mirror of
				https://github.com/qurator-spk/eynollah.git
				synced 2025-10-31 17:54:12 +01:00 
			
		
		
		
	new table detection model is integrated
This commit is contained in:
		
							parent
							
								
									d9f79c3404
								
							
						
					
					
						commit
						b622494f34
					
				
					 1 changed files with 248 additions and 179 deletions
				
			
		|  | @ -264,9 +264,13 @@ class Eynollah: | |||
|         else: | ||||
|             self.model_textline_dir = dir_models + "/modelens_textline_0_1__2_4_16092024"#"/eynollah-textline_20210425" | ||||
|         if self.ocr: | ||||
|             self.model_ocr_dir = dir_models + "/checkpoint-166692_printed_trocr" | ||||
|             self.model_ocr_dir = dir_models + "/trocr_model_ens_of_3_checkpoints_201124" | ||||
|              | ||||
|         self.model_tables = dir_models + "/eynollah-tables_20210319" | ||||
|         if self.tables: | ||||
|             if self.light_version: | ||||
|                 self.model_table_dir = dir_models + "/modelens_table_0t4_201124" | ||||
|             else: | ||||
|                 self.model_table_dir = dir_models + "/eynollah-tables_20210319" | ||||
|          | ||||
|         self.models = {} | ||||
|          | ||||
|  | @ -290,6 +294,9 @@ class Eynollah: | |||
|                 self.model_ocr = VisionEncoderDecoderModel.from_pretrained(self.model_ocr_dir) | ||||
|                 self.device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") | ||||
|                 self.processor = TrOCRProcessor.from_pretrained("microsoft/trocr-base-handwritten")#("microsoft/trocr-base-printed")#("microsoft/trocr-base-handwritten") | ||||
|             if self.tables: | ||||
|                 self.model_table = self.our_load_model(self.model_table_dir) | ||||
|                  | ||||
|              | ||||
|             self.ls_imgs  = os.listdir(self.dir_in) | ||||
|              | ||||
|  | @ -325,9 +332,13 @@ class Eynollah: | |||
|             self.model_region_fl = self.our_load_model(self.model_region_dir_fully) | ||||
|             self.model_enhancement = self.our_load_model(self.model_dir_of_enhancement) | ||||
|             self.model_reading_order_machine = self.our_load_model(self.model_reading_order_machine_dir) | ||||
|              | ||||
|             if self.tables: | ||||
|                 self.model_table = self.our_load_model(self.model_table_dir) | ||||
|                  | ||||
|             self.ls_imgs  = os.listdir(self.dir_in) | ||||
|              | ||||
| 
 | ||||
|              | ||||
|          | ||||
|     def _cache_images(self, image_filename=None, image_pil=None): | ||||
|         ret = {} | ||||
|  | @ -2326,8 +2337,23 @@ class Eynollah: | |||
|             ###img_bin = np.copy(prediction_bin) | ||||
|         ###else: | ||||
|             ###img_bin = np.copy(img_resized) | ||||
|          | ||||
|         img_bin = np.copy(img_resized) | ||||
|         if self.ocr and not self.input_binary: | ||||
|             if not self.dir_in: | ||||
|                 model_bin, session_bin = self.start_new_session_and_model(self.model_dir_of_binarization) | ||||
|                 prediction_bin = self.do_prediction(True, img_resized, model_bin, n_batch_inference=5) | ||||
|             else: | ||||
|                 prediction_bin = self.do_prediction(True, img_resized, self.model_bin, n_batch_inference=5) | ||||
|             prediction_bin=prediction_bin[:,:,0] | ||||
|             prediction_bin = (prediction_bin[:,:]==0)*1 | ||||
|             prediction_bin = prediction_bin*255 | ||||
|              | ||||
|             prediction_bin =np.repeat(prediction_bin[:, :, np.newaxis], 3, axis=2) | ||||
|              | ||||
|             prediction_bin = prediction_bin.astype(np.uint16) | ||||
|             #img= np.copy(prediction_bin) | ||||
|             img_bin = np.copy(prediction_bin) | ||||
|         else: | ||||
|             img_bin = np.copy(img_resized) | ||||
|         #print("inside 1 ", time.time()-t_in) | ||||
|          | ||||
|         ###textline_mask_tot_ea = self.run_textline(img_bin) | ||||
|  | @ -3175,91 +3201,101 @@ class Eynollah: | |||
|         img_height_h = img_org.shape[0] | ||||
|         img_width_h = img_org.shape[1] | ||||
|          | ||||
|         model_region, session_region = self.start_new_session_and_model(self.model_tables) | ||||
|          | ||||
|          | ||||
|         if self.dir_in: | ||||
|             pass | ||||
|         else: | ||||
|             self.model_table, _ = self.start_new_session_and_model(self.model_table_dir) | ||||
|          | ||||
|         patches = False | ||||
|          | ||||
|         if num_col_classifier < 4 and num_col_classifier > 2: | ||||
|             prediction_table = self.do_prediction(patches, img, model_region) | ||||
|             pre_updown = self.do_prediction(patches, cv2.flip(img[:,:,:], -1), model_region) | ||||
|             pre_updown = cv2.flip(pre_updown, -1) | ||||
|              | ||||
|             prediction_table[:,:,0][pre_updown[:,:,0]==1]=1 | ||||
|         if self.light_version: | ||||
|             prediction_table = self.do_prediction_new_concept(patches, img, self.model_table) | ||||
|             prediction_table = prediction_table.astype(np.int16) | ||||
|              | ||||
|         elif num_col_classifier ==2: | ||||
|             height_ext = 0#int( img.shape[0]/4. ) | ||||
|             h_start = int(height_ext/2.) | ||||
|             width_ext = int( img.shape[1]/8. ) | ||||
|             w_start = int(width_ext/2.) | ||||
|          | ||||
|             height_new = img.shape[0]+height_ext | ||||
|             width_new = img.shape[1]+width_ext | ||||
|              | ||||
|             img_new =np.ones((height_new,width_new,img.shape[2])).astype(float)*0 | ||||
|             img_new[h_start:h_start+img.shape[0] ,w_start: w_start+img.shape[1], : ] =img[:,:,:] | ||||
| 
 | ||||
|             prediction_ext = self.do_prediction(patches, img_new, model_region) | ||||
|             pre_updown = self.do_prediction(patches, cv2.flip(img_new[:,:,:], -1), model_region) | ||||
|             pre_updown = cv2.flip(pre_updown, -1) | ||||
|              | ||||
|             prediction_table = prediction_ext[h_start:h_start+img.shape[0] ,w_start: w_start+img.shape[1], : ] | ||||
|             prediction_table_updown = pre_updown[h_start:h_start+img.shape[0] ,w_start: w_start+img.shape[1], : ] | ||||
|              | ||||
|             prediction_table[:,:,0][prediction_table_updown[:,:,0]==1]=1 | ||||
|             prediction_table = prediction_table.astype(np.int16) | ||||
| 
 | ||||
|         elif num_col_classifier ==1: | ||||
|             height_ext = 0# int( img.shape[0]/4. ) | ||||
|             h_start = int(height_ext/2.) | ||||
|             width_ext = int( img.shape[1]/4. ) | ||||
|             w_start = int(width_ext/2.) | ||||
|          | ||||
|             height_new = img.shape[0]+height_ext | ||||
|             width_new = img.shape[1]+width_ext | ||||
|              | ||||
|             img_new =np.ones((height_new,width_new,img.shape[2])).astype(float)*0 | ||||
|             img_new[h_start:h_start+img.shape[0] ,w_start: w_start+img.shape[1], : ] =img[:,:,:] | ||||
| 
 | ||||
|             prediction_ext = self.do_prediction(patches, img_new, model_region) | ||||
|             pre_updown = self.do_prediction(patches, cv2.flip(img_new[:,:,:], -1), model_region) | ||||
|             pre_updown = cv2.flip(pre_updown, -1) | ||||
|              | ||||
|             prediction_table = prediction_ext[h_start:h_start+img.shape[0] ,w_start: w_start+img.shape[1], : ] | ||||
|             prediction_table_updown = pre_updown[h_start:h_start+img.shape[0] ,w_start: w_start+img.shape[1], : ] | ||||
|              | ||||
|             prediction_table[:,:,0][prediction_table_updown[:,:,0]==1]=1 | ||||
|             prediction_table = prediction_table.astype(np.int16) | ||||
| 
 | ||||
|             return prediction_table[:,:,0] | ||||
|         else: | ||||
|             prediction_table = np.zeros(img.shape) | ||||
|             img_w_half = int(img.shape[1]/2.) | ||||
|             if num_col_classifier < 4 and num_col_classifier > 2: | ||||
|                 prediction_table = self.do_prediction(patches, img, self.model_table) | ||||
|                 pre_updown = self.do_prediction(patches, cv2.flip(img[:,:,:], -1), self.model_table) | ||||
|                 pre_updown = cv2.flip(pre_updown, -1) | ||||
|                  | ||||
|                 prediction_table[:,:,0][pre_updown[:,:,0]==1]=1 | ||||
|                 prediction_table = prediction_table.astype(np.int16) | ||||
|                  | ||||
|             elif num_col_classifier ==2: | ||||
|                 height_ext = 0#int( img.shape[0]/4. ) | ||||
|                 h_start = int(height_ext/2.) | ||||
|                 width_ext = int( img.shape[1]/8. ) | ||||
|                 w_start = int(width_ext/2.) | ||||
|              | ||||
|                 height_new = img.shape[0]+height_ext | ||||
|                 width_new = img.shape[1]+width_ext | ||||
|                  | ||||
|                 img_new =np.ones((height_new,width_new,img.shape[2])).astype(float)*0 | ||||
|                 img_new[h_start:h_start+img.shape[0] ,w_start: w_start+img.shape[1], : ] =img[:,:,:] | ||||
| 
 | ||||
|             pre1 = self.do_prediction(patches, img[:,0:img_w_half,:], model_region) | ||||
|             pre2 = self.do_prediction(patches, img[:,img_w_half:,:], model_region) | ||||
|             pre_full = self.do_prediction(patches, img[:,:,:], model_region) | ||||
|             pre_updown = self.do_prediction(patches, cv2.flip(img[:,:,:], -1), model_region) | ||||
|             pre_updown = cv2.flip(pre_updown, -1) | ||||
|              | ||||
|             prediction_table_full_erode = cv2.erode(pre_full[:,:,0], KERNEL, iterations=4) | ||||
|             prediction_table_full_erode = cv2.dilate(prediction_table_full_erode, KERNEL, iterations=4) | ||||
|              | ||||
|             prediction_table_full_updown_erode = cv2.erode(pre_updown[:,:,0], KERNEL, iterations=4) | ||||
|             prediction_table_full_updown_erode = cv2.dilate(prediction_table_full_updown_erode, KERNEL, iterations=4) | ||||
|                 prediction_ext = self.do_prediction(patches, img_new, self.model_table) | ||||
|                 pre_updown = self.do_prediction(patches, cv2.flip(img_new[:,:,:], -1), self.model_table) | ||||
|                 pre_updown = cv2.flip(pre_updown, -1) | ||||
|                  | ||||
|                 prediction_table = prediction_ext[h_start:h_start+img.shape[0] ,w_start: w_start+img.shape[1], : ] | ||||
|                 prediction_table_updown = pre_updown[h_start:h_start+img.shape[0] ,w_start: w_start+img.shape[1], : ] | ||||
|                  | ||||
|                 prediction_table[:,:,0][prediction_table_updown[:,:,0]==1]=1 | ||||
|                 prediction_table = prediction_table.astype(np.int16) | ||||
| 
 | ||||
|             prediction_table[:,0:img_w_half,:] = pre1[:,:,:] | ||||
|             prediction_table[:,img_w_half:,:] = pre2[:,:,:] | ||||
|             elif num_col_classifier ==1: | ||||
|                 height_ext = 0# int( img.shape[0]/4. ) | ||||
|                 h_start = int(height_ext/2.) | ||||
|                 width_ext = int( img.shape[1]/4. ) | ||||
|                 w_start = int(width_ext/2.) | ||||
|              | ||||
|             prediction_table[:,:,0][prediction_table_full_erode[:,:]==1]=1 | ||||
|             prediction_table[:,:,0][prediction_table_full_updown_erode[:,:]==1]=1 | ||||
|             prediction_table = prediction_table.astype(np.int16) | ||||
|                 height_new = img.shape[0]+height_ext | ||||
|                 width_new = img.shape[1]+width_ext | ||||
|                  | ||||
|                 img_new =np.ones((height_new,width_new,img.shape[2])).astype(float)*0 | ||||
|                 img_new[h_start:h_start+img.shape[0] ,w_start: w_start+img.shape[1], : ] =img[:,:,:] | ||||
| 
 | ||||
|                 prediction_ext = self.do_prediction(patches, img_new, self.model_table) | ||||
|                 pre_updown = self.do_prediction(patches, cv2.flip(img_new[:,:,:], -1), self.model_table) | ||||
|                 pre_updown = cv2.flip(pre_updown, -1) | ||||
|                  | ||||
|                 prediction_table = prediction_ext[h_start:h_start+img.shape[0] ,w_start: w_start+img.shape[1], : ] | ||||
|                 prediction_table_updown = pre_updown[h_start:h_start+img.shape[0] ,w_start: w_start+img.shape[1], : ] | ||||
|                  | ||||
|                 prediction_table[:,:,0][prediction_table_updown[:,:,0]==1]=1 | ||||
|                 prediction_table = prediction_table.astype(np.int16) | ||||
| 
 | ||||
|             else: | ||||
|                 prediction_table = np.zeros(img.shape) | ||||
|                 img_w_half = int(img.shape[1]/2.) | ||||
| 
 | ||||
|                 pre1 = self.do_prediction(patches, img[:,0:img_w_half,:], self.model_table) | ||||
|                 pre2 = self.do_prediction(patches, img[:,img_w_half:,:], self.model_table) | ||||
|                 pre_full = self.do_prediction(patches, img[:,:,:], self.model_table) | ||||
|                 pre_updown = self.do_prediction(patches, cv2.flip(img[:,:,:], -1), self.model_table) | ||||
|                 pre_updown = cv2.flip(pre_updown, -1) | ||||
|                  | ||||
|                 prediction_table_full_erode = cv2.erode(pre_full[:,:,0], KERNEL, iterations=4) | ||||
|                 prediction_table_full_erode = cv2.dilate(prediction_table_full_erode, KERNEL, iterations=4) | ||||
|                  | ||||
|                 prediction_table_full_updown_erode = cv2.erode(pre_updown[:,:,0], KERNEL, iterations=4) | ||||
|                 prediction_table_full_updown_erode = cv2.dilate(prediction_table_full_updown_erode, KERNEL, iterations=4) | ||||
| 
 | ||||
|                 prediction_table[:,0:img_w_half,:] = pre1[:,:,:] | ||||
|                 prediction_table[:,img_w_half:,:] = pre2[:,:,:] | ||||
|                  | ||||
|                 prediction_table[:,:,0][prediction_table_full_erode[:,:]==1]=1 | ||||
|                 prediction_table[:,:,0][prediction_table_full_updown_erode[:,:]==1]=1 | ||||
|                 prediction_table = prediction_table.astype(np.int16) | ||||
|                  | ||||
|             #prediction_table_erode = cv2.erode(prediction_table[:,:,0], self.kernel, iterations=6) | ||||
|             #prediction_table_erode = cv2.dilate(prediction_table_erode, self.kernel, iterations=6) | ||||
|              | ||||
|         #prediction_table_erode = cv2.erode(prediction_table[:,:,0], self.kernel, iterations=6) | ||||
|         #prediction_table_erode = cv2.dilate(prediction_table_erode, self.kernel, iterations=6) | ||||
|          | ||||
|         prediction_table_erode = cv2.erode(prediction_table[:,:,0], KERNEL, iterations=20) | ||||
|         prediction_table_erode = cv2.dilate(prediction_table_erode, KERNEL, iterations=20) | ||||
|         return prediction_table_erode.astype(np.int16) | ||||
|             prediction_table_erode = cv2.erode(prediction_table[:,:,0], KERNEL, iterations=20) | ||||
|             prediction_table_erode = cv2.dilate(prediction_table_erode, KERNEL, iterations=20) | ||||
|             return prediction_table_erode.astype(np.int16) | ||||
| 
 | ||||
|     def run_graphics_and_columns_light(self, text_regions_p_1, textline_mask_tot_ea, num_col_classifier, num_column_is_classified, erosion_hurts, img_bin_light): | ||||
|         #print(text_regions_p_1.shape, 'text_regions_p_1 shape run graphics') | ||||
|  | @ -3500,49 +3536,62 @@ class Eynollah: | |||
|             #print(time.time()-t_0_box,'time box in 3.1') | ||||
|              | ||||
|             if self.tables: | ||||
|                 text_regions_p_tables = np.copy(text_regions_p) | ||||
|                 text_regions_p_tables[:,:][(table_prediction[:,:] == 1)] = 10 | ||||
|                 pixel_line = 3 | ||||
|                 img_revised_tab2 = self.add_tables_heuristic_to_layout(text_regions_p_tables, boxes, 0, splitter_y_new, peaks_neg_tot_tables, text_regions_p_tables , num_col_classifier , 0.000005, pixel_line) | ||||
|                 #print(time.time()-t_0_box,'time box in 3.2') | ||||
|                 img_revised_tab2, contoures_tables = self.check_iou_of_bounding_box_and_contour_for_tables(img_revised_tab2,table_prediction, 10, num_col_classifier) | ||||
|                 #print(time.time()-t_0_box,'time box in 3.3') | ||||
|                 if self.light_version: | ||||
|                     pass | ||||
|                 else: | ||||
|                     text_regions_p_tables = np.copy(text_regions_p) | ||||
|                     text_regions_p_tables[:,:][(table_prediction[:,:] == 1)] = 10 | ||||
|                     pixel_line = 3 | ||||
|                     img_revised_tab2 = self.add_tables_heuristic_to_layout(text_regions_p_tables, boxes, 0, splitter_y_new, peaks_neg_tot_tables, text_regions_p_tables , num_col_classifier , 0.000005, pixel_line) | ||||
|                     #print(time.time()-t_0_box,'time box in 3.2') | ||||
|                     img_revised_tab2, contoures_tables = self.check_iou_of_bounding_box_and_contour_for_tables(img_revised_tab2,table_prediction, 10, num_col_classifier) | ||||
|                     #print(time.time()-t_0_box,'time box in 3.3') | ||||
|         else: | ||||
|             boxes_d, peaks_neg_tot_tables_d = return_boxes_of_images_by_order_of_reading_new(splitter_y_new_d, regions_without_separators_d, matrix_of_lines_ch_d, num_col_classifier, erosion_hurts, self.tables, self.right2left) | ||||
|             boxes = None | ||||
|             self.logger.debug("len(boxes): %s", len(boxes_d)) | ||||
|              | ||||
|             if self.tables: | ||||
|                 text_regions_p_tables = np.copy(text_regions_p_1_n) | ||||
|                 text_regions_p_tables =np.round(text_regions_p_tables) | ||||
|                 text_regions_p_tables[:,:][(text_regions_p_tables[:,:] != 3) & (table_prediction_n[:,:] == 1)] = 10 | ||||
|                  | ||||
|                 pixel_line = 3 | ||||
|                 img_revised_tab2 = self.add_tables_heuristic_to_layout(text_regions_p_tables,boxes_d,0,splitter_y_new_d,peaks_neg_tot_tables_d,text_regions_p_tables, num_col_classifier, 0.000005, pixel_line) | ||||
|                 img_revised_tab2_d,_ = self.check_iou_of_bounding_box_and_contour_for_tables(img_revised_tab2,table_prediction_n, 10, num_col_classifier) | ||||
|                  | ||||
|                 img_revised_tab2_d_rotated = rotate_image(img_revised_tab2_d, -slope_deskew) | ||||
|                 img_revised_tab2_d_rotated = np.round(img_revised_tab2_d_rotated) | ||||
|                 img_revised_tab2_d_rotated = img_revised_tab2_d_rotated.astype(np.int8) | ||||
|                 img_revised_tab2_d_rotated = resize_image(img_revised_tab2_d_rotated, text_regions_p.shape[0], text_regions_p.shape[1]) | ||||
|                 if self.light_version: | ||||
|                     pass | ||||
|                 else: | ||||
|                     text_regions_p_tables = np.copy(text_regions_p_1_n) | ||||
|                     text_regions_p_tables =np.round(text_regions_p_tables) | ||||
|                     text_regions_p_tables[:,:][(text_regions_p_tables[:,:] != 3) & (table_prediction_n[:,:] == 1)] = 10 | ||||
|                      | ||||
|                     pixel_line = 3 | ||||
|                     img_revised_tab2 = self.add_tables_heuristic_to_layout(text_regions_p_tables,boxes_d,0,splitter_y_new_d,peaks_neg_tot_tables_d,text_regions_p_tables, num_col_classifier, 0.000005, pixel_line) | ||||
|                     img_revised_tab2_d,_ = self.check_iou_of_bounding_box_and_contour_for_tables(img_revised_tab2,table_prediction_n, 10, num_col_classifier) | ||||
|                      | ||||
|                     img_revised_tab2_d_rotated = rotate_image(img_revised_tab2_d, -slope_deskew) | ||||
|                     img_revised_tab2_d_rotated = np.round(img_revised_tab2_d_rotated) | ||||
|                     img_revised_tab2_d_rotated = img_revised_tab2_d_rotated.astype(np.int8) | ||||
|                     img_revised_tab2_d_rotated = resize_image(img_revised_tab2_d_rotated, text_regions_p.shape[0], text_regions_p.shape[1]) | ||||
|         #print(time.time()-t_0_box,'time box in 4') | ||||
|         self.logger.info("detecting boxes took %.1fs", time.time() - t1) | ||||
|          | ||||
|         if self.tables: | ||||
|             if np.abs(slope_deskew) < SLOPE_THRESHOLD: | ||||
|                 img_revised_tab = np.copy(img_revised_tab2[:,:,0]) | ||||
|                 img_revised_tab[:,:][(text_regions_p[:,:] == 1) & (img_revised_tab[:,:] != 10)] = 1 | ||||
|             if self.light_version: | ||||
|                 text_regions_p[:,:][table_prediction[:,:]==1] = 10 | ||||
|                 img_revised_tab=text_regions_p[:,:] | ||||
|             else: | ||||
|                 img_revised_tab = np.copy(text_regions_p[:,:]) | ||||
|                 img_revised_tab[:,:][img_revised_tab[:,:] == 10] = 0 | ||||
|                 img_revised_tab[:,:][img_revised_tab2_d_rotated[:,:,0] == 10] = 10 | ||||
|                  | ||||
|             text_regions_p[:,:][text_regions_p[:,:]==10] = 0 | ||||
|             text_regions_p[:,:][img_revised_tab[:,:]==10] = 10 | ||||
|                 if np.abs(slope_deskew) < SLOPE_THRESHOLD: | ||||
|                     img_revised_tab = np.copy(img_revised_tab2[:,:,0]) | ||||
|                     img_revised_tab[:,:][(text_regions_p[:,:] == 1) & (img_revised_tab[:,:] != 10)] = 1 | ||||
|                 else: | ||||
|                     img_revised_tab = np.copy(text_regions_p[:,:]) | ||||
|                     img_revised_tab[:,:][img_revised_tab[:,:] == 10] = 0 | ||||
|                     img_revised_tab[:,:][img_revised_tab2_d_rotated[:,:,0] == 10] = 10 | ||||
|                      | ||||
|                 text_regions_p[:,:][text_regions_p[:,:]==10] = 0 | ||||
|                 text_regions_p[:,:][img_revised_tab[:,:]==10] = 10 | ||||
|         else: | ||||
|             img_revised_tab=text_regions_p[:,:] | ||||
|         #img_revised_tab = text_regions_p[:, :] | ||||
|         polygons_of_images = return_contours_of_interested_region(img_revised_tab, 2) | ||||
|         if self.light_version: | ||||
|             polygons_of_images = return_contours_of_interested_region(text_regions_p, 2) | ||||
|         else: | ||||
|             polygons_of_images = return_contours_of_interested_region(img_revised_tab, 2) | ||||
| 
 | ||||
|         pixel_img = 4 | ||||
|         min_area_mar = 0.00001 | ||||
|  | @ -3565,82 +3614,102 @@ class Eynollah: | |||
|         self.logger.debug('enter run_boxes_full_layout') | ||||
|         t_full0 = time.time() | ||||
|         if self.tables: | ||||
|             if np.abs(slope_deskew) >= SLOPE_THRESHOLD: | ||||
|                 image_page_rotated_n,textline_mask_tot_d,text_regions_p_1_n , table_prediction_n = rotation_not_90_func(image_page, textline_mask_tot, text_regions_p, table_prediction, slope_deskew) | ||||
|                  | ||||
|                 text_regions_p_1_n = resize_image(text_regions_p_1_n,text_regions_p.shape[0],text_regions_p.shape[1]) | ||||
|                 textline_mask_tot_d = resize_image(textline_mask_tot_d,text_regions_p.shape[0],text_regions_p.shape[1]) | ||||
|                 table_prediction_n = resize_image(table_prediction_n,text_regions_p.shape[0],text_regions_p.shape[1]) | ||||
|                  | ||||
|                 regions_without_separators_d=(text_regions_p_1_n[:,:] == 1)*1 | ||||
|                 regions_without_separators_d[table_prediction_n[:,:] == 1] = 1 | ||||
|             else: | ||||
|                 text_regions_p_1_n = None | ||||
|                 textline_mask_tot_d = None | ||||
|                 regions_without_separators_d = None | ||||
|                  | ||||
|             regions_without_separators = (text_regions_p[:,:] == 1)*1#( (text_regions_p[:,:]==1) | (text_regions_p[:,:]==2) )*1 #self.return_regions_without_seperators_new(text_regions_p[:,:,0],img_only_regions) | ||||
|             regions_without_separators[table_prediction == 1] = 1 | ||||
|              | ||||
|             pixel_lines=3 | ||||
|             if np.abs(slope_deskew) < SLOPE_THRESHOLD: | ||||
|                 num_col, peaks_neg_fin, matrix_of_lines_ch, splitter_y_new, seperators_closeup_n = find_number_of_columns_in_document(np.repeat(text_regions_p[:, :, np.newaxis], 3, axis=2), num_col_classifier, self.tables, pixel_lines) | ||||
|              | ||||
|             if np.abs(slope_deskew) >= SLOPE_THRESHOLD: | ||||
|                 num_col_d, peaks_neg_fin_d, matrix_of_lines_ch_d, splitter_y_new_d, seperators_closeup_n_d = find_number_of_columns_in_document(np.repeat(text_regions_p_1_n[:, :, np.newaxis], 3, axis=2),num_col_classifier, self.tables, pixel_lines) | ||||
|             if self.light_version: | ||||
|                 text_regions_p[:,:][table_prediction[:,:]==1] = 10 | ||||
|                 img_revised_tab=text_regions_p[:,:] | ||||
|                 if np.abs(slope_deskew) >= SLOPE_THRESHOLD: | ||||
|                     image_page_rotated_n,textline_mask_tot_d,text_regions_p_1_n , table_prediction_n = rotation_not_90_func(image_page, textline_mask_tot, text_regions_p, table_prediction, slope_deskew) | ||||
|                      | ||||
|                     text_regions_p_1_n = resize_image(text_regions_p_1_n,text_regions_p.shape[0],text_regions_p.shape[1]) | ||||
|                     textline_mask_tot_d = resize_image(textline_mask_tot_d,text_regions_p.shape[0],text_regions_p.shape[1]) | ||||
|                     table_prediction_n = resize_image(table_prediction_n,text_regions_p.shape[0],text_regions_p.shape[1]) | ||||
|                      | ||||
|                     regions_without_separators_d=(text_regions_p_1_n[:,:] == 1)*1 | ||||
|                     regions_without_separators_d[table_prediction_n[:,:] == 1] = 1 | ||||
|                 else: | ||||
|                     text_regions_p_1_n = None | ||||
|                     textline_mask_tot_d = None | ||||
|                     regions_without_separators_d = None | ||||
|                 regions_without_separators = (text_regions_p[:,:] == 1)*1#( (text_regions_p[:,:]==1) | (text_regions_p[:,:]==2) )*1 #self.return_regions_without_seperators_new(text_regions_p[:,:,0],img_only_regions) | ||||
|                 regions_without_separators[table_prediction == 1] = 1 | ||||
| 
 | ||||
|             if num_col_classifier>=3: | ||||
|             else: | ||||
|                 if np.abs(slope_deskew) >= SLOPE_THRESHOLD: | ||||
|                     image_page_rotated_n,textline_mask_tot_d,text_regions_p_1_n , table_prediction_n = rotation_not_90_func(image_page, textline_mask_tot, text_regions_p, table_prediction, slope_deskew) | ||||
|                      | ||||
|                     text_regions_p_1_n = resize_image(text_regions_p_1_n,text_regions_p.shape[0],text_regions_p.shape[1]) | ||||
|                     textline_mask_tot_d = resize_image(textline_mask_tot_d,text_regions_p.shape[0],text_regions_p.shape[1]) | ||||
|                     table_prediction_n = resize_image(table_prediction_n,text_regions_p.shape[0],text_regions_p.shape[1]) | ||||
|                      | ||||
|                     regions_without_separators_d=(text_regions_p_1_n[:,:] == 1)*1 | ||||
|                     regions_without_separators_d[table_prediction_n[:,:] == 1] = 1 | ||||
|                 else: | ||||
|                     text_regions_p_1_n = None | ||||
|                     textline_mask_tot_d = None | ||||
|                     regions_without_separators_d = None | ||||
|                      | ||||
|                 regions_without_separators = (text_regions_p[:,:] == 1)*1#( (text_regions_p[:,:]==1) | (text_regions_p[:,:]==2) )*1 #self.return_regions_without_seperators_new(text_regions_p[:,:,0],img_only_regions) | ||||
|                 regions_without_separators[table_prediction == 1] = 1 | ||||
|                  | ||||
|                 pixel_lines=3 | ||||
|                 if np.abs(slope_deskew) < SLOPE_THRESHOLD: | ||||
|                     regions_without_separators = regions_without_separators.astype(np.uint8) | ||||
|                     regions_without_separators = cv2.erode(regions_without_separators[:,:], KERNEL, iterations=6) | ||||
|                     num_col, peaks_neg_fin, matrix_of_lines_ch, splitter_y_new, seperators_closeup_n = find_number_of_columns_in_document(np.repeat(text_regions_p[:, :, np.newaxis], 3, axis=2), num_col_classifier, self.tables, pixel_lines) | ||||
|                  | ||||
|                 if np.abs(slope_deskew) >= SLOPE_THRESHOLD: | ||||
|                     regions_without_separators_d = regions_without_separators_d.astype(np.uint8) | ||||
|                     regions_without_separators_d = cv2.erode(regions_without_separators_d[:,:], KERNEL, iterations=6) | ||||
|             else: | ||||
|                 pass | ||||
|              | ||||
|             if np.abs(slope_deskew) < SLOPE_THRESHOLD: | ||||
|                 boxes, peaks_neg_tot_tables = return_boxes_of_images_by_order_of_reading_new(splitter_y_new, regions_without_separators, matrix_of_lines_ch, num_col_classifier, erosion_hurts, self.tables, self.right2left) | ||||
|                 text_regions_p_tables = np.copy(text_regions_p) | ||||
|                 text_regions_p_tables[:,:][(table_prediction[:,:]==1)] = 10 | ||||
|                 pixel_line = 3 | ||||
|                 img_revised_tab2 = self.add_tables_heuristic_to_layout(text_regions_p_tables, boxes, 0, splitter_y_new, peaks_neg_tot_tables, text_regions_p_tables , num_col_classifier , 0.000005, pixel_line) | ||||
|                  | ||||
|                 img_revised_tab2,contoures_tables = self.check_iou_of_bounding_box_and_contour_for_tables(img_revised_tab2, table_prediction, 10, num_col_classifier) | ||||
|                  | ||||
|             else: | ||||
|                 boxes_d, peaks_neg_tot_tables_d = return_boxes_of_images_by_order_of_reading_new(splitter_y_new_d, regions_without_separators_d, matrix_of_lines_ch_d, num_col_classifier, erosion_hurts, self.tables, self.right2left) | ||||
|                 text_regions_p_tables = np.copy(text_regions_p_1_n) | ||||
|                 text_regions_p_tables = np.round(text_regions_p_tables) | ||||
|                 text_regions_p_tables[:,:][(text_regions_p_tables[:,:]!=3) & (table_prediction_n[:,:]==1)] = 10 | ||||
|                  | ||||
|                 pixel_line = 3 | ||||
|                 img_revised_tab2 = self.add_tables_heuristic_to_layout(text_regions_p_tables,boxes_d,0,splitter_y_new_d,peaks_neg_tot_tables_d,text_regions_p_tables, num_col_classifier, 0.000005, pixel_line) | ||||
|                  | ||||
|                 img_revised_tab2_d,_ = self.check_iou_of_bounding_box_and_contour_for_tables(img_revised_tab2, table_prediction_n, 10, num_col_classifier) | ||||
|                 img_revised_tab2_d_rotated = rotate_image(img_revised_tab2_d, -slope_deskew) | ||||
|                  | ||||
|                     num_col_d, peaks_neg_fin_d, matrix_of_lines_ch_d, splitter_y_new_d, seperators_closeup_n_d = find_number_of_columns_in_document(np.repeat(text_regions_p_1_n[:, :, np.newaxis], 3, axis=2),num_col_classifier, self.tables, pixel_lines) | ||||
| 
 | ||||
|                 img_revised_tab2_d_rotated = np.round(img_revised_tab2_d_rotated) | ||||
|                 img_revised_tab2_d_rotated = img_revised_tab2_d_rotated.astype(np.int8) | ||||
| 
 | ||||
|                 img_revised_tab2_d_rotated = resize_image(img_revised_tab2_d_rotated, text_regions_p.shape[0], text_regions_p.shape[1]) | ||||
| 
 | ||||
| 
 | ||||
|             if np.abs(slope_deskew) < 0.13: | ||||
|                 img_revised_tab = np.copy(img_revised_tab2[:,:,0]) | ||||
|             else: | ||||
|                 img_revised_tab = np.copy(text_regions_p[:,:]) | ||||
|                 img_revised_tab[:,:][img_revised_tab[:,:] == 10] = 0 | ||||
|                 img_revised_tab[:,:][img_revised_tab2_d_rotated[:,:,0] == 10] = 10 | ||||
|                 if num_col_classifier>=3: | ||||
|                     if np.abs(slope_deskew) < SLOPE_THRESHOLD: | ||||
|                         regions_without_separators = regions_without_separators.astype(np.uint8) | ||||
|                         regions_without_separators = cv2.erode(regions_without_separators[:,:], KERNEL, iterations=6) | ||||
|                      | ||||
|                     if np.abs(slope_deskew) >= SLOPE_THRESHOLD: | ||||
|                         regions_without_separators_d = regions_without_separators_d.astype(np.uint8) | ||||
|                         regions_without_separators_d = cv2.erode(regions_without_separators_d[:,:], KERNEL, iterations=6) | ||||
|                 else: | ||||
|                     pass | ||||
|                  | ||||
|                 if np.abs(slope_deskew) < SLOPE_THRESHOLD: | ||||
|                     boxes, peaks_neg_tot_tables = return_boxes_of_images_by_order_of_reading_new(splitter_y_new, regions_without_separators, matrix_of_lines_ch, num_col_classifier, erosion_hurts, self.tables, self.right2left) | ||||
|                     text_regions_p_tables = np.copy(text_regions_p) | ||||
|                     text_regions_p_tables[:,:][(table_prediction[:,:]==1)] = 10 | ||||
|                     pixel_line = 3 | ||||
|                     img_revised_tab2 = self.add_tables_heuristic_to_layout(text_regions_p_tables, boxes, 0, splitter_y_new, peaks_neg_tot_tables, text_regions_p_tables , num_col_classifier , 0.000005, pixel_line) | ||||
|                      | ||||
|             ##img_revised_tab=img_revised_tab2[:,:,0] | ||||
|             #img_revised_tab=text_regions_p[:,:] | ||||
|             text_regions_p[:,:][text_regions_p[:,:]==10] = 0 | ||||
|             text_regions_p[:,:][img_revised_tab[:,:]==10] = 10 | ||||
|             #img_revised_tab[img_revised_tab2[:,:,0]==10] =10 | ||||
|                     img_revised_tab2,contoures_tables = self.check_iou_of_bounding_box_and_contour_for_tables(img_revised_tab2, table_prediction, 10, num_col_classifier) | ||||
|                      | ||||
|                 else: | ||||
|                     boxes_d, peaks_neg_tot_tables_d = return_boxes_of_images_by_order_of_reading_new(splitter_y_new_d, regions_without_separators_d, matrix_of_lines_ch_d, num_col_classifier, erosion_hurts, self.tables, self.right2left) | ||||
|                     text_regions_p_tables = np.copy(text_regions_p_1_n) | ||||
|                     text_regions_p_tables = np.round(text_regions_p_tables) | ||||
|                     text_regions_p_tables[:,:][(text_regions_p_tables[:,:]!=3) & (table_prediction_n[:,:]==1)] = 10 | ||||
|                      | ||||
|                     pixel_line = 3 | ||||
|                     img_revised_tab2 = self.add_tables_heuristic_to_layout(text_regions_p_tables,boxes_d,0,splitter_y_new_d,peaks_neg_tot_tables_d,text_regions_p_tables, num_col_classifier, 0.000005, pixel_line) | ||||
|                      | ||||
|                     img_revised_tab2_d,_ = self.check_iou_of_bounding_box_and_contour_for_tables(img_revised_tab2, table_prediction_n, 10, num_col_classifier) | ||||
|                     img_revised_tab2_d_rotated = rotate_image(img_revised_tab2_d, -slope_deskew) | ||||
|                      | ||||
| 
 | ||||
|                     img_revised_tab2_d_rotated = np.round(img_revised_tab2_d_rotated) | ||||
|                     img_revised_tab2_d_rotated = img_revised_tab2_d_rotated.astype(np.int8) | ||||
| 
 | ||||
|                     img_revised_tab2_d_rotated = resize_image(img_revised_tab2_d_rotated, text_regions_p.shape[0], text_regions_p.shape[1]) | ||||
| 
 | ||||
| 
 | ||||
|                 if np.abs(slope_deskew) < 0.13: | ||||
|                     img_revised_tab = np.copy(img_revised_tab2[:,:,0]) | ||||
|                 else: | ||||
|                     img_revised_tab = np.copy(text_regions_p[:,:]) | ||||
|                     img_revised_tab[:,:][img_revised_tab[:,:] == 10] = 0 | ||||
|                     img_revised_tab[:,:][img_revised_tab2_d_rotated[:,:,0] == 10] = 10 | ||||
|                          | ||||
|                          | ||||
|                 ##img_revised_tab=img_revised_tab2[:,:,0] | ||||
|                 #img_revised_tab=text_regions_p[:,:] | ||||
|                 text_regions_p[:,:][text_regions_p[:,:]==10] = 0 | ||||
|                 text_regions_p[:,:][img_revised_tab[:,:]==10] = 10 | ||||
|                 #img_revised_tab[img_revised_tab2[:,:,0]==10] =10 | ||||
|              | ||||
|         pixel_img = 4 | ||||
|         min_area_mar = 0.00001 | ||||
|  |  | |||
		Loading…
	
	Add table
		Add a link
		
	
		Reference in a new issue