mirror of
https://github.com/qurator-spk/eynollah.git
synced 2025-12-01 08:44:13 +01:00
🔥 refactor eynollah ocr
.
This commit is contained in:
parent
30f9c695dc
commit
b161e33854
5 changed files with 769 additions and 865 deletions
|
|
@ -88,7 +88,6 @@ def ocr_cli(
|
||||||
tr_ocr,
|
tr_ocr,
|
||||||
do_not_mask_with_textline_contour,
|
do_not_mask_with_textline_contour,
|
||||||
batch_size,
|
batch_size,
|
||||||
dataset_abbrevation,
|
|
||||||
min_conf_value_of_textline_text,
|
min_conf_value_of_textline_text,
|
||||||
):
|
):
|
||||||
"""
|
"""
|
||||||
|
|
@ -101,7 +100,6 @@ def ocr_cli(
|
||||||
tr_ocr=tr_ocr,
|
tr_ocr=tr_ocr,
|
||||||
do_not_mask_with_textline_contour=do_not_mask_with_textline_contour,
|
do_not_mask_with_textline_contour=do_not_mask_with_textline_contour,
|
||||||
batch_size=batch_size,
|
batch_size=batch_size,
|
||||||
pref_of_dataset=dataset_abbrevation,
|
|
||||||
min_conf_value_of_textline_text=min_conf_value_of_textline_text)
|
min_conf_value_of_textline_text=min_conf_value_of_textline_text)
|
||||||
eynollah_ocr.run(overwrite=overwrite,
|
eynollah_ocr.run(overwrite=overwrite,
|
||||||
dir_in=dir_in,
|
dir_in=dir_in,
|
||||||
|
|
|
||||||
|
|
@ -1,24 +1,22 @@
|
||||||
# FIXME: fix all of those...
|
# FIXME: fix all of those...
|
||||||
# pyright: reportPossiblyUnboundVariable=false
|
|
||||||
# pyright: reportOptionalMemberAccess=false
|
|
||||||
# pyright: reportArgumentType=false
|
|
||||||
# pyright: reportCallIssue=false
|
|
||||||
# pyright: reportOptionalSubscript=false
|
# pyright: reportOptionalSubscript=false
|
||||||
|
|
||||||
from logging import Logger, getLogger
|
from logging import Logger, getLogger
|
||||||
from typing import Optional
|
from typing import List, Optional
|
||||||
from pathlib import Path
|
from pathlib import Path
|
||||||
import os
|
import os
|
||||||
import gc
|
import gc
|
||||||
import sys
|
|
||||||
import math
|
import math
|
||||||
import time
|
from dataclasses import dataclass
|
||||||
|
|
||||||
import cv2
|
import cv2
|
||||||
import xml.etree.ElementTree as ET
|
from cv2.typing import MatLike
|
||||||
from PIL import Image, ImageDraw, ImageFont
|
from xml.etree import ElementTree as ET
|
||||||
|
from PIL import Image, ImageDraw
|
||||||
import numpy as np
|
import numpy as np
|
||||||
from eynollah.model_zoo import EynollahModelZoo
|
from eynollah.model_zoo import EynollahModelZoo
|
||||||
|
from eynollah.utils.font import get_font
|
||||||
|
from eynollah.utils.xml import etree_namespace_for_element_tag
|
||||||
try:
|
try:
|
||||||
import torch
|
import torch
|
||||||
except ImportError:
|
except ImportError:
|
||||||
|
|
@ -38,11 +36,13 @@ from .utils.utils_ocr import (
|
||||||
rotate_image_with_padding,
|
rotate_image_with_padding,
|
||||||
)
|
)
|
||||||
|
|
||||||
# cannot use importlib.resources until we move to 3.9+ forimportlib.resources.files
|
# TODO: refine typing
|
||||||
if sys.version_info < (3, 10):
|
@dataclass
|
||||||
import importlib_resources
|
class EynollahOcrResult:
|
||||||
else:
|
extracted_texts_merged: List
|
||||||
import importlib.resources as importlib_resources
|
extracted_conf_value_merged: Optional[List]
|
||||||
|
cropped_lines_region_indexer: List
|
||||||
|
total_bb_coordinates:List
|
||||||
|
|
||||||
class Eynollah_ocr:
|
class Eynollah_ocr:
|
||||||
def __init__(
|
def __init__(
|
||||||
|
|
@ -76,6 +76,7 @@ class Eynollah_ocr:
|
||||||
|
|
||||||
@property
|
@property
|
||||||
def device(self):
|
def device(self):
|
||||||
|
assert torch
|
||||||
if torch.cuda.is_available():
|
if torch.cuda.is_available():
|
||||||
self.logger.info("Using GPU acceleration")
|
self.logger.info("Using GPU acceleration")
|
||||||
return torch.device("cuda:0")
|
return torch.device("cuda:0")
|
||||||
|
|
@ -83,59 +84,17 @@ class Eynollah_ocr:
|
||||||
self.logger.info("Using CPU processing")
|
self.logger.info("Using CPU processing")
|
||||||
return torch.device("cpu")
|
return torch.device("cpu")
|
||||||
|
|
||||||
def run(self, overwrite: bool = False,
|
def run_trocr(
|
||||||
dir_in: Optional[str] = None,
|
self,
|
||||||
# Prediction with RGB and binarized images for selected pages, should not be the default
|
*,
|
||||||
dir_in_bin: Optional[str] = None,
|
img: MatLike,
|
||||||
image_filename: Optional[str] = None,
|
page_tree: ET.ElementTree,
|
||||||
dir_xmls: Optional[str] = None,
|
page_ns,
|
||||||
dir_out_image_text: Optional[str] = None,
|
tr_ocr_input_height_and_width,
|
||||||
dir_out: Optional[str] = None,
|
) -> EynollahOcrResult:
|
||||||
):
|
|
||||||
if dir_in:
|
|
||||||
ls_imgs = [os.path.join(dir_in, image_filename)
|
|
||||||
for image_filename in filter(is_image_filename,
|
|
||||||
os.listdir(dir_in))]
|
|
||||||
else:
|
|
||||||
assert image_filename
|
|
||||||
ls_imgs = [image_filename]
|
|
||||||
|
|
||||||
if self.tr_ocr:
|
|
||||||
tr_ocr_input_height_and_width = 384
|
|
||||||
for dir_img in ls_imgs:
|
|
||||||
file_name = Path(dir_img).stem
|
|
||||||
assert dir_xmls # FIXME: check the logic
|
|
||||||
dir_xml = os.path.join(dir_xmls, file_name+'.xml')
|
|
||||||
assert dir_out # FIXME: check the logic
|
|
||||||
out_file_ocr = os.path.join(dir_out, file_name+'.xml')
|
|
||||||
|
|
||||||
if os.path.exists(out_file_ocr):
|
|
||||||
if overwrite:
|
|
||||||
self.logger.warning("will overwrite existing output file '%s'", out_file_ocr)
|
|
||||||
else:
|
|
||||||
self.logger.warning("will skip input for existing output file '%s'", out_file_ocr)
|
|
||||||
continue
|
|
||||||
|
|
||||||
img = cv2.imread(dir_img)
|
|
||||||
|
|
||||||
if dir_out_image_text:
|
|
||||||
out_image_with_text = os.path.join(dir_out_image_text, file_name+'.png')
|
|
||||||
image_text = Image.new("RGB", (img.shape[1], img.shape[0]), "white")
|
|
||||||
draw = ImageDraw.Draw(image_text)
|
|
||||||
total_bb_coordinates = []
|
total_bb_coordinates = []
|
||||||
|
|
||||||
##file_name = Path(dir_xmls).stem
|
|
||||||
tree1 = ET.parse(dir_xml, parser = ET.XMLParser(encoding="utf-8"))
|
|
||||||
root1=tree1.getroot()
|
|
||||||
alltags=[elem.tag for elem in root1.iter()]
|
|
||||||
link=alltags[0].split('}')[0]+'}'
|
|
||||||
|
|
||||||
name_space = alltags[0].split('}')[0]
|
|
||||||
name_space = name_space.split('{')[1]
|
|
||||||
|
|
||||||
region_tags=np.unique([x for x in alltags if x.endswith('TextRegion')])
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
cropped_lines = []
|
cropped_lines = []
|
||||||
cropped_lines_region_indexer = []
|
cropped_lines_region_indexer = []
|
||||||
|
|
@ -146,7 +105,7 @@ class Eynollah_ocr:
|
||||||
indexer_text_region = 0
|
indexer_text_region = 0
|
||||||
indexer_b_s = 0
|
indexer_b_s = 0
|
||||||
|
|
||||||
for nn in root1.iter(region_tags):
|
for nn in page_tree.getroot().iter(f'{{{page_ns}}}TextRegion'):
|
||||||
for child_textregion in nn:
|
for child_textregion in nn:
|
||||||
if child_textregion.tag.endswith("TextLine"):
|
if child_textregion.tag.endswith("TextLine"):
|
||||||
|
|
||||||
|
|
@ -159,7 +118,6 @@ class Eynollah_ocr:
|
||||||
for x in p_h] )
|
for x in p_h] )
|
||||||
x,y,w,h = cv2.boundingRect(textline_coords)
|
x,y,w,h = cv2.boundingRect(textline_coords)
|
||||||
|
|
||||||
if dir_out_image_text:
|
|
||||||
total_bb_coordinates.append([x,y,w,h])
|
total_bb_coordinates.append([x,y,w,h])
|
||||||
|
|
||||||
h2w_ratio = h/float(w)
|
h2w_ratio = h/float(w)
|
||||||
|
|
@ -301,185 +259,37 @@ class Eynollah_ocr:
|
||||||
extracted_texts_merged = [ind for ind in extracted_texts_merged if ind is not None]
|
extracted_texts_merged = [ind for ind in extracted_texts_merged if ind is not None]
|
||||||
#print(extracted_texts_merged, len(extracted_texts_merged))
|
#print(extracted_texts_merged, len(extracted_texts_merged))
|
||||||
|
|
||||||
unique_cropped_lines_region_indexer = np.unique(cropped_lines_region_indexer)
|
return EynollahOcrResult(
|
||||||
|
extracted_texts_merged=extracted_texts_merged,
|
||||||
|
extracted_conf_value_merged=None,
|
||||||
|
cropped_lines_region_indexer=cropped_lines_region_indexer,
|
||||||
|
total_bb_coordinates=total_bb_coordinates,
|
||||||
|
)
|
||||||
|
|
||||||
if dir_out_image_text:
|
def run_cnn(
|
||||||
|
self,
|
||||||
|
*,
|
||||||
|
img: MatLike,
|
||||||
|
img_bin: Optional[MatLike],
|
||||||
|
page_tree: ET.ElementTree,
|
||||||
|
page_ns,
|
||||||
|
image_width,
|
||||||
|
image_height,
|
||||||
|
) -> EynollahOcrResult:
|
||||||
|
|
||||||
#font_path = "Charis-7.000/Charis-Regular.ttf" # Make sure this file exists!
|
|
||||||
font = importlib_resources.files(__package__) / "Charis-Regular.ttf"
|
|
||||||
with importlib_resources.as_file(font) as font:
|
|
||||||
font = ImageFont.truetype(font=font, size=40)
|
|
||||||
|
|
||||||
for indexer_text, bb_ind in enumerate(total_bb_coordinates):
|
|
||||||
|
|
||||||
|
|
||||||
x_bb = bb_ind[0]
|
|
||||||
y_bb = bb_ind[1]
|
|
||||||
w_bb = bb_ind[2]
|
|
||||||
h_bb = bb_ind[3]
|
|
||||||
|
|
||||||
font = fit_text_single_line(draw, extracted_texts_merged[indexer_text],
|
|
||||||
font.path, w_bb, int(h_bb*0.4) )
|
|
||||||
|
|
||||||
##draw.rectangle([x_bb, y_bb, x_bb + w_bb, y_bb + h_bb], outline="red", width=2)
|
|
||||||
|
|
||||||
text_bbox = draw.textbbox((0, 0), extracted_texts_merged[indexer_text], font=font)
|
|
||||||
text_width = text_bbox[2] - text_bbox[0]
|
|
||||||
text_height = text_bbox[3] - text_bbox[1]
|
|
||||||
|
|
||||||
text_x = x_bb + (w_bb - text_width) // 2 # Center horizontally
|
|
||||||
text_y = y_bb + (h_bb - text_height) // 2 # Center vertically
|
|
||||||
|
|
||||||
# Draw the text
|
|
||||||
draw.text((text_x, text_y), extracted_texts_merged[indexer_text], fill="black", font=font)
|
|
||||||
image_text.save(out_image_with_text)
|
|
||||||
|
|
||||||
#print(len(unique_cropped_lines_region_indexer), 'unique_cropped_lines_region_indexer')
|
|
||||||
#######text_by_textregion = []
|
|
||||||
#######for ind in unique_cropped_lines_region_indexer:
|
|
||||||
#######ind = np.array(cropped_lines_region_indexer)==ind
|
|
||||||
#######extracted_texts_merged_un = np.array(extracted_texts_merged)[ind]
|
|
||||||
#######text_by_textregion.append(" ".join(extracted_texts_merged_un))
|
|
||||||
|
|
||||||
text_by_textregion = []
|
|
||||||
for ind in unique_cropped_lines_region_indexer:
|
|
||||||
ind = np.array(cropped_lines_region_indexer) == ind
|
|
||||||
extracted_texts_merged_un = np.array(extracted_texts_merged)[ind]
|
|
||||||
if len(extracted_texts_merged_un)>1:
|
|
||||||
text_by_textregion_ind = ""
|
|
||||||
next_glue = ""
|
|
||||||
for indt in range(len(extracted_texts_merged_un)):
|
|
||||||
if (extracted_texts_merged_un[indt].endswith('⸗') or
|
|
||||||
extracted_texts_merged_un[indt].endswith('-') or
|
|
||||||
extracted_texts_merged_un[indt].endswith('¬')):
|
|
||||||
text_by_textregion_ind += next_glue + extracted_texts_merged_un[indt][:-1]
|
|
||||||
next_glue = ""
|
|
||||||
else:
|
|
||||||
text_by_textregion_ind += next_glue + extracted_texts_merged_un[indt]
|
|
||||||
next_glue = " "
|
|
||||||
text_by_textregion.append(text_by_textregion_ind)
|
|
||||||
else:
|
|
||||||
text_by_textregion.append(" ".join(extracted_texts_merged_un))
|
|
||||||
|
|
||||||
|
|
||||||
indexer = 0
|
|
||||||
indexer_textregion = 0
|
|
||||||
for nn in root1.iter(region_tags):
|
|
||||||
#id_textregion = nn.attrib['id']
|
|
||||||
#id_textregions.append(id_textregion)
|
|
||||||
#textregions_by_existing_ids.append(text_by_textregion[indexer_textregion])
|
|
||||||
|
|
||||||
is_textregion_text = False
|
|
||||||
for childtest in nn:
|
|
||||||
if childtest.tag.endswith("TextEquiv"):
|
|
||||||
is_textregion_text = True
|
|
||||||
|
|
||||||
if not is_textregion_text:
|
|
||||||
text_subelement_textregion = ET.SubElement(nn, 'TextEquiv')
|
|
||||||
unicode_textregion = ET.SubElement(text_subelement_textregion, 'Unicode')
|
|
||||||
|
|
||||||
|
|
||||||
has_textline = False
|
|
||||||
for child_textregion in nn:
|
|
||||||
if child_textregion.tag.endswith("TextLine"):
|
|
||||||
|
|
||||||
is_textline_text = False
|
|
||||||
for childtest2 in child_textregion:
|
|
||||||
if childtest2.tag.endswith("TextEquiv"):
|
|
||||||
is_textline_text = True
|
|
||||||
|
|
||||||
|
|
||||||
if not is_textline_text:
|
|
||||||
text_subelement = ET.SubElement(child_textregion, 'TextEquiv')
|
|
||||||
##text_subelement.set('conf', f"{extracted_conf_value_merged[indexer]:.2f}")
|
|
||||||
unicode_textline = ET.SubElement(text_subelement, 'Unicode')
|
|
||||||
unicode_textline.text = extracted_texts_merged[indexer]
|
|
||||||
else:
|
|
||||||
for childtest3 in child_textregion:
|
|
||||||
if childtest3.tag.endswith("TextEquiv"):
|
|
||||||
for child_uc in childtest3:
|
|
||||||
if child_uc.tag.endswith("Unicode"):
|
|
||||||
##childtest3.set('conf', f"{extracted_conf_value_merged[indexer]:.2f}")
|
|
||||||
child_uc.text = extracted_texts_merged[indexer]
|
|
||||||
|
|
||||||
indexer = indexer + 1
|
|
||||||
has_textline = True
|
|
||||||
if has_textline:
|
|
||||||
if is_textregion_text:
|
|
||||||
for child4 in nn:
|
|
||||||
if child4.tag.endswith("TextEquiv"):
|
|
||||||
for childtr_uc in child4:
|
|
||||||
if childtr_uc.tag.endswith("Unicode"):
|
|
||||||
childtr_uc.text = text_by_textregion[indexer_textregion]
|
|
||||||
else:
|
|
||||||
unicode_textregion.text = text_by_textregion[indexer_textregion]
|
|
||||||
indexer_textregion = indexer_textregion + 1
|
|
||||||
|
|
||||||
###sample_order = [(id_to_order[tid], text)
|
|
||||||
### for tid, text in zip(id_textregions, textregions_by_existing_ids)
|
|
||||||
### if tid in id_to_order]
|
|
||||||
|
|
||||||
##ordered_texts_sample = [text for _, text in sorted(sample_order)]
|
|
||||||
##tot_page_text = ' '.join(ordered_texts_sample)
|
|
||||||
|
|
||||||
##for page_element in root1.iter(link+'Page'):
|
|
||||||
##text_page = ET.SubElement(page_element, 'TextEquiv')
|
|
||||||
##unicode_textpage = ET.SubElement(text_page, 'Unicode')
|
|
||||||
##unicode_textpage.text = tot_page_text
|
|
||||||
|
|
||||||
ET.register_namespace("",name_space)
|
|
||||||
tree1.write(out_file_ocr,xml_declaration=True,method='xml',encoding="utf-8",default_namespace=None)
|
|
||||||
else:
|
|
||||||
###max_len = 280#512#280#512
|
|
||||||
###padding_token = 1500#299#1500#299
|
|
||||||
image_width = 512#max_len * 4
|
|
||||||
image_height = 32
|
|
||||||
|
|
||||||
|
|
||||||
img_size=(image_width, image_height)
|
|
||||||
|
|
||||||
for dir_img in ls_imgs:
|
|
||||||
file_name = Path(dir_img).stem
|
|
||||||
dir_xml = os.path.join(dir_xmls, file_name+'.xml')
|
|
||||||
out_file_ocr = os.path.join(dir_out, file_name+'.xml')
|
|
||||||
|
|
||||||
if os.path.exists(out_file_ocr):
|
|
||||||
if overwrite:
|
|
||||||
self.logger.warning("will overwrite existing output file '%s'", out_file_ocr)
|
|
||||||
else:
|
|
||||||
self.logger.warning("will skip input for existing output file '%s'", out_file_ocr)
|
|
||||||
continue
|
|
||||||
|
|
||||||
img = cv2.imread(dir_img)
|
|
||||||
if dir_in_bin is not None:
|
|
||||||
cropped_lines_bin = []
|
|
||||||
img_bin = cv2.imread(os.path.join(dir_in_bin, file_name+'.png'))
|
|
||||||
|
|
||||||
if dir_out_image_text:
|
|
||||||
out_image_with_text = os.path.join(dir_out_image_text, file_name+'.png')
|
|
||||||
image_text = Image.new("RGB", (img.shape[1], img.shape[0]), "white")
|
|
||||||
draw = ImageDraw.Draw(image_text)
|
|
||||||
total_bb_coordinates = []
|
total_bb_coordinates = []
|
||||||
|
|
||||||
tree1 = ET.parse(dir_xml, parser = ET.XMLParser(encoding="utf-8"))
|
|
||||||
root1=tree1.getroot()
|
|
||||||
alltags=[elem.tag for elem in root1.iter()]
|
|
||||||
link=alltags[0].split('}')[0]+'}'
|
|
||||||
|
|
||||||
name_space = alltags[0].split('}')[0]
|
|
||||||
name_space = name_space.split('{')[1]
|
|
||||||
|
|
||||||
region_tags=np.unique([x for x in alltags if x.endswith('TextRegion')])
|
|
||||||
|
|
||||||
cropped_lines = []
|
cropped_lines = []
|
||||||
|
img_crop_bin = None
|
||||||
|
imgs_bin = None
|
||||||
|
imgs_bin_ver_flipped = None
|
||||||
|
cropped_lines_bin = []
|
||||||
cropped_lines_ver_index = []
|
cropped_lines_ver_index = []
|
||||||
cropped_lines_region_indexer = []
|
cropped_lines_region_indexer = []
|
||||||
cropped_lines_meging_indexing = []
|
cropped_lines_meging_indexing = []
|
||||||
|
|
||||||
tinl = time.time()
|
|
||||||
indexer_text_region = 0
|
indexer_text_region = 0
|
||||||
indexer_textlines = 0
|
for nn in page_tree.getroot().iter(f'{{{page_ns}}}TextRegion'):
|
||||||
for nn in root1.iter(region_tags):
|
|
||||||
try:
|
try:
|
||||||
type_textregion = nn.attrib['type']
|
type_textregion = nn.attrib['type']
|
||||||
except:
|
except:
|
||||||
|
|
@ -502,13 +312,12 @@ class Eynollah_ocr:
|
||||||
if type_textregion=='drop-capital':
|
if type_textregion=='drop-capital':
|
||||||
angle_degrees = 0
|
angle_degrees = 0
|
||||||
|
|
||||||
if dir_out_image_text:
|
|
||||||
total_bb_coordinates.append([x,y,w,h])
|
total_bb_coordinates.append([x,y,w,h])
|
||||||
|
|
||||||
w_scaled = w * image_height/float(h)
|
w_scaled = w * image_height/float(h)
|
||||||
|
|
||||||
img_poly_on_img = np.copy(img)
|
img_poly_on_img = np.copy(img)
|
||||||
if dir_in_bin is not None:
|
if img_bin:
|
||||||
img_poly_on_img_bin = np.copy(img_bin)
|
img_poly_on_img_bin = np.copy(img_bin)
|
||||||
img_crop_bin = img_poly_on_img_bin[y:y+h, x:x+w, :]
|
img_crop_bin = img_poly_on_img_bin[y:y+h, x:x+w, :]
|
||||||
|
|
||||||
|
|
@ -528,7 +337,7 @@ class Eynollah_ocr:
|
||||||
better_des_slope = get_orientation_moments(textline_coords)
|
better_des_slope = get_orientation_moments(textline_coords)
|
||||||
|
|
||||||
img_crop = rotate_image_with_padding(img_crop, better_des_slope)
|
img_crop = rotate_image_with_padding(img_crop, better_des_slope)
|
||||||
if dir_in_bin is not None:
|
if img_bin:
|
||||||
img_crop_bin = rotate_image_with_padding(img_crop_bin, better_des_slope)
|
img_crop_bin = rotate_image_with_padding(img_crop_bin, better_des_slope)
|
||||||
|
|
||||||
mask_poly = rotate_image_with_padding(mask_poly, better_des_slope)
|
mask_poly = rotate_image_with_padding(mask_poly, better_des_slope)
|
||||||
|
|
@ -542,13 +351,13 @@ class Eynollah_ocr:
|
||||||
|
|
||||||
if not self.do_not_mask_with_textline_contour:
|
if not self.do_not_mask_with_textline_contour:
|
||||||
img_crop[mask_poly==0] = 255
|
img_crop[mask_poly==0] = 255
|
||||||
if dir_in_bin is not None:
|
if img_bin:
|
||||||
img_crop_bin = img_crop_bin[y_n:y_n+h_n, x_n:x_n+w_n, :]
|
img_crop_bin = img_crop_bin[y_n:y_n+h_n, x_n:x_n+w_n, :]
|
||||||
if not self.do_not_mask_with_textline_contour:
|
if not self.do_not_mask_with_textline_contour:
|
||||||
img_crop_bin[mask_poly==0] = 255
|
img_crop_bin[mask_poly==0] = 255
|
||||||
|
|
||||||
if mask_poly[:,:,0].sum() /float(w_n*h_n) < 0.50 and w_scaled > 90:
|
if mask_poly[:,:,0].sum() /float(w_n*h_n) < 0.50 and w_scaled > 90:
|
||||||
if dir_in_bin is not None:
|
if img_bin:
|
||||||
img_crop, img_crop_bin = \
|
img_crop, img_crop_bin = \
|
||||||
break_curved_line_into_small_pieces_and_then_merge(
|
break_curved_line_into_small_pieces_and_then_merge(
|
||||||
img_crop, mask_poly, img_crop_bin)
|
img_crop, mask_poly, img_crop_bin)
|
||||||
|
|
@ -561,14 +370,14 @@ class Eynollah_ocr:
|
||||||
better_des_slope = 0
|
better_des_slope = 0
|
||||||
if not self.do_not_mask_with_textline_contour:
|
if not self.do_not_mask_with_textline_contour:
|
||||||
img_crop[mask_poly==0] = 255
|
img_crop[mask_poly==0] = 255
|
||||||
if dir_in_bin is not None:
|
if img_bin:
|
||||||
if not self.do_not_mask_with_textline_contour:
|
if not self.do_not_mask_with_textline_contour:
|
||||||
img_crop_bin[mask_poly==0] = 255
|
img_crop_bin[mask_poly==0] = 255
|
||||||
if type_textregion=='drop-capital':
|
if type_textregion=='drop-capital':
|
||||||
pass
|
pass
|
||||||
else:
|
else:
|
||||||
if mask_poly[:,:,0].sum() /float(w*h) < 0.50 and w_scaled > 90:
|
if mask_poly[:,:,0].sum() /float(w*h) < 0.50 and w_scaled > 90:
|
||||||
if dir_in_bin is not None:
|
if img_bin:
|
||||||
img_crop, img_crop_bin = \
|
img_crop, img_crop_bin = \
|
||||||
break_curved_line_into_small_pieces_and_then_merge(
|
break_curved_line_into_small_pieces_and_then_merge(
|
||||||
img_crop, mask_poly, img_crop_bin)
|
img_crop, mask_poly, img_crop_bin)
|
||||||
|
|
@ -587,13 +396,13 @@ class Eynollah_ocr:
|
||||||
cropped_lines_ver_index.append(0)
|
cropped_lines_ver_index.append(0)
|
||||||
|
|
||||||
cropped_lines_meging_indexing.append(0)
|
cropped_lines_meging_indexing.append(0)
|
||||||
if dir_in_bin is not None:
|
if img_bin:
|
||||||
img_fin = preprocess_and_resize_image_for_ocrcnn_model(
|
img_fin = preprocess_and_resize_image_for_ocrcnn_model(
|
||||||
img_crop_bin, image_height, image_width)
|
img_crop_bin, image_height, image_width)
|
||||||
cropped_lines_bin.append(img_fin)
|
cropped_lines_bin.append(img_fin)
|
||||||
else:
|
else:
|
||||||
splited_images, splited_images_bin = return_textlines_split_if_needed(
|
splited_images, splited_images_bin = return_textlines_split_if_needed(
|
||||||
img_crop, img_crop_bin if dir_in_bin is not None else None)
|
img_crop, img_crop_bin if img_bin else None)
|
||||||
if splited_images:
|
if splited_images:
|
||||||
img_fin = preprocess_and_resize_image_for_ocrcnn_model(
|
img_fin = preprocess_and_resize_image_for_ocrcnn_model(
|
||||||
splited_images[0], image_height, image_width)
|
splited_images[0], image_height, image_width)
|
||||||
|
|
@ -616,7 +425,7 @@ class Eynollah_ocr:
|
||||||
else:
|
else:
|
||||||
cropped_lines_ver_index.append(0)
|
cropped_lines_ver_index.append(0)
|
||||||
|
|
||||||
if dir_in_bin is not None:
|
if img_bin:
|
||||||
img_fin = preprocess_and_resize_image_for_ocrcnn_model(
|
img_fin = preprocess_and_resize_image_for_ocrcnn_model(
|
||||||
splited_images_bin[0], image_height, image_width)
|
splited_images_bin[0], image_height, image_width)
|
||||||
cropped_lines_bin.append(img_fin)
|
cropped_lines_bin.append(img_fin)
|
||||||
|
|
@ -635,7 +444,7 @@ class Eynollah_ocr:
|
||||||
else:
|
else:
|
||||||
cropped_lines_ver_index.append(0)
