all_box_coord_marginals, index_by_text_par_con_marginal = self.get_slopes_and_deskew_new(polygons_of_marginals, polygons_of_marginals, textline_mask_tot_ea, image_page_rotated, boxes_marginals, slope_deskew) |                     slopes_marginals, all_found_texline_polygons_marginals, boxes_marginals, _, polygons_of_marginals, all_box_coord_marginals, index_by_text_par_con_marginal = self.get_slopes_and_deskew_new(polygons_of_marginals, polygons_of_marginals, textline_mask_tot_ea, image_page_rotated, boxes_marginals, slope_deskew) | ||||||
| 
 | 
 | ||||||
|                 if self.curved_line: |                 else: | ||||||
|                     scale_param = 1 |                     scale_param = 1 | ||||||
|                     all_found_texline_polygons, boxes_text, txt_con_org, contours_only_text_parent, all_box_coord, index_by_text_par_con, slopes = self.get_slopes_and_deskew_new_curved(txt_con_org, contours_only_text_parent, cv2.erode(textline_mask_tot_ea, kernel=self.kernel, iterations=1), image_page_rotated, boxes_text, text_only, num_col_classifier, scale_param, slope_deskew) |                     all_found_texline_polygons, boxes_text, txt_con_org, contours_only_text_parent, all_box_coord, index_by_text_par_con, slopes = self.get_slopes_and_deskew_new_curved(txt_con_org, contours_only_text_parent, cv2.erode(textline_mask_tot_ea, kernel=self.kernel, iterations=1), image_page_rotated, boxes_text, text_only, num_col_classifier, scale_param, slope_deskew) | ||||||
| 
 |  | ||||||
|                     all_found_texline_polygons = small_textlines_to_parent_adherence2(all_found_texline_polygons, textline_mask_tot_ea, num_col_classifier) |                     all_found_texline_polygons = small_textlines_to_parent_adherence2(all_found_texline_polygons, textline_mask_tot_ea, num_col_classifier) | ||||||
| 
 |  | ||||||
|                     all_found_texline_polygons_marginals, boxes_marginals, _, polygons_of_marginals, all_box_coord_marginals, index_by_text_par_con_marginal, slopes_marginals = self.get_slopes_and_deskew_new_curved(polygons_of_marginals, polygons_of_marginals, cv2.erode(textline_mask_tot_ea, kernel=self.kernel, iterations=1), image_page_rotated, boxes_marginals, text_only, num_col_classifier, scale_param, slope_deskew) |                     all_found_texline_polygons_marginals, boxes_marginals, _, polygons_of_marginals, all_box_coord_marginals, index_by_text_par_con_marginal, slopes_marginals = self.get_slopes_and_deskew_new_curved(polygons_of_marginals, polygons_of_marginals, cv2.erode(textline_mask_tot_ea, kernel=self.kernel, iterations=1), image_page_rotated, boxes_marginals, text_only, num_col_classifier, scale_param, slope_deskew) | ||||||
| 
 |  | ||||||
|                     all_found_texline_polygons_marginals = small_textlines_to_parent_adherence2(all_found_texline_polygons_marginals, textline_mask_tot_ea, num_col_classifier) |                     all_found_texline_polygons_marginals = small_textlines_to_parent_adherence2(all_found_texline_polygons_marginals, textline_mask_tot_ea, num_col_classifier) | ||||||
| 
 |  | ||||||
|                 index_of_vertical_text_contours = np.array(range(len(slopes)))[(abs(np.array(slopes)) > 60)] |                 index_of_vertical_text_contours = np.array(range(len(slopes)))[(abs(np.array(slopes)) > 60)] | ||||||
| 
 |  | ||||||
|                 contours_text_vertical = [contours_only_text_parent[i] for i in index_of_vertical_text_contours] |                 contours_text_vertical = [contours_only_text_parent[i] for i in index_of_vertical_text_contours] | ||||||
| 
 | 
 | ||||||
|                 K.clear_session() |                 K.clear_session() | ||||||
|                 gc.collect() |                 gc.collect() | ||||||
| 
 |  | ||||||
|                 # print(index_by_text_par_con,'index_by_text_par_con') |                 # print(index_by_text_par_con,'index_by_text_par_con') | ||||||
| 
 | 
 | ||||||
|                 if self.full_layout: |                 if self.full_layout: | ||||||
|                     if np.abs(slope_deskew) >= SLOPE_THRESHOLD: |                     if np.abs(slope_deskew) >= SLOPE_THRESHOLD: | ||||||
|                         contours_only_text_parent_d_ordered = list(np.array(contours_only_text_parent_d_ordered)[index_by_text_par_con]) |                         contours_only_text_parent_d_ordered = list(np.array(contours_only_text_parent_d_ordered)[index_by_text_par_con]) | ||||||
| 
 |  | ||||||
|                         text_regions_p, contours_only_text_parent, contours_only_text_parent_h, all_box_coord, all_box_coord_h, all_found_texline_polygons, all_found_texline_polygons_h, slopes, slopes_h, contours_only_text_parent_d_ordered, contours_only_text_parent_h_d_ordered = check_any_text_region_in_model_one_is_main_or_header(text_regions_p, regions_fully, contours_only_text_parent, all_box_coord, all_found_texline_polygons, slopes, contours_only_text_parent_d_ordered) |                         text_regions_p, contours_only_text_parent, contours_only_text_parent_h, all_box_coord, all_box_coord_h, all_found_texline_polygons, all_found_texline_polygons_h, slopes, slopes_h, contours_only_text_parent_d_ordered, contours_only_text_parent_h_d_ordered = check_any_text_region_in_model_one_is_main_or_header(text_regions_p, regions_fully, contours_only_text_parent, all_box_coord, all_found_texline_polygons, slopes, contours_only_text_parent_d_ordered) | ||||||
|                     else: |                     else: | ||||||
|                         contours_only_text_parent_d_ordered = None |                         contours_only_text_parent_d_ordered = None | ||||||
| 
 |  | ||||||
|                         text_regions_p, contours_only_text_parent, contours_only_text_parent_h, all_box_coord, all_box_coord_h, all_found_texline_polygons, all_found_texline_polygons_h, slopes, slopes_h, contours_only_text_parent_d_ordered, contours_only_text_parent_h_d_ordered = check_any_text_region_in_model_one_is_main_or_header(text_regions_p, regions_fully, contours_only_text_parent, all_box_coord, all_found_texline_polygons, slopes, contours_only_text_parent_d_ordered) |                         text_regions_p, contours_only_text_parent, contours_only_text_parent_h, all_box_coord, all_box_coord_h, all_found_texline_polygons, all_found_texline_polygons_h, slopes, slopes_h, contours_only_text_parent_d_ordered, contours_only_text_parent_h_d_ordered = check_any_text_region_in_model_one_is_main_or_header(text_regions_p, regions_fully, contours_only_text_parent, all_box_coord, all_found_texline_polygons, slopes, contours_only_text_parent_d_ordered) | ||||||
| 
 | 
 | ||||||
|                     if self.dir_of_layout is not None: |                     if self.dir_of_layout is not None: | ||||||
|  | @ -3110,10 +2905,8 @@ class eynollah: | ||||||
|                     ##print('Job done in: '+str(time.time()-t1)) |                     ##print('Job done in: '+str(time.time()-t1)) | ||||||
| 
 | 
 | ||||||
|                     polygons_of_tabels = [] |                     polygons_of_tabels = [] | ||||||
| 
 |  | ||||||
|                     pixel_img = 4 |                     pixel_img = 4 | ||||||
|                     polygons_of_drop_capitals = return_contours_of_interested_region_by_min_size(text_regions_p, pixel_img) |                     polygons_of_drop_capitals = return_contours_of_interested_region_by_min_size(text_regions_p, pixel_img) | ||||||
| 
 |  | ||||||
|                     all_found_texline_polygons = adhere_drop_capital_region_into_cprresponding_textline(text_regions_p, polygons_of_drop_capitals, contours_only_text_parent, contours_only_text_parent_h, all_box_coord, all_box_coord_h, all_found_texline_polygons, all_found_texline_polygons_h, kernel=self.kernel, curved_line=self.curved_line) |                     all_found_texline_polygons = adhere_drop_capital_region_into_cprresponding_textline(text_regions_p, polygons_of_drop_capitals, contours_only_text_parent, contours_only_text_parent_h, all_box_coord, all_box_coord_h, all_found_texline_polygons, all_found_texline_polygons_h, kernel=self.kernel, curved_line=self.curved_line) | ||||||
| 
 | 
 | ||||||
|                     # print(len(contours_only_text_parent_h),len(contours_only_text_parent_h_d_ordered),'contours_only_text_parent_h') |                     # print(len(contours_only_text_parent_h),len(contours_only_text_parent_h_d_ordered),'contours_only_text_parent_h') | ||||||
|  |  | ||||||
		Loading…
	
	Add table
		Add a link
		
	
		Reference in a new issue