|
|
|
@ -1861,6 +1861,8 @@ class Eynollah:
|
|
|
|
|
|
|
|
|
|
if num_col_classifier == 1 or num_col_classifier == 2:
|
|
|
|
|
if self.image_org.shape[0]/self.image_org.shape[1] > 2.5:
|
|
|
|
|
self.logger.debug("resized to %dx%d for %d cols",
|
|
|
|
|
img_resized.shape[1], img_resized.shape[0], num_col_classifier)
|
|
|
|
|
prediction_regions_org = self.do_prediction_new_concept(
|
|
|
|
|
True, img_resized, self.model_region_1_2, n_batch_inference=1,
|
|
|
|
|
thresholding_for_some_classes_in_light_version=True)
|
|
|
|
@ -1873,6 +1875,8 @@ class Eynollah:
|
|
|
|
|
else:
|
|
|
|
|
new_h = (900+ (num_col_classifier-3)*100)
|
|
|
|
|
img_resized = resize_image(img_bin, int(new_h * img_bin.shape[0] /img_bin.shape[1]), new_h)
|
|
|
|
|
self.logger.debug("resized to %dx%d (new_h=%d) for %d cols",
|
|
|
|
|
img_resized.shape[1], img_resized.shape[0], new_h, num_col_classifier)
|
|
|
|
|
prediction_regions_org = self.do_prediction_new_concept(
|
|
|
|
|
True, img_resized, self.model_region_1_2, n_batch_inference=2,
|
|
|
|
|
thresholding_for_some_classes_in_light_version=True)
|
|
|
|
|