|
|
@ -143,6 +143,7 @@ class Eynollah:
|
|
|
|
self.model_region_dir_fully = dir_models + "/model_3up_new_good_no_augmentation.h5"
|
|
|
|
self.model_region_dir_fully = dir_models + "/model_3up_new_good_no_augmentation.h5"
|
|
|
|
self.model_page_dir = dir_models + "/model_page_mixed_best.h5"
|
|
|
|
self.model_page_dir = dir_models + "/model_page_mixed_best.h5"
|
|
|
|
self.model_region_dir_p_ens = dir_models + "/model_ensemble_s.h5"
|
|
|
|
self.model_region_dir_p_ens = dir_models + "/model_ensemble_s.h5"
|
|
|
|
|
|
|
|
self.model_region_dir_p_ens_light = dir_models + "/model_11.h5"
|
|
|
|
self.model_textline_dir = dir_models + "/model_textline_newspapers.h5"
|
|
|
|
self.model_textline_dir = dir_models + "/model_textline_newspapers.h5"
|
|
|
|
self.model_tables = dir_models + "/model_tables_ens_mixed_new_2.h5"
|
|
|
|
self.model_tables = dir_models + "/model_tables_ens_mixed_new_2.h5"
|
|
|
|
|
|
|
|
|
|
|
@ -378,8 +379,11 @@ class Eynollah:
|
|
|
|
|
|
|
|
|
|
|
|
return img, img_new, is_image_enhanced
|
|
|
|
return img, img_new, is_image_enhanced
|
|
|
|
|
|
|
|
|
|
|
|
def resize_and_enhance_image_with_column_classifier(self):
|
|
|
|
def resize_and_enhance_image_with_column_classifier(self,light_version):
|
|
|
|
self.logger.debug("enter resize_and_enhance_image_with_column_classifier")
|
|
|
|
self.logger.debug("enter resize_and_enhance_image_with_column_classifier")
|
|
|
|
|
|
|
|
if light_version:
|
|
|
|
|
|
|
|
dpi = 300
|
|
|
|
|
|
|
|
else:
|
|
|
|
dpi = self.dpi
|
|
|
|
dpi = self.dpi
|
|
|
|
self.logger.info("Detected %s DPI", dpi)
|
|
|
|
self.logger.info("Detected %s DPI", dpi)
|
|
|
|
if self.input_binary:
|
|
|
|
if self.input_binary:
|
|
|
@ -637,6 +641,243 @@ class Eynollah:
|
|
|
|
del model
|
|
|
|
del model
|
|
|
|
gc.collect()
|
|
|
|
gc.collect()
|
|
|
|
return prediction_true
|
|
|
|
return prediction_true
|
|
|
|
|
|
|
|
def do_prediction_new_concept(self, patches, img, model, marginal_of_patch_percent=0.1):
|
|
|
|
|
|
|
|
self.logger.debug("enter do_prediction")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
img_height_model = model.layers[len(model.layers) - 1].output_shape[1]
|
|
|
|
|
|
|
|
img_width_model = model.layers[len(model.layers) - 1].output_shape[2]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if not patches:
|
|
|
|
|
|
|
|
img_h_page = img.shape[0]
|
|
|
|
|
|
|
|
img_w_page = img.shape[1]
|
|
|
|
|
|
|
|
img = img / float(255.0)
|
|
|
|
|
|
|
|
img = resize_image(img, img_height_model, img_width_model)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
label_p_pred = model.predict(img.reshape(1, img.shape[0], img.shape[1], img.shape[2]))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
seg = np.argmax(label_p_pred, axis=3)[0]
|
|
|
|
|
|
|
|
seg_color = np.repeat(seg[:, :, np.newaxis], 3, axis=2)
|
|
|
|
|
|
|
|
prediction_true = resize_image(seg_color, img_h_page, img_w_page)
|
|
|
|
|
|
|
|
prediction_true = prediction_true.astype(np.uint8)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
else:
|
|
|
|
|
|
|
|
if img.shape[0] < img_height_model:
|
|
|
|
|
|
|
|
img = resize_image(img, img_height_model, img.shape[1])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if img.shape[1] < img_width_model:
|
|
|
|
|
|
|
|
img = resize_image(img, img.shape[0], img_width_model)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
self.logger.info("Image dimensions: %sx%s", img_height_model, img_width_model)
|
|
|
|
|
|
|
|
margin = int(marginal_of_patch_percent * img_height_model)
|
|
|
|
|
|
|
|
width_mid = img_width_model - 2 * margin
|
|
|
|
|
|
|
|
height_mid = img_height_model - 2 * margin
|
|
|
|
|
|
|
|
img = img / float(255.0)
|
|
|
|
|
|
|
|
img = img.astype(np.float16)
|
|
|
|
|
|
|
|
img_h = img.shape[0]
|
|
|
|
|
|
|
|
img_w = img.shape[1]
|
|
|
|
|
|
|
|
prediction_true = np.zeros((img_h, img_w, 3))
|
|
|
|
|
|
|
|
mask_true = np.zeros((img_h, img_w))
|
|
|
|
|
|
|
|
nxf = img_w / float(width_mid)
|
|
|
|
|
|
|
|
nyf = img_h / float(height_mid)
|
|
|
|
|
|
|
|
nxf = int(nxf) + 1 if nxf > int(nxf) else int(nxf)
|
|
|
|
|
|
|
|
nyf = int(nyf) + 1 if nyf > int(nyf) else int(nyf)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
for i in range(nxf):
|
|
|
|
|
|
|
|
for j in range(nyf):
|
|
|
|
|
|
|
|
if i == 0:
|
|
|
|
|
|
|
|
index_x_d = i * width_mid
|
|
|
|
|
|
|
|
index_x_u = index_x_d + img_width_model
|
|
|
|
|
|
|
|
else:
|
|
|
|
|
|
|
|
index_x_d = i * width_mid
|
|
|
|
|
|
|
|
index_x_u = index_x_d + img_width_model
|
|
|
|
|
|
|
|
if j == 0:
|
|
|
|
|
|
|
|
index_y_d = j * height_mid
|
|
|
|
|
|
|
|
index_y_u = index_y_d + img_height_model
|
|
|
|
|
|
|
|
else:
|
|
|
|
|
|
|
|
index_y_d = j * height_mid
|
|
|
|
|
|
|
|
index_y_u = index_y_d + img_height_model
|
|
|
|
|
|
|
|
if index_x_u > img_w:
|
|
|
|
|
|
|
|
index_x_u = img_w
|
|
|
|
|
|
|
|
index_x_d = img_w - img_width_model
|
|
|
|
|
|
|
|
if index_y_u > img_h:
|
|
|
|
|
|
|
|
index_y_u = img_h
|
|
|
|
|
|
|
|
index_y_d = img_h - img_height_model
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
img_patch = img[index_y_d:index_y_u, index_x_d:index_x_u, :]
|
|
|
|
|
|
|
|
label_p_pred = model.predict(img_patch.reshape(1, img_patch.shape[0], img_patch.shape[1], img_patch.shape[2]))
|
|
|
|
|
|
|
|
seg = np.argmax(label_p_pred, axis=3)[0]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
seg_not_base = label_p_pred[0,:,:,4]
|
|
|
|
|
|
|
|
##seg2 = -label_p_pred[0,:,:,2]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
seg_not_base[seg_not_base>0.03] =1
|
|
|
|
|
|
|
|
seg_not_base[seg_not_base<1] =0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
seg_test = label_p_pred[0,:,:,1]
|
|
|
|
|
|
|
|
##seg2 = -label_p_pred[0,:,:,2]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
seg_test[seg_test>0.75] =1
|
|
|
|
|
|
|
|
seg_test[seg_test<1] =0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
seg_line = label_p_pred[0,:,:,3]
|
|
|
|
|
|
|
|
##seg2 = -label_p_pred[0,:,:,2]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
seg_line[seg_line>0.1] =1
|
|
|
|
|
|
|
|
seg_line[seg_line<1] =0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
seg_background = label_p_pred[0,:,:,0]
|
|
|
|
|
|
|
|
##seg2 = -label_p_pred[0,:,:,2]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
seg_background[seg_background>0.25] =1
|
|
|
|
|
|
|
|
seg_background[seg_background<1] =0
|
|
|
|
|
|
|
|
##seg = seg+seg2
|
|
|
|
|
|
|
|
#seg = label_p_pred[0,:,:,2]
|
|
|
|
|
|
|
|
#seg[seg>0.4] =1
|
|
|
|
|
|
|
|
#seg[seg<1] =0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
##plt.imshow(seg_test)
|
|
|
|
|
|
|
|
##plt.show()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
##plt.imshow(seg_background)
|
|
|
|
|
|
|
|
##plt.show()
|
|
|
|
|
|
|
|
#seg[seg==1]=0
|
|
|
|
|
|
|
|
#seg[seg_test==1]=1
|
|
|
|
|
|
|
|
seg[seg_not_base==1]=4
|
|
|
|
|
|
|
|
seg[seg_background==1]=0
|
|
|
|
|
|
|
|
seg[(seg_line==1) & (seg==0)]=3
|
|
|
|
|
|
|
|
seg_color = np.repeat(seg[:, :, np.newaxis], 3, axis=2)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if i == 0 and j == 0:
|
|
|
|
|
|
|
|
seg_color = seg_color[0 : seg_color.shape[0] - margin, 0 : seg_color.shape[1] - margin, :]
|
|
|
|
|
|
|
|
seg = seg[0 : seg.shape[0] - margin, 0 : seg.shape[1] - margin]
|
|
|
|
|
|
|
|
mask_true[index_y_d + 0 : index_y_u - margin, index_x_d + 0 : index_x_u - margin] = seg
|
|
|
|
|
|
|
|
prediction_true[index_y_d + 0 : index_y_u - margin, index_x_d + 0 : index_x_u - margin, :] = seg_color
|
|
|
|
|
|
|
|
elif i == nxf - 1 and j == nyf - 1:
|
|
|
|
|
|
|
|
seg_color = seg_color[margin : seg_color.shape[0] - 0, margin : seg_color.shape[1] - 0, :]
|
|
|
|
|
|
|
|
seg = seg[margin : seg.shape[0] - 0, margin : seg.shape[1] - 0]
|
|
|
|
|
|
|
|
mask_true[index_y_d + margin : index_y_u - 0, index_x_d + margin : index_x_u - 0] = seg
|
|
|
|
|
|
|
|
prediction_true[index_y_d + margin : index_y_u - 0, index_x_d + margin : index_x_u - 0, :] = seg_color
|
|
|
|
|
|
|
|
elif i == 0 and j == nyf - 1:
|
|
|
|
|
|
|
|
seg_color = seg_color[margin : seg_color.shape[0] - 0, 0 : seg_color.shape[1] - margin, :]
|
|
|
|
|
|
|
|
seg = seg[margin : seg.shape[0] - 0, 0 : seg.shape[1] - margin]
|
|
|
|
|
|
|
|
mask_true[index_y_d + margin : index_y_u - 0, index_x_d + 0 : index_x_u - margin] = seg
|
|
|
|
|
|
|
|
prediction_true[index_y_d + margin : index_y_u - 0, index_x_d + 0 : index_x_u - margin, :] = seg_color
|
|
|
|
|
|
|
|
elif i == nxf - 1 and j == 0:
|
|
|
|
|
|
|
|
seg_color = seg_color[0 : seg_color.shape[0] - margin, margin : seg_color.shape[1] - 0, :]
|
|
|
|
|
|
|
|
seg = seg[0 : seg.shape[0] - margin, margin : seg.shape[1] - 0]
|
|
|
|
|
|
|
|
mask_true[index_y_d + 0 : index_y_u - margin, index_x_d + margin : index_x_u - 0] = seg
|
|
|
|
|
|
|
|
prediction_true[index_y_d + 0 : index_y_u - margin, index_x_d + margin : index_x_u - 0, :] = seg_color
|
|
|
|
|
|
|
|
elif i == 0 and j != 0 and j != nyf - 1:
|
|
|
|
|
|
|
|
seg_color = seg_color[margin : seg_color.shape[0] - margin, 0 : seg_color.shape[1] - margin, :]
|
|
|
|
|
|
|
|
seg = seg[margin : seg.shape[0] - margin, 0 : seg.shape[1] - margin]
|
|
|
|
|
|
|
|
mask_true[index_y_d + margin : index_y_u - margin, index_x_d + 0 : index_x_u - margin] = seg
|
|
|
|
|
|
|
|
prediction_true[index_y_d + margin : index_y_u - margin, index_x_d + 0 : index_x_u - margin, :] = seg_color
|
|
|
|
|
|
|
|
elif i == nxf - 1 and j != 0 and j != nyf - 1:
|
|
|
|
|
|
|
|
seg_color = seg_color[margin : seg_color.shape[0] - margin, margin : seg_color.shape[1] - 0, :]
|
|
|
|
|
|
|
|
seg = seg[margin : seg.shape[0] - margin, margin : seg.shape[1] - 0]
|
|
|
|
|
|
|
|
mask_true[index_y_d + margin : index_y_u - margin, index_x_d + margin : index_x_u - 0] = seg
|
|
|
|
|
|
|
|
prediction_true[index_y_d + margin : index_y_u - margin, index_x_d + margin : index_x_u - 0, :] = seg_color
|
|
|
|
|
|
|
|
elif i != 0 and i != nxf - 1 and j == 0:
|
|
|
|
|
|
|
|
seg_color = seg_color[0 : seg_color.shape[0] - margin, margin : seg_color.shape[1] - margin, :]
|
|
|
|
|
|
|
|
seg = seg[0 : seg.shape[0] - margin, margin : seg.shape[1] - margin]
|
|
|
|
|
|
|
|
mask_true[index_y_d + 0 : index_y_u - margin, index_x_d + margin : index_x_u - margin] = seg
|
|
|
|
|
|
|
|
prediction_true[index_y_d + 0 : index_y_u - margin, index_x_d + margin : index_x_u - margin, :] = seg_color
|
|
|
|
|
|
|
|
elif i != 0 and i != nxf - 1 and j == nyf - 1:
|
|
|
|
|
|
|
|
seg_color = seg_color[margin : seg_color.shape[0] - 0, margin : seg_color.shape[1] - margin, :]
|
|
|
|
|
|
|
|
seg = seg[margin : seg.shape[0] - 0, margin : seg.shape[1] - margin]
|
|
|
|
|
|
|
|
mask_true[index_y_d + margin : index_y_u - 0, index_x_d + margin : index_x_u - margin] = seg
|
|
|
|
|
|
|
|
prediction_true[index_y_d + margin : index_y_u - 0, index_x_d + margin : index_x_u - margin, :] = seg_color
|
|
|
|
|
|
|
|
else:
|
|
|
|
|
|
|
|
seg_color = seg_color[margin : seg_color.shape[0] - margin, margin : seg_color.shape[1] - margin, :]
|
|
|
|
|
|
|
|
seg = seg[margin : seg.shape[0] - margin, margin : seg.shape[1] - margin]
|
|
|
|
|
|
|
|
mask_true[index_y_d + margin : index_y_u - margin, index_x_d + margin : index_x_u - margin] = seg
|
|
|
|
|
|
|
|
prediction_true[index_y_d + margin : index_y_u - margin, index_x_d + margin : index_x_u - margin, :] = seg_color
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
prediction_true = prediction_true.astype(np.uint8)
|
|
|
|
|
|
|
|
del model
|
|
|
|
|
|
|
|
gc.collect()
|
|
|
|
|
|
|
|
return prediction_true
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def early_page_for_num_of_column_classification(self,img_bin):
|
|
|
|
|
|
|
|
self.logger.debug("enter early_page_for_num_of_column_classification")
|
|
|
|
|
|
|
|
if self.input_binary:
|
|
|
|
|
|
|
|
img =np.copy(img_bin)
|
|
|
|
|
|
|
|
img = img.astype(np.uint8)
|
|
|
|
|
|
|
|
else:
|
|
|
|
|
|
|
|
img = self.imread()
|
|
|
|
|
|
|
|
model_page, session_page = self.start_new_session_and_model(self.model_page_dir)
|
|
|
|
|
|
|
|
img = cv2.GaussianBlur(img, (5, 5), 0)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
img_page_prediction = self.do_prediction(False, img, model_page)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
imgray = cv2.cvtColor(img_page_prediction, cv2.COLOR_BGR2GRAY)
|
|
|
|
|
|
|
|
_, thresh = cv2.threshold(imgray, 0, 255, 0)
|
|
|
|
|
|
|
|
thresh = cv2.dilate(thresh, KERNEL, iterations=3)
|
|
|
|
|
|
|
|
contours, _ = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
|
|
|
|
|
|
|
|
if len(contours)>0:
|
|
|
|
|
|
|
|
cnt_size = np.array([cv2.contourArea(contours[j]) for j in range(len(contours))])
|
|
|
|
|
|
|
|
cnt = contours[np.argmax(cnt_size)]
|
|
|
|
|
|
|
|
x, y, w, h = cv2.boundingRect(cnt)
|
|
|
|
|
|
|
|
box = [x, y, w, h]
|
|
|
|
|
|
|
|
else:
|
|
|
|
|
|
|
|
box = [0, 0, img.shape[1], img.shape[0]]
|
|
|
|
|
|
|
|
croped_page, page_coord = crop_image_inside_box(box, img)
|
|
|
|
|
|
|
|
session_page.close()
|
|
|
|
|
|
|
|
del model_page
|
|
|
|
|
|
|
|
del session_page
|
|
|
|
|
|
|
|
gc.collect()
|
|
|
|
|
|
|
|
K.clear_session()
|
|
|
|
|
|
|
|
self.logger.debug("exit early_page_for_num_of_column_classification")
|
|
|
|
|
|
|
|
return croped_page, page_coord
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def extract_page(self):
|
|
|
|
|
|
|
|
self.logger.debug("enter extract_page")
|
|
|
|
|
|
|
|
cont_page = []
|
|
|
|
|
|
|
|
model_page, session_page = self.start_new_session_and_model(self.model_page_dir)
|
|
|
|
|
|
|
|
img = cv2.GaussianBlur(self.image, (5, 5), 0)
|
|
|
|
|
|
|
|
img_page_prediction = self.do_prediction(False, img, model_page)
|
|
|
|
|
|
|
|
imgray = cv2.cvtColor(img_page_prediction, cv2.COLOR_BGR2GRAY)
|
|
|
|
|
|
|
|
_, thresh = cv2.threshold(imgray, 0, 255, 0)
|
|
|
|
|
|
|
|
thresh = cv2.dilate(thresh, KERNEL, iterations=3)
|
|
|
|
|
|
|
|
contours, _ = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if len(contours)>0:
|
|
|
|
|
|
|
|
cnt_size = np.array([cv2.contourArea(contours[j]) for j in range(len(contours))])
|
|
|
|
|
|
|
|
cnt = contours[np.argmax(cnt_size)]
|
|
|
|
|
|
|
|
x, y, w, h = cv2.boundingRect(cnt)
|
|
|
|
|
|
|
|
if x <= 30:
|
|
|
|
|
|
|
|
w += x
|
|
|
|
|
|
|
|
x = 0
|
|
|
|
|
|
|
|
if (self.image.shape[1] - (x + w)) <= 30:
|
|
|
|
|
|
|
|
w = w + (self.image.shape[1] - (x + w))
|
|
|
|
|
|
|
|
if y <= 30:
|
|
|
|
|
|
|
|
h = h + y
|
|
|
|
|
|
|
|
y = 0
|
|
|
|
|
|
|
|
if (self.image.shape[0] - (y + h)) <= 30:
|
|
|
|
|
|
|
|
h = h + (self.image.shape[0] - (y + h))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
box = [x, y, w, h]
|
|
|
|
|
|
|
|
else:
|
|
|
|
|
|
|
|
box = [0, 0, img.shape[1], img.shape[0]]
|
|
|
|
|
|
|
|
croped_page, page_coord = crop_image_inside_box(box, self.image)
|
|
|
|
|
|
|
|
cont_page.append(np.array([[page_coord[2], page_coord[0]], [page_coord[3], page_coord[0]], [page_coord[3], page_coord[1]], [page_coord[2], page_coord[1]]]))
|
|
|
|
|
|
|
|
session_page.close()
|
|
|
|
|
|
|
|
del model_page
|
|
|
|
|
|
|
|
del session_page
|
|
|
|
|
|
|
|
gc.collect()
|
|
|
|
|
|
|
|
K.clear_session()
|
|
|
|
|
|
|
|
self.logger.debug("exit extract_page")
|
|
|
|
|
|
|
|
return croped_page, page_coord, cont_page
|
|
|
|
|
|
|
|
|
|
|
|
def early_page_for_num_of_column_classification(self,img_bin):
|
|
|
|
def early_page_for_num_of_column_classification(self,img_bin):
|
|
|
|
self.logger.debug("enter early_page_for_num_of_column_classification")
|
|
|
|
self.logger.debug("enter early_page_for_num_of_column_classification")
|
|
|
@ -809,6 +1050,54 @@ class Eynollah:
|
|
|
|
self.logger.debug("exit extract_text_regions")
|
|
|
|
self.logger.debug("exit extract_text_regions")
|
|
|
|
return prediction_regions, prediction_regions2
|
|
|
|
return prediction_regions, prediction_regions2
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def get_slopes_and_deskew_new_light(self, contours, contours_par, textline_mask_tot, image_page_rotated, boxes, slope_deskew):
|
|
|
|
|
|
|
|
self.logger.debug("enter get_slopes_and_deskew_new")
|
|
|
|
|
|
|
|
num_cores = cpu_count()
|
|
|
|
|
|
|
|
queue_of_all_params = Queue()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
processes = []
|
|
|
|
|
|
|
|
nh = np.linspace(0, len(boxes), num_cores + 1)
|
|
|
|
|
|
|
|
indexes_by_text_con = np.array(range(len(contours_par)))
|
|
|
|
|
|
|
|
for i in range(num_cores):
|
|
|
|
|
|
|
|
boxes_per_process = boxes[int(nh[i]) : int(nh[i + 1])]
|
|
|
|
|
|
|
|
contours_per_process = contours[int(nh[i]) : int(nh[i + 1])]
|
|
|
|
|
|
|
|
contours_par_per_process = contours_par[int(nh[i]) : int(nh[i + 1])]
|
|
|
|
|
|
|
|
indexes_text_con_per_process = indexes_by_text_con[int(nh[i]) : int(nh[i + 1])]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
processes.append(Process(target=self.do_work_of_slopes_new_light, args=(queue_of_all_params, boxes_per_process, textline_mask_tot, contours_per_process, contours_par_per_process, indexes_text_con_per_process, image_page_rotated, slope_deskew)))
|
|
|
|
|
|
|
|
for i in range(num_cores):
|
|
|
|
|
|
|
|
processes[i].start()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
slopes = []
|
|
|
|
|
|
|
|
all_found_texline_polygons = []
|
|
|
|
|
|
|
|
all_found_text_regions = []
|
|
|
|
|
|
|
|
all_found_text_regions_par = []
|
|
|
|
|
|
|
|
boxes = []
|
|
|
|
|
|
|
|
all_box_coord = []
|
|
|
|
|
|
|
|
all_index_text_con = []
|
|
|
|
|
|
|
|
for i in range(num_cores):
|
|
|
|
|
|
|
|
list_all_par = queue_of_all_params.get(True)
|
|
|
|
|
|
|
|
slopes_for_sub_process = list_all_par[0]
|
|
|
|
|
|
|
|
polys_for_sub_process = list_all_par[1]
|
|
|
|
|
|
|
|
boxes_for_sub_process = list_all_par[2]
|
|
|
|
|
|
|
|
contours_for_subprocess = list_all_par[3]
|
|
|
|
|
|
|
|
contours_par_for_subprocess = list_all_par[4]
|
|
|
|
|
|
|
|
boxes_coord_for_subprocess = list_all_par[5]
|
|
|
|
|
|
|
|
indexes_for_subprocess = list_all_par[6]
|
|
|
|
|
|
|
|
for j in range(len(slopes_for_sub_process)):
|
|
|
|
|
|
|
|
slopes.append(slopes_for_sub_process[j])
|
|
|
|
|
|
|
|
all_found_texline_polygons.append(polys_for_sub_process[j])
|
|
|
|
|
|
|
|
boxes.append(boxes_for_sub_process[j])
|
|
|
|
|
|
|
|
all_found_text_regions.append(contours_for_subprocess[j])
|
|
|
|
|
|
|
|
all_found_text_regions_par.append(contours_par_for_subprocess[j])
|
|
|
|
|
|
|
|
all_box_coord.append(boxes_coord_for_subprocess[j])
|
|
|
|
|
|
|
|
all_index_text_con.append(indexes_for_subprocess[j])
|
|
|
|
|
|
|
|
for i in range(num_cores):
|
|
|
|
|
|
|
|
processes[i].join()
|
|
|
|
|
|
|
|
self.logger.debug('slopes %s', slopes)
|
|
|
|
|
|
|
|
self.logger.debug("exit get_slopes_and_deskew_new")
|
|
|
|
|
|
|
|
return slopes, all_found_texline_polygons, boxes, all_found_text_regions, all_found_text_regions_par, all_box_coord, all_index_text_con
|
|
|
|
|
|
|
|
|
|
|
|
def get_slopes_and_deskew_new(self, contours, contours_par, textline_mask_tot, image_page_rotated, boxes, slope_deskew):
|
|
|
|
def get_slopes_and_deskew_new(self, contours, contours_par, textline_mask_tot, image_page_rotated, boxes, slope_deskew):
|
|
|
|
self.logger.debug("enter get_slopes_and_deskew_new")
|
|
|
|
self.logger.debug("enter get_slopes_and_deskew_new")
|
|
|
|
num_cores = cpu_count()
|
|
|
|
num_cores = cpu_count()
|
|
|
@ -1017,6 +1306,43 @@ class Eynollah:
|
|
|
|
all_box_coord_per_process.append(crop_coor)
|
|
|
|
all_box_coord_per_process.append(crop_coor)
|
|
|
|
|
|
|
|
|
|
|
|
queue_of_all_params.put([textlines_rectangles_per_each_subprocess, bounding_box_of_textregion_per_each_subprocess, contours_textregion_per_each_subprocess, contours_textregion_par_per_each_subprocess, all_box_coord_per_process, index_by_text_region_contours, slopes_per_each_subprocess])
|
|
|
|
queue_of_all_params.put([textlines_rectangles_per_each_subprocess, bounding_box_of_textregion_per_each_subprocess, contours_textregion_per_each_subprocess, contours_textregion_par_per_each_subprocess, all_box_coord_per_process, index_by_text_region_contours, slopes_per_each_subprocess])
|
|
|
|
|
|
|
|
def do_work_of_slopes_new_light(self, queue_of_all_params, boxes_text, textline_mask_tot_ea, contours_per_process, contours_par_per_process, indexes_r_con_per_pro, image_page_rotated, slope_deskew):
|
|
|
|
|
|
|
|
self.logger.debug('enter do_work_of_slopes_new')
|
|
|
|
|
|
|
|
slopes_per_each_subprocess = []
|
|
|
|
|
|
|
|
bounding_box_of_textregion_per_each_subprocess = []
|
|
|
|
|
|
|
|
textlines_rectangles_per_each_subprocess = []
|
|
|
|
|
|
|
|
contours_textregion_per_each_subprocess = []
|
|
|
|
|
|
|
|
contours_textregion_par_per_each_subprocess = []
|
|
|
|
|
|
|
|
all_box_coord_per_process = []
|
|
|
|
|
|
|
|
index_by_text_region_contours = []
|
|
|
|
|
|
|
|
for mv in range(len(boxes_text)):
|
|
|
|
|
|
|
|
_, crop_coor = crop_image_inside_box(boxes_text[mv],image_page_rotated)
|
|
|
|
|
|
|
|
mask_textline = np.zeros((textline_mask_tot_ea.shape))
|
|
|
|
|
|
|
|
mask_textline = cv2.fillPoly(mask_textline,pts=[contours_per_process[mv]],color=(1,1,1))
|
|
|
|
|
|
|
|
all_text_region_raw = (textline_mask_tot_ea*mask_textline[:,:])[boxes_text[mv][1]:boxes_text[mv][1]+boxes_text[mv][3] , boxes_text[mv][0]:boxes_text[mv][0]+boxes_text[mv][2] ]
|
|
|
|
|
|
|
|
all_text_region_raw=all_text_region_raw.astype(np.uint8)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
slopes_per_each_subprocess.append([slope_deskew][0])
|
|
|
|
|
|
|
|
mask_only_con_region = np.zeros(textline_mask_tot_ea.shape)
|
|
|
|
|
|
|
|
mask_only_con_region = cv2.fillPoly(mask_only_con_region, pts=[contours_par_per_process[mv]], color=(1, 1, 1))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# plt.imshow(mask_only_con_region)
|
|
|
|
|
|
|
|
# plt.show()
|
|
|
|
|
|
|
|
all_text_region_raw = np.copy(textline_mask_tot_ea[boxes_text[mv][1] : boxes_text[mv][1] + boxes_text[mv][3], boxes_text[mv][0] : boxes_text[mv][0] + boxes_text[mv][2]])
|
|
|
|
|
|
|
|
mask_only_con_region = mask_only_con_region[boxes_text[mv][1] : boxes_text[mv][1] + boxes_text[mv][3], boxes_text[mv][0] : boxes_text[mv][0] + boxes_text[mv][2]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
all_text_region_raw[mask_only_con_region == 0] = 0
|
|
|
|
|
|
|
|
cnt_clean_rot = textline_contours_postprocessing(all_text_region_raw, [slope_deskew][0], contours_par_per_process[mv], boxes_text[mv])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
textlines_rectangles_per_each_subprocess.append(cnt_clean_rot)
|
|
|
|
|
|
|
|
index_by_text_region_contours.append(indexes_r_con_per_pro[mv])
|
|
|
|
|
|
|
|
bounding_box_of_textregion_per_each_subprocess.append(boxes_text[mv])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
contours_textregion_per_each_subprocess.append(contours_per_process[mv])
|
|
|
|
|
|
|
|
contours_textregion_par_per_each_subprocess.append(contours_par_per_process[mv])
|
|
|
|
|
|
|
|
all_box_coord_per_process.append(crop_coor)
|
|
|
|
|
|
|
|
queue_of_all_params.put([slopes_per_each_subprocess, textlines_rectangles_per_each_subprocess, bounding_box_of_textregion_per_each_subprocess, contours_textregion_per_each_subprocess, contours_textregion_par_per_each_subprocess, all_box_coord_per_process, index_by_text_region_contours])
|
|
|
|
|
|
|
|
|
|
|
|
def do_work_of_slopes_new(self, queue_of_all_params, boxes_text, textline_mask_tot_ea, contours_per_process, contours_par_per_process, indexes_r_con_per_pro, image_page_rotated, slope_deskew):
|
|
|
|
def do_work_of_slopes_new(self, queue_of_all_params, boxes_text, textline_mask_tot_ea, contours_per_process, contours_par_per_process, indexes_r_con_per_pro, image_page_rotated, slope_deskew):
|
|
|
|
self.logger.debug('enter do_work_of_slopes_new')
|
|
|
|
self.logger.debug('enter do_work_of_slopes_new')
|
|
|
@ -1144,6 +1470,110 @@ class Eynollah:
|
|
|
|
q.put(slopes_sub)
|
|
|
|
q.put(slopes_sub)
|
|
|
|
poly.put(poly_sub)
|
|
|
|
poly.put(poly_sub)
|
|
|
|
box_sub.put(boxes_sub_new)
|
|
|
|
box_sub.put(boxes_sub_new)
|
|
|
|
|
|
|
|
def get_regions_from_xy_2models_light(self,img,is_image_enhanced, num_col_classifier):
|
|
|
|
|
|
|
|
self.logger.debug("enter get_regions_from_xy_2models")
|
|
|
|
|
|
|
|
erosion_hurts = False
|
|
|
|
|
|
|
|
img_org = np.copy(img)
|
|
|
|
|
|
|
|
img_height_h = img_org.shape[0]
|
|
|
|
|
|
|
|
img_width_h = img_org.shape[1]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#model_region, session_region = self.start_new_session_and_model(self.model_region_dir_p_ens)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if num_col_classifier == 1:
|
|
|
|
|
|
|
|
img_w_new = 1000
|
|
|
|
|
|
|
|
img_h_new = int(img_org.shape[0] / float(img_org.shape[1]) * img_w_new)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
elif num_col_classifier == 2:
|
|
|
|
|
|
|
|
img_w_new = 1500
|
|
|
|
|
|
|
|
img_h_new = int(img_org.shape[0] / float(img_org.shape[1]) * img_w_new)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
elif num_col_classifier == 3:
|
|
|
|
|
|
|
|
img_w_new = 2000
|
|
|
|
|
|
|
|
img_h_new = int(img_org.shape[0] / float(img_org.shape[1]) * img_w_new)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
elif num_col_classifier == 4:
|
|
|
|
|
|
|
|
img_w_new = 2500
|
|
|
|
|
|
|
|
img_h_new = int(img_org.shape[0] / float(img_org.shape[1]) * img_w_new)
|
|
|
|
|
|
|
|
elif num_col_classifier == 5:
|
|
|
|
|
|
|
|
img_w_new = 3000
|
|
|
|
|
|
|
|
img_h_new = int(img_org.shape[0] / float(img_org.shape[1]) * img_w_new)
|
|
|
|
|
|
|
|
else:
|
|
|
|
|
|
|
|
img_w_new = 4000
|
|
|
|
|
|
|
|
img_h_new = int(img_org.shape[0] / float(img_org.shape[1]) * img_w_new)
|
|
|
|
|
|
|
|
gc.collect()
|
|
|
|
|
|
|
|
##img_resized = resize_image(img_bin,img_height_h, img_width_h )
|
|
|
|
|
|
|
|
img_resized = resize_image(img,img_h_new, img_w_new )
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
tbin = time.time()
|
|
|
|
|
|
|
|
model_bin, session_bin = self.start_new_session_and_model(self.model_dir_of_binarization)
|
|
|
|
|
|
|
|
print("time bin session", time.time()-tbin)
|
|
|
|
|
|
|
|
prediction_bin = self.do_prediction(True, img_resized, model_bin)
|
|
|
|
|
|
|
|
print("time bin all ", time.time()-tbin)
|
|
|
|
|
|
|
|
prediction_bin=prediction_bin[:,:,0]
|
|
|
|
|
|
|
|
prediction_bin = (prediction_bin[:,:]==0)*1
|
|
|
|
|
|
|
|
prediction_bin = prediction_bin*255
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
prediction_bin =np.repeat(prediction_bin[:, :, np.newaxis], 3, axis=2)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
session_bin.close()
|
|
|
|
|
|
|
|
del model_bin
|
|
|
|
|
|
|
|
del session_bin
|
|
|
|
|
|
|
|
gc.collect()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
prediction_bin = prediction_bin.astype(np.uint16)
|
|
|
|
|
|
|
|
#img= np.copy(prediction_bin)
|
|
|
|
|
|
|
|
img_bin = np.copy(prediction_bin)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
tline = time.time()
|
|
|
|
|
|
|
|
textline_mask_tot_ea = self.run_textline(img_bin)
|
|
|
|
|
|
|
|
print("time line all ", time.time()-tline)
|
|
|
|
|
|
|
|
model_region, session_region = self.start_new_session_and_model(self.model_region_dir_p_ens_light)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#plt.imshow(img_bin)
|
|
|
|
|
|
|
|
#plt.show()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
prediction_regions_org = self.do_prediction_new_concept(True, img_bin, model_region)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#plt.imshow(prediction_regions_org[:,:,0])
|
|
|
|
|
|
|
|
#plt.show()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
prediction_regions_org = resize_image(prediction_regions_org,img_height_h, img_width_h )
|
|
|
|
|
|
|
|
textline_mask_tot_ea = resize_image(textline_mask_tot_ea,img_height_h, img_width_h )
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
prediction_regions_org=prediction_regions_org[:,:,0]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
mask_lines_only = (prediction_regions_org[:,:] ==3)*1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
mask_texts_only = (prediction_regions_org[:,:] ==1)*1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
mask_images_only=(prediction_regions_org[:,:] ==2)*1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
polygons_lines_xml, hir_lines_xml = return_contours_of_image(mask_lines_only)
|
|
|
|
|
|
|
|
polygons_lines_xml = textline_con_fil = filter_contours_area_of_image(mask_lines_only, polygons_lines_xml, hir_lines_xml, max_area=1, min_area=0.00001)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
polygons_of_only_texts = return_contours_of_interested_region(mask_texts_only,1,0.00001)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
polygons_of_only_lines = return_contours_of_interested_region(mask_lines_only,1,0.00001)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
text_regions_p_true = np.zeros(prediction_regions_org.shape)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
text_regions_p_true = cv2.fillPoly(text_regions_p_true, pts = polygons_of_only_lines, color=(3,3,3))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
text_regions_p_true[:,:][mask_images_only[:,:] == 1] = 2
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
text_regions_p_true = cv2.fillPoly(text_regions_p_true, pts = polygons_of_only_texts, color=(1,1,1))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#erosion_hurts = True
|
|
|
|
|
|
|
|
K.clear_session()
|
|
|
|
|
|
|
|
return text_regions_p_true, erosion_hurts, polygons_lines_xml, textline_mask_tot_ea
|
|
|
|
|
|
|
|
|
|
|
|
def get_regions_from_xy_2models(self,img,is_image_enhanced, num_col_classifier):
|
|
|
|
def get_regions_from_xy_2models(self,img,is_image_enhanced, num_col_classifier):
|
|
|
|
self.logger.debug("enter get_regions_from_xy_2models")
|
|
|
|
self.logger.debug("enter get_regions_from_xy_2models")
|
|
|
@ -1939,7 +2369,54 @@ class Eynollah:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
return prediction_table_erode.astype(np.int16)
|
|
|
|
return prediction_table_erode.astype(np.int16)
|
|
|
|
|
|
|
|
def run_graphics_and_columns_light(self, text_regions_p_1, textline_mask_tot_ea, num_col_classifier, num_column_is_classified, erosion_hurts):
|
|
|
|
|
|
|
|
img_g = self.imread(grayscale=True, uint8=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
img_g3 = np.zeros((img_g.shape[0], img_g.shape[1], 3))
|
|
|
|
|
|
|
|
img_g3 = img_g3.astype(np.uint8)
|
|
|
|
|
|
|
|
img_g3[:, :, 0] = img_g[:, :]
|
|
|
|
|
|
|
|
img_g3[:, :, 1] = img_g[:, :]
|
|
|
|
|
|
|
|
img_g3[:, :, 2] = img_g[:, :]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
image_page, page_coord, cont_page = self.extract_page()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if self.tables:
|
|
|
|
|
|
|
|
table_prediction = self.get_tables_from_model(image_page, num_col_classifier)
|
|
|
|
|
|
|
|
else:
|
|
|
|
|
|
|
|
table_prediction = (np.zeros((image_page.shape[0], image_page.shape[1]))).astype(np.int16)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if self.plotter:
|
|
|
|
|
|
|
|
self.plotter.save_page_image(image_page)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
text_regions_p_1 = text_regions_p_1[page_coord[0] : page_coord[1], page_coord[2] : page_coord[3]]
|
|
|
|
|
|
|
|
textline_mask_tot_ea = textline_mask_tot_ea[page_coord[0] : page_coord[1], page_coord[2] : page_coord[3]]
|
|
|
|
|
|
|
|
mask_images = (text_regions_p_1[:, :] == 2) * 1
|
|
|
|
|
|
|
|
mask_images = mask_images.astype(np.uint8)
|
|
|
|
|
|
|
|
mask_images = cv2.erode(mask_images[:, :], KERNEL, iterations=10)
|
|
|
|
|
|
|
|
mask_lines = (text_regions_p_1[:, :] == 3) * 1
|
|
|
|
|
|
|
|
mask_lines = mask_lines.astype(np.uint8)
|
|
|
|
|
|
|
|
img_only_regions_with_sep = ((text_regions_p_1[:, :] != 3) & (text_regions_p_1[:, :] != 0)) * 1
|
|
|
|
|
|
|
|
img_only_regions_with_sep = img_only_regions_with_sep.astype(np.uint8)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if erosion_hurts:
|
|
|
|
|
|
|
|
img_only_regions = np.copy(img_only_regions_with_sep[:,:])
|
|
|
|
|
|
|
|
else:
|
|
|
|
|
|
|
|
img_only_regions = cv2.erode(img_only_regions_with_sep[:,:], KERNEL, iterations=6)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
##print(img_only_regions.shape,'img_only_regions')
|
|
|
|
|
|
|
|
##plt.imshow(img_only_regions[:,:])
|
|
|
|
|
|
|
|
##plt.show()
|
|
|
|
|
|
|
|
num_col, _ = find_num_col(img_only_regions, num_col_classifier, self.tables, multiplier=6.0)
|
|
|
|
|
|
|
|
try:
|
|
|
|
|
|
|
|
num_col, _ = find_num_col(img_only_regions, num_col_classifier, self.tables, multiplier=6.0)
|
|
|
|
|
|
|
|
num_col = num_col + 1
|
|
|
|
|
|
|
|
if not num_column_is_classified:
|
|
|
|
|
|
|
|
num_col_classifier = num_col + 1
|
|
|
|
|
|
|
|
except Exception as why:
|
|
|
|
|
|
|
|
self.logger.error(why)
|
|
|
|
|
|
|
|
num_col = None
|
|
|
|
|
|
|
|
return num_col, num_col_classifier, img_only_regions, page_coord, image_page, mask_images, mask_lines, text_regions_p_1, cont_page, table_prediction, textline_mask_tot_ea
|
|
|
|
def run_graphics_and_columns(self, text_regions_p_1, num_col_classifier, num_column_is_classified, erosion_hurts):
|
|
|
|
def run_graphics_and_columns(self, text_regions_p_1, num_col_classifier, num_column_is_classified, erosion_hurts):
|
|
|
|
img_g = self.imread(grayscale=True, uint8=True)
|
|
|
|
img_g = self.imread(grayscale=True, uint8=True)
|
|
|
|
|
|
|
|
|
|
|
@ -1985,9 +2462,9 @@ class Eynollah:
|
|
|
|
num_col = None
|
|
|
|
num_col = None
|
|
|
|
return num_col, num_col_classifier, img_only_regions, page_coord, image_page, mask_images, mask_lines, text_regions_p_1, cont_page, table_prediction
|
|
|
|
return num_col, num_col_classifier, img_only_regions, page_coord, image_page, mask_images, mask_lines, text_regions_p_1, cont_page, table_prediction
|
|
|
|
|
|
|
|
|
|
|
|
def run_enhancement(self):
|
|
|
|
def run_enhancement(self,light_version):
|
|
|
|
self.logger.info("Resizing and enhancing image...")
|
|
|
|
self.logger.info("Resizing and enhancing image...")
|
|
|
|
is_image_enhanced, img_org, img_res, num_col_classifier, num_column_is_classified, img_bin = self.resize_and_enhance_image_with_column_classifier()
|
|
|
|
is_image_enhanced, img_org, img_res, num_col_classifier, num_column_is_classified, img_bin = self.resize_and_enhance_image_with_column_classifier(light_version)
|
|
|
|
self.logger.info("Image was %senhanced.", '' if is_image_enhanced else 'not ')
|
|
|
|
self.logger.info("Image was %senhanced.", '' if is_image_enhanced else 'not ')
|
|
|
|
K.clear_session()
|
|
|
|
K.clear_session()
|
|
|
|
scale = 1
|
|
|
|
scale = 1
|
|
|
@ -2301,14 +2778,23 @@ class Eynollah:
|
|
|
|
"""
|
|
|
|
"""
|
|
|
|
Get image and scales, then extract the page of scanned image
|
|
|
|
Get image and scales, then extract the page of scanned image
|
|
|
|
"""
|
|
|
|
"""
|
|
|
|
|
|
|
|
light_version = True
|
|
|
|
self.logger.debug("enter run")
|
|
|
|
self.logger.debug("enter run")
|
|
|
|
|
|
|
|
|
|
|
|
t0 = time.time()
|
|
|
|
t0 = time.time()
|
|
|
|
img_res, is_image_enhanced, num_col_classifier, num_column_is_classified = self.run_enhancement()
|
|
|
|
img_res, is_image_enhanced, num_col_classifier, num_column_is_classified = self.run_enhancement(light_version)
|
|
|
|
|
|
|
|
|
|
|
|
self.logger.info("Enhancing took %.1fs ", time.time() - t0)
|
|
|
|
self.logger.info("Enhancing took %.1fs ", time.time() - t0)
|
|
|
|
|
|
|
|
|
|
|
|
t1 = time.time()
|
|
|
|
t1 = time.time()
|
|
|
|
|
|
|
|
if light_version:
|
|
|
|
|
|
|
|
text_regions_p_1 ,erosion_hurts, polygons_lines_xml, textline_mask_tot_ea = self.get_regions_from_xy_2models_light(img_res, is_image_enhanced, num_col_classifier)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
slope_deskew, slope_first = self.run_deskew(textline_mask_tot_ea)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
num_col, num_col_classifier, img_only_regions, page_coord, image_page, mask_images, mask_lines, text_regions_p_1, cont_page, table_prediction, textline_mask_tot_ea = \
|
|
|
|
|
|
|
|
self.run_graphics_and_columns_light(text_regions_p_1, textline_mask_tot_ea, num_col_classifier, num_column_is_classified, erosion_hurts)
|
|
|
|
|
|
|
|
else:
|
|
|
|
text_regions_p_1 ,erosion_hurts, polygons_lines_xml = self.get_regions_from_xy_2models(img_res, is_image_enhanced, num_col_classifier)
|
|
|
|
text_regions_p_1 ,erosion_hurts, polygons_lines_xml = self.get_regions_from_xy_2models(img_res, is_image_enhanced, num_col_classifier)
|
|
|
|
self.logger.info("Textregion detection took %.1fs ", time.time() - t1)
|
|
|
|
self.logger.info("Textregion detection took %.1fs ", time.time() - t1)
|
|
|
|
|
|
|
|
|
|
|
@ -2325,6 +2811,7 @@ class Eynollah:
|
|
|
|
return pcgts
|
|
|
|
return pcgts
|
|
|
|
|
|
|
|
|
|
|
|
t1 = time.time()
|
|
|
|
t1 = time.time()
|
|
|
|
|
|
|
|
if not light_version:
|
|
|
|
textline_mask_tot_ea = self.run_textline(image_page)
|
|
|
|
textline_mask_tot_ea = self.run_textline(image_page)
|
|
|
|
self.logger.info("textline detection took %.1fs", time.time() - t1)
|
|
|
|
self.logger.info("textline detection took %.1fs", time.time() - t1)
|
|
|
|
|
|
|
|
|
|
|
@ -2455,6 +2942,10 @@ class Eynollah:
|
|
|
|
boxes_marginals, _ = get_text_region_boxes_by_given_contours(polygons_of_marginals)
|
|
|
|
boxes_marginals, _ = get_text_region_boxes_by_given_contours(polygons_of_marginals)
|
|
|
|
|
|
|
|
|
|
|
|
if not self.curved_line:
|
|
|
|
if not self.curved_line:
|
|
|
|
|
|
|
|
if light_version:
|
|
|
|
|
|
|
|
slopes, all_found_texline_polygons, boxes_text, txt_con_org, contours_only_text_parent, all_box_coord, index_by_text_par_con = self.get_slopes_and_deskew_new_light(txt_con_org, contours_only_text_parent, textline_mask_tot_ea, image_page_rotated, boxes_text, slope_deskew)
|
|
|
|
|
|
|
|
slopes_marginals, all_found_texline_polygons_marginals, boxes_marginals, _, polygons_of_marginals, all_box_coord_marginals, _ = self.get_slopes_and_deskew_new_light(polygons_of_marginals, polygons_of_marginals, textline_mask_tot_ea, image_page_rotated, boxes_marginals, slope_deskew)
|
|
|
|
|
|
|
|
else:
|
|
|
|
slopes, all_found_texline_polygons, boxes_text, txt_con_org, contours_only_text_parent, all_box_coord, index_by_text_par_con = self.get_slopes_and_deskew_new(txt_con_org, contours_only_text_parent, textline_mask_tot_ea, image_page_rotated, boxes_text, slope_deskew)
|
|
|
|
slopes, all_found_texline_polygons, boxes_text, txt_con_org, contours_only_text_parent, all_box_coord, index_by_text_par_con = self.get_slopes_and_deskew_new(txt_con_org, contours_only_text_parent, textline_mask_tot_ea, image_page_rotated, boxes_text, slope_deskew)
|
|
|
|
slopes_marginals, all_found_texline_polygons_marginals, boxes_marginals, _, polygons_of_marginals, all_box_coord_marginals, _ = self.get_slopes_and_deskew_new(polygons_of_marginals, polygons_of_marginals, textline_mask_tot_ea, image_page_rotated, boxes_marginals, slope_deskew)
|
|
|
|
slopes_marginals, all_found_texline_polygons_marginals, boxes_marginals, _, polygons_of_marginals, all_box_coord_marginals, _ = self.get_slopes_and_deskew_new(polygons_of_marginals, polygons_of_marginals, textline_mask_tot_ea, image_page_rotated, boxes_marginals, slope_deskew)
|
|
|
|
else:
|
|
|
|
else:
|
|
|
|