|
cropped_lines_ver_index.append(0)
|
||||||
|
|
||||||
if dir_in_bin is not None:
|
if img_bin:
|
||||||
img_fin = preprocess_and_resize_image_for_ocrcnn_model(
|
img_fin = preprocess_and_resize_image_for_ocrcnn_model(
|
||||||
img_crop_bin, image_height, image_width)
|
img_crop_bin, image_height, image_width)
|
||||||
cropped_lines_bin.append(img_fin)
|
cropped_lines_bin.append(img_fin)
|
||||||
|
|
@ -648,6 +457,7 @@ class Eynollah_ocr:
|
||||||
|
|
||||||
n_iterations = math.ceil(len(cropped_lines) / self.b_s)
|
n_iterations = math.ceil(len(cropped_lines) / self.b_s)
|
||||||
|
|
||||||
|
# FIXME: copy pasta
|
||||||
for i in range(n_iterations):
|
for i in range(n_iterations):
|
||||||
if i==(n_iterations-1):
|
if i==(n_iterations-1):
|
||||||
n_start = i*self.b_s
|
n_start = i*self.b_s
|
||||||
|
|
@ -667,7 +477,7 @@ class Eynollah_ocr:
|
||||||
else:
|
else:
|
||||||
imgs_ver_flipped = None
|
imgs_ver_flipped = None
|
||||||
|
|
||||||
if dir_in_bin is not None:
|
if img_bin:
|
||||||
imgs_bin = cropped_lines_bin[n_start:]
|
imgs_bin = cropped_lines_bin[n_start:]
|
||||||
imgs_bin = np.array(imgs_bin)
|
imgs_bin = np.array(imgs_bin)
|
||||||
imgs_bin = imgs_bin.reshape(imgs_bin.shape[0], image_height, image_width, 3)
|
imgs_bin = imgs_bin.reshape(imgs_bin.shape[0], image_height, image_width, 3)
|
||||||
|
|
@ -697,7 +507,7 @@ class Eynollah_ocr:
|
||||||
imgs_ver_flipped = None
|
imgs_ver_flipped = None
|
||||||
|
|
||||||
|
|
||||||
if dir_in_bin is not None:
|
if img_bin:
|
||||||
imgs_bin = cropped_lines_bin[n_start:n_end]
|
imgs_bin = cropped_lines_bin[n_start:n_end]
|
||||||
imgs_bin = np.array(imgs_bin).reshape(self.b_s, image_height, image_width, 3)
|
imgs_bin = np.array(imgs_bin).reshape(self.b_s, image_height, image_width, 3)
|
||||||
|
|
||||||
|
|
@ -743,7 +553,8 @@ class Eynollah_ocr:
|
||||||
indices_to_be_replaced = indices_ver[indices_where_flipped_conf_value_is_higher]
|
indices_to_be_replaced = indices_ver[indices_where_flipped_conf_value_is_higher]
|
||||||
preds[indices_to_be_replaced,:,:] = \
|
preds[indices_to_be_replaced,:,:] = \
|
||||||
preds_flipped[indices_where_flipped_conf_value_is_higher, :, :]
|
preds_flipped[indices_where_flipped_conf_value_is_higher, :, :]
|
||||||
if dir_in_bin is not None:
|
|
||||||
|
if img_bin:
|
||||||
preds_bin = self.model_zoo.get('ocr').predict(imgs_bin, verbose=0)
|
preds_bin = self.model_zoo.get('ocr').predict(imgs_bin, verbose=0)
|
||||||
|
|
||||||
if len(indices_ver)>0:
|
if len(indices_ver)>0:
|
||||||
|
|
@ -797,7 +608,6 @@ class Eynollah_ocr:
|
||||||
extracted_texts.append("")
|
extracted_texts.append("")
|
||||||
extracted_conf_value.append(0)
|
extracted_conf_value.append(0)
|
||||||
del cropped_lines
|
del cropped_lines
|
||||||
if dir_in_bin is not None:
|
|
||||||
del cropped_lines_bin
|
del cropped_lines_bin
|
||||||
gc.collect()
|
gc.collect()
|
||||||
|
|
||||||
|
|
@ -808,24 +618,46 @@ class Eynollah_ocr:
|
||||||
else None
|
else None
|
||||||
for ind in range(len(cropped_lines_meging_indexing))]
|
for ind in range(len(cropped_lines_meging_indexing))]
|
||||||
|
|
||||||
extracted_conf_value_merged = [extracted_conf_value[ind]
|
extracted_conf_value_merged = [extracted_conf_value[ind] # type: ignore
|
||||||
if cropped_lines_meging_indexing[ind]==0
|
if cropped_lines_meging_indexing[ind]==0
|
||||||
else (extracted_conf_value[ind]+extracted_conf_value[ind+1])/2.
|
else (extracted_conf_value[ind]+extracted_conf_value[ind+1])/2.
|
||||||
if cropped_lines_meging_indexing[ind]==1
|
if cropped_lines_meging_indexing[ind]==1
|
||||||
else None
|
else None
|
||||||
for ind in range(len(cropped_lines_meging_indexing))]
|
for ind in range(len(cropped_lines_meging_indexing))]
|
||||||
|
|
||||||
extracted_conf_value_merged = [extracted_conf_value_merged[ind_cfm]
|
extracted_conf_value_merged: List[float] = [extracted_conf_value_merged[ind_cfm]
|
||||||
for ind_cfm in range(len(extracted_texts_merged))
|
for ind_cfm in range(len(extracted_texts_merged))
|
||||||
if extracted_texts_merged[ind_cfm] is not None]
|
if extracted_texts_merged[ind_cfm] is not None]
|
||||||
extracted_texts_merged = [ind for ind in extracted_texts_merged if ind is not None]
|
|
||||||
unique_cropped_lines_region_indexer = np.unique(cropped_lines_region_indexer)
|
|
||||||
|
|
||||||
if dir_out_image_text:
|
extracted_texts_merged = [ind for ind in extracted_texts_merged if ind is not None]
|
||||||
#font_path = "Charis-7.000/Charis-Regular.ttf" # Make sure this file exists!
|
|
||||||
font = importlib_resources.files(__package__) / "Charis-Regular.ttf"
|
return EynollahOcrResult(
|
||||||
with importlib_resources.as_file(font) as font:
|
extracted_texts_merged=extracted_texts_merged,
|
||||||
font = ImageFont.truetype(font=font, size=40)
|
extracted_conf_value_merged=extracted_conf_value_merged,
|
||||||
|
cropped_lines_region_indexer=cropped_lines_region_indexer,
|
||||||
|
total_bb_coordinates=total_bb_coordinates,
|
||||||
|
)
|
||||||
|
|
||||||
|
def write_ocr(
|
||||||
|
self,
|
||||||
|
*,
|
||||||
|
result: EynollahOcrResult,
|
||||||
|
page_tree: ET.ElementTree,
|
||||||
|
out_file_ocr,
|
||||||
|
page_ns,
|
||||||
|
img,
|
||||||
|
out_image_with_text,
|
||||||
|
):
|
||||||
|
cropped_lines_region_indexer = result.cropped_lines_region_indexer
|
||||||
|
total_bb_coordinates = result.total_bb_coordinates
|
||||||
|
extracted_texts_merged = result.extracted_texts_merged
|
||||||
|
extracted_conf_value_merged = result.extracted_conf_value_merged
|
||||||
|
|
||||||
|
unique_cropped_lines_region_indexer = np.unique(cropped_lines_region_indexer)
|
||||||
|
if out_image_with_text:
|
||||||
|
image_text = Image.new("RGB", (img.shape[1], img.shape[0]), "white")
|
||||||
|
draw = ImageDraw.Draw(image_text)
|
||||||
|
font = get_font()
|
||||||
|
|
||||||
for indexer_text, bb_ind in enumerate(total_bb_coordinates):
|
for indexer_text, bb_ind in enumerate(total_bb_coordinates):
|
||||||
x_bb = bb_ind[0]
|
x_bb = bb_ind[0]
|
||||||
|
|
@ -868,25 +700,10 @@ class Eynollah_ocr:
|
||||||
text_by_textregion.append(text_by_textregion_ind)
|
text_by_textregion.append(text_by_textregion_ind)
|
||||||
else:
|
else:
|
||||||
text_by_textregion.append(" ".join(extracted_texts_merged_un))
|
text_by_textregion.append(" ".join(extracted_texts_merged_un))
|
||||||
#print(text_by_textregion, 'text_by_textregiontext_by_textregiontext_by_textregiontext_by_textregiontext_by_textregion')
|
|
||||||
|
|
||||||
###index_tot_regions = []
|
|
||||||
###tot_region_ref = []
|
|
||||||
|
|
||||||
###for jj in root1.iter(link+'RegionRefIndexed'):
|
|
||||||
###index_tot_regions.append(jj.attrib['index'])
|
|
||||||
###tot_region_ref.append(jj.attrib['regionRef'])
|
|
||||||
|
|
||||||
###id_to_order = {tid: ro for tid, ro in zip(tot_region_ref, index_tot_regions)}
|
|
||||||
|
|
||||||
#id_textregions = []
|
|
||||||
#textregions_by_existing_ids = []
|
|
||||||
indexer = 0
|
indexer = 0
|
||||||
indexer_textregion = 0
|
indexer_textregion = 0
|
||||||
for nn in root1.iter(region_tags):
|
for nn in page_tree.getroot().iter(f'{{{page_ns}}}TextRegion'):
|
||||||
#id_textregion = nn.attrib['id']
|
|
||||||
#id_textregions.append(id_textregion)
|
|
||||||
#textregions_by_existing_ids.append(text_by_textregion[indexer_textregion])
|
|
||||||
|
|
||||||
is_textregion_text = False
|
is_textregion_text = False
|
||||||
for childtest in nn:
|
for childtest in nn:
|
||||||
|
|
@ -910,6 +727,7 @@ class Eynollah_ocr:
|
||||||
|
|
||||||
if not is_textline_text:
|
if not is_textline_text:
|
||||||
text_subelement = ET.SubElement(child_textregion, 'TextEquiv')
|
text_subelement = ET.SubElement(child_textregion, 'TextEquiv')
|
||||||
|
if extracted_conf_value_merged:
|
||||||
text_subelement.set('conf', f"{extracted_conf_value_merged[indexer]:.2f}")
|
text_subelement.set('conf', f"{extracted_conf_value_merged[indexer]:.2f}")
|
||||||
unicode_textline = ET.SubElement(text_subelement, 'Unicode')
|
unicode_textline = ET.SubElement(text_subelement, 'Unicode')
|
||||||
unicode_textline.text = extracted_texts_merged[indexer]
|
unicode_textline.text = extracted_texts_merged[indexer]
|
||||||
|
|
@ -918,8 +736,8 @@ class Eynollah_ocr:
|
||||||
if childtest3.tag.endswith("TextEquiv"):
|
if childtest3.tag.endswith("TextEquiv"):
|
||||||
for child_uc in childtest3:
|
for child_uc in childtest3:
|
||||||
if child_uc.tag.endswith("Unicode"):
|
if child_uc.tag.endswith("Unicode"):
|
||||||
childtest3.set('conf',
|
if extracted_conf_value_merged:
|
||||||
f"{extracted_conf_value_merged[indexer]:.2f}")
|
childtest3.set('conf', f"{extracted_conf_value_merged[indexer]:.2f}")
|
||||||
child_uc.text = extracted_texts_merged[indexer]
|
child_uc.text = extracted_texts_merged[indexer]
|
||||||
|
|
||||||
indexer = indexer + 1
|
indexer = indexer + 1
|
||||||
|
|
@ -935,18 +753,85 @@ class Eynollah_ocr:
|
||||||
unicode_textregion.text = text_by_textregion[indexer_textregion]
|
unicode_textregion.text = text_by_textregion[indexer_textregion]
|
||||||
indexer_textregion = indexer_textregion + 1
|
indexer_textregion = indexer_textregion + 1
|
||||||
|
|
||||||
###sample_order = [(id_to_order[tid], text)
|
ET.register_namespace("",page_ns)
|
||||||
### for tid, text in zip(id_textregions, textregions_by_existing_ids)
|
page_tree.write(out_file_ocr, xml_declaration=True, method='xml', encoding="utf-8", default_namespace=None)
|
||||||
### if tid in id_to_order]
|
|
||||||
|
|
||||||
##ordered_texts_sample = [text for _, text in sorted(sample_order)]
|
def run(
|
||||||
##tot_page_text = ' '.join(ordered_texts_sample)
|
self,
|
||||||
|
*,
|
||||||
|
overwrite: bool = False,
|
||||||
|
dir_in: Optional[str] = None,
|
||||||
|
dir_in_bin: Optional[str] = None,
|
||||||
|
image_filename: Optional[str] = None,
|
||||||
|
dir_xmls: str,
|
||||||
|
dir_out_image_text: Optional[str] = None,
|
||||||
|
dir_out: str,
|
||||||
|
):
|
||||||
|
"""
|
||||||
|
Run OCR.
|
||||||
|
|
||||||
##for page_element in root1.iter(link+'Page'):
|
Args:
|
||||||
##text_page = ET.SubElement(page_element, 'TextEquiv')
|
|
||||||
##unicode_textpage = ET.SubElement(text_page, 'Unicode')
|
|
||||||
##unicode_textpage.text = tot_page_text
|
|
||||||
|
|
||||||
ET.register_namespace("",name_space)
|
dir_in_bin (str): Prediction with RGB and binarized images for selected pages, should not be the default
|
||||||
tree1.write(out_file_ocr,xml_declaration=True,method='xml',encoding="utf-8",default_namespace=None)
|
"""
|
||||||
#print("Job done in %.1fs", time.time() - t0)
|
if dir_in:
|
||||||
|
ls_imgs = [os.path.join(dir_in, image_filename)
|
||||||
|
for image_filename in filter(is_image_filename,
|
||||||
|
os.listdir(dir_in))]
|
||||||
|
else:
|
||||||
|
assert image_filename
|
||||||
|
ls_imgs = [image_filename]
|
||||||
|
|
||||||
|
for img_filename in ls_imgs:
|
||||||
|
file_stem = Path(img_filename).stem
|
||||||
|
page_file_in = os.path.join(dir_xmls, file_stem+'.xml')
|
||||||
|
out_file_ocr = os.path.join(dir_out, file_stem+'.xml')
|
||||||
|
|
||||||
|
if os.path.exists(out_file_ocr):
|
||||||
|
if overwrite:
|
||||||
|
self.logger.warning("will overwrite existing output file '%s'", out_file_ocr)
|
||||||
|
else:
|
||||||
|
self.logger.warning("will skip input for existing output file '%s'", out_file_ocr)
|
||||||
|
return
|
||||||
|
|
||||||
|
img = cv2.imread(img_filename)
|
||||||
|
|
||||||
|
page_tree = ET.parse(page_file_in, parser = ET.XMLParser(encoding="utf-8"))
|
||||||
|
page_ns = etree_namespace_for_element_tag(page_tree.getroot().tag)
|
||||||
|
|
||||||
|
out_image_with_text = None
|
||||||
|
if dir_out_image_text:
|
||||||
|
out_image_with_text = os.path.join(dir_out_image_text, file_stem + '.png')
|
||||||
|
|
||||||
|
img_bin = None
|
||||||
|
if dir_in_bin:
|
||||||
|
img_bin = cv2.imread(os.path.join(dir_in_bin, file_stem+'.png'))
|
||||||
|
|
||||||
|
|
||||||
|
if self.tr_ocr:
|
||||||
|
result = self.run_trocr(
|
||||||
|
img=img,
|
||||||
|
page_tree=page_tree,
|
||||||
|
page_ns=page_ns,
|
||||||
|
|
||||||
|
tr_ocr_input_height_and_width = 384
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
result = self.run_cnn(
|
||||||
|
img=img,
|
||||||
|
page_tree=page_tree,
|
||||||
|
page_ns=page_ns,
|
||||||
|
|
||||||
|
img_bin=img_bin,
|
||||||
|
image_width=512,
|
||||||
|
image_height=32,
|
||||||
|
)
|
||||||
|
|
||||||
|
self.write_ocr(
|
||||||
|
result=result,
|
||||||
|
img=img,
|
||||||
|
page_tree=page_tree,
|
||||||
|
page_ns=page_ns,
|
||||||
|
out_file_ocr=out_file_ocr,
|
||||||
|
out_image_with_text=out_image_with_text,
|
||||||
|
)
|
||||||
|
|
|
||||||
16
src/eynollah/utils/font.py
Normal file
16
src/eynollah/utils/font.py
Normal file
|
|
@ -0,0 +1,16 @@
|
||||||
|
|
||||||
|
# cannot use importlib.resources until we move to 3.9+ forimportlib.resources.files
|
||||||
|
import sys
|
||||||
|
from PIL import ImageFont
|
||||||
|
|
||||||
|
if sys.version_info < (3, 10):
|
||||||
|
import importlib_resources
|
||||||
|
else:
|
||||||
|
import importlib.resources as importlib_resources
|
||||||
|
|
||||||
|
|
||||||
|
def get_font():
|
||||||
|
#font_path = "Charis-7.000/Charis-Regular.ttf" # Make sure this file exists!
|
||||||
|
font = importlib_resources.files(__package__) / "../Charis-Regular.ttf"
|
||||||
|
with importlib_resources.as_file(font) as font:
|
||||||
|
return ImageFont.truetype(font=font, size=40)
|
||||||
|
|
@ -128,6 +128,7 @@ def return_textlines_split_if_needed(textline_image, textline_image_bin=None):
|
||||||
return [image1, image2], None
|
return [image1, image2], None
|
||||||
else:
|
else:
|
||||||
return None, None
|
return None, None
|
||||||
|
|
||||||
def preprocess_and_resize_image_for_ocrcnn_model(img, image_height, image_width):
|
def preprocess_and_resize_image_for_ocrcnn_model(img, image_height, image_width):
|
||||||
if img.shape[0]==0 or img.shape[1]==0:
|
if img.shape[0]==0 or img.shape[1]==0:
|
||||||
img_fin = np.ones((image_height, image_width, 3))
|
img_fin = np.ones((image_height, image_width, 3))
|
||||||
|
|
|
||||||
|
|
@ -88,3 +88,7 @@ def order_and_id_of_texts(found_polygons_text_region, found_polygons_text_region
|
||||||
order_of_texts.append(interest)
|
order_of_texts.append(interest)
|
||||||
|
|
||||||
return order_of_texts, id_of_texts
|
return order_of_texts, id_of_texts
|
||||||
|
|
||||||
|
def etree_namespace_for_element_tag(tag: str):
|
||||||
|
right = tag.find('}')
|
||||||
|
return tag[1:right]
|
||||||
|
|
|
||||||
Loading…
Add table
Add a link
Reference in a new issue