mirror of
https://github.com/qurator-spk/eynollah.git
synced 2026-02-20 16:32:03 +01:00
trocr inference is integrated - works on CPU cause seg fault on GPU
This commit is contained in:
parent
733462381c
commit
b426f7f152
5 changed files with 52 additions and 17 deletions
|
|
@ -658,7 +658,7 @@ class Eynollah_ocr:
|
|||
if out_image_with_text:
|
||||
image_text = Image.new("RGB", (img.shape[1], img.shape[0]), "white")
|
||||
draw = ImageDraw.Draw(image_text)
|
||||
font = get_font()
|
||||
font = get_font(font_size=40)
|
||||
|
||||
for indexer_text, bb_ind in enumerate(total_bb_coordinates):
|
||||
x_bb = bb_ind[0]
|
||||
|
|
|
|||
|
|
@ -6,6 +6,7 @@ from pathlib import Path
|
|||
from PIL import Image, ImageDraw, ImageFont
|
||||
import cv2
|
||||
import numpy as np
|
||||
from eynollah.utils.font import get_font
|
||||
|
||||
from eynollah.training.gt_gen_utils import (
|
||||
filter_contours_area_of_image,
|
||||
|
|
@ -514,8 +515,8 @@ def visualize_ocr_text(xml_file, dir_xml, dir_out):
|
|||
else:
|
||||
xml_files_ind = [xml_file]
|
||||
|
||||
font_path = "Charis-7.000/Charis-Regular.ttf" # Make sure this file exists!
|
||||
font = ImageFont.truetype(font_path, 40)
|
||||
###font_path = "Charis-7.000/Charis-Regular.ttf" # Make sure this file exists!
|
||||
font = get_font(font_size=40)#ImageFont.truetype(font_path, 40)
|
||||
|
||||
for ind_xml in tqdm(xml_files_ind):
|
||||
indexer = 0
|
||||
|
|
@ -552,11 +553,11 @@ def visualize_ocr_text(xml_file, dir_xml, dir_out):
|
|||
|
||||
|
||||
is_vertical = h > 2*w # Check orientation
|
||||
font = fit_text_single_line(draw, ocr_texts[index], font_path, w, int(h*0.4) )
|
||||
font = fit_text_single_line(draw, ocr_texts[index], w, int(h*0.4) )
|
||||
|
||||
if is_vertical:
|
||||
|
||||
vertical_font = fit_text_single_line(draw, ocr_texts[index], font_path, h, int(w * 0.8))
|
||||
vertical_font = fit_text_single_line(draw, ocr_texts[index], h, int(w * 0.8))
|
||||
|
||||
text_img = Image.new("RGBA", (h, w), (255, 255, 255, 0)) # Note: dimensions are swapped
|
||||
text_draw = ImageDraw.Draw(text_img)
|
||||
|
|
|
|||
|
|
@ -7,7 +7,7 @@ import cv2
|
|||
from shapely import geometry
|
||||
from pathlib import Path
|
||||
from PIL import ImageFont
|
||||
|
||||
from eynollah.utils.font import get_font
|
||||
|
||||
KERNEL = np.ones((5, 5), np.uint8)
|
||||
|
||||
|
|
@ -350,11 +350,11 @@ def get_textline_contours_and_ocr_text(xml_file):
|
|||
ocr_textlines.append(ocr_text_in[0])
|
||||
return co_use_case, y_len, x_len, ocr_textlines
|
||||
|
||||
def fit_text_single_line(draw, text, font_path, max_width, max_height):
|
||||
def fit_text_single_line(draw, text, max_width, max_height):
|
||||
initial_font_size = 50
|
||||
font_size = initial_font_size
|
||||
while font_size > 10: # Minimum font size
|
||||
font = ImageFont.truetype(font_path, font_size)
|
||||
font = get_font(font_size=font_size)# ImageFont.truetype(font_path, font_size)
|
||||
text_bbox = draw.textbbox((0, 0), text, font=font) # Get text bounding box
|
||||
text_width = text_bbox[2] - text_bbox[0]
|
||||
text_height = text_bbox[3] - text_bbox[1]
|
||||
|
|
@ -364,7 +364,7 @@ def fit_text_single_line(draw, text, font_path, max_width, max_height):
|
|||
|
||||
font_size -= 2 # Reduce font size and retry
|
||||
|
||||
return ImageFont.truetype(font_path, 10) # Smallest font fallback
|
||||
return get_font(font_size=10)#ImageFont.truetype(font_path, 10) # Smallest font fallback
|
||||
|
||||
def get_layout_contours_for_visualization(xml_file):
|
||||
tree1 = ET.parse(xml_file, parser = ET.XMLParser(encoding='utf-8'))
|
||||
|
|
|
|||
|
|
@ -170,6 +170,25 @@ class sbb_predict:
|
|||
self.model = tf.keras.models.Model(
|
||||
self.model.get_layer(name = "image").input,
|
||||
self.model.get_layer(name = "dense2").output)
|
||||
|
||||
assert isinstance(self.model, Model)
|
||||
|
||||
elif self.task == "trocr":
|
||||
import torch
|
||||
from transformers import VisionEncoderDecoderModel
|
||||
from transformers import TrOCRProcessor
|
||||
|
||||
self.model = VisionEncoderDecoderModel.from_pretrained(self.model_dir)
|
||||
self.processor = TrOCRProcessor.from_pretrained(self.model_dir)
|
||||
|
||||
if self.cpu:
|
||||
self.device = torch.device('cpu')
|
||||
else:
|
||||
self.device = torch.device('cuda:0')
|
||||
|
||||
self.model.to(self.device)
|
||||
|
||||
assert isinstance(self.model, torch.nn.Module)
|
||||
else:
|
||||
config = tf.compat.v1.ConfigProto()
|
||||
config.gpu_options.allow_growth = True
|
||||
|
|
@ -184,7 +203,8 @@ class sbb_predict:
|
|||
self.img_width=self.model.layers[len(self.model.layers)-1].output_shape[2]
|
||||
self.n_classes=self.model.layers[len(self.model.layers)-1].output_shape[3]
|
||||
|
||||
assert isinstance(self.model, Model)
|
||||
|
||||
assert isinstance(self.model, Model)
|
||||
|
||||
def visualize_model_output(self, prediction, img, task) -> Tuple[NDArray, NDArray]:
|
||||
if task == "binarization":
|
||||
|
|
@ -235,10 +255,9 @@ class sbb_predict:
|
|||
return added_image, layout_only
|
||||
|
||||
def predict(self, image_dir):
|
||||
assert isinstance(self.model, Model)
|
||||
if self.task == 'classification':
|
||||
classes_names = self.config_params_model['classification_classes_name']
|
||||
img_1ch = img=cv2.imread(image_dir, 0)
|
||||
img_1ch =cv2.imread(image_dir, 0)
|
||||
|
||||
img_1ch = img_1ch / 255.0
|
||||
img_1ch = cv2.resize(img_1ch, (self.config_params_model['input_height'], self.config_params_model['input_width']), interpolation=cv2.INTER_NEAREST)
|
||||
|
|
@ -273,6 +292,15 @@ class sbb_predict:
|
|||
pred_texts = decode_batch_predictions(preds, num_to_char)
|
||||
pred_texts = pred_texts[0].replace("[UNK]", "")
|
||||
return pred_texts
|
||||
|
||||
elif self.task == "trocr":
|
||||
from PIL import Image
|
||||
image = Image.open(image_dir).convert("RGB")
|
||||
pixel_values = self.processor(image, return_tensors="pt").pixel_values
|
||||
generated_ids = self.model.generate(pixel_values.to(self.device))
|
||||
return self.processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
||||
|
||||
|
||||
|
||||
|
||||
elif self.task == 'reading_order':
|
||||
|
|
@ -607,6 +635,8 @@ class sbb_predict:
|
|||
cv2.imwrite(self.save,res)
|
||||
elif self.task == "cnn-rnn-ocr":
|
||||
print(f"Detected text: {res}")
|
||||
elif self.task == "trocr":
|
||||
print(f"Detected text: {res}")
|
||||
else:
|
||||
img_seg_overlayed, only_layout = self.visualize_model_output(res, self.img_org, self.task)
|
||||
if self.save:
|
||||
|
|
@ -710,10 +740,14 @@ class sbb_predict:
|
|||
)
|
||||
def main(image, dir_in, model, patches, save, save_layout, ground_truth, xml_file, cpu, out, min_area):
|
||||
assert image or dir_in, "Either a single image -i or a dir_in -di is required"
|
||||
with open(os.path.join(model,'config.json')) as f:
|
||||
config_params_model = json.load(f)
|
||||
try:
|
||||
with open(os.path.join(model,'config_eynollah.json')) as f:
|
||||
config_params_model = json.load(f)
|
||||
except:
|
||||
with open(os.path.join(model,'config.json')) as f:
|
||||
config_params_model = json.load(f)
|
||||
task = config_params_model['task']
|
||||
if task != 'classification' and task != 'reading_order' and task != "cnn-rnn-ocr":
|
||||
if task != 'classification' and task != 'reading_order' and task != "cnn-rnn-ocr" and task != "trocr":
|
||||
if image and not save:
|
||||
print("Error: You used one of segmentation or binarization task with image input but not set -s, you need a filename to save visualized output with -s")
|
||||
sys.exit(1)
|
||||
|
|
|
|||
|
|
@ -9,8 +9,8 @@ else:
|
|||
import importlib.resources as importlib_resources
|
||||
|
||||
|
||||
def get_font():
|
||||
def get_font(font_size):
|
||||
#font_path = "Charis-7.000/Charis-Regular.ttf" # Make sure this file exists!
|
||||
font = importlib_resources.files(__package__) / "../Charis-Regular.ttf"
|
||||
with importlib_resources.as_file(font) as font:
|
||||
return ImageFont.truetype(font=font, size=40)
|
||||
return ImageFont.truetype(font=font, size=font_size)
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue