mirror of
https://github.com/qurator-spk/eynollah.git
synced 2025-10-26 23:34:13 +01:00
providing ocr model evaluation metrics
This commit is contained in:
parent
59eb4fd3be
commit
b56bb44284
1 changed files with 32 additions and 0 deletions
|
|
@ -157,6 +157,38 @@ The model extracts the reading order of text regions from the layout by classify
|
|||
### OCR
|
||||
|
||||
We have trained three OCR models: two CNN-RNN–based models and one transformer-based TrOCR model. The CNN-RNN models are generally faster and provide better results in most cases, though their performance decreases with heavily degraded images. The TrOCR model, on the other hand, is computationally expensive and slower during inference, but it can possibly produce better results on strongly degraded images.
|
||||
|
||||
#### CNN-RNN model: model_eynollah_ocr_cnnrnn_20250805
|
||||
|
||||
This model is trained on data where most of the samples are in Fraktur german script.
|
||||
|
||||
| Dataset | Input | CER | WER |
|
||||
|-----------------------|:-------|:-----------|:----------|
|
||||
| OCR-D-GT-Archiveform | BIN | 0.02147 | 0.05685 |
|
||||
| OCR-D-GT-Archiveform | RGB | | |
|
||||
|
||||
#### CNN-RNN model: model_eynollah_ocr_cnnrnn_20250904 (Default)
|
||||
|
||||
Compared to the model_eynollah_ocr_cnnrnn_20250805 model, this model is trained on a larger proportion of Antiqua data and achieves superior performance.
|
||||
|
||||
| Dataset | Input | CER | WER |
|
||||
|-----------------------|:------------|:-----------|:----------|
|
||||
| OCR-D-GT-Archiveform | BIN | 0.01635 | 0.05410 |
|
||||
| OCR-D-GT-Archiveform | RGB | 0.01471 | 0.05813 |
|
||||
| BLN600 | RGB | 0.04409 | 0.08879 |
|
||||
| BLN600 | Enhanced | 0.03599 | 0.06244 |
|
||||
|
||||
|
||||
#### Transformer OCR model: model_eynollah_ocr_trocr_20250919
|
||||
|
||||
This transformer OCR model is trained on the same data as model_eynollah_ocr_trocr_20250919.
|
||||
|
||||
| Dataset | Input | CER | WER |
|
||||
|-----------------------|:------------|:-----------|:----------|
|
||||
| OCR-D-GT-Archiveform | BIN | 0.01841 | 0.05589 |
|
||||
| OCR-D-GT-Archiveform | RGB | | |
|
||||
| BLN600 | RGB | 0.06347 | 0.13853 |
|
||||
|
||||
## Heuristic methods
|
||||
|
||||
Additionally, some heuristic methods are employed to further improve the model predictions:
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue