diff --git a/qurator/eynollah/eynollah.py b/qurator/eynollah/eynollah.py index 167336f..c7dced5 100644 --- a/qurator/eynollah/eynollah.py +++ b/qurator/eynollah/eynollah.py @@ -26,7 +26,7 @@ sys.stderr = stderr import tensorflow as tf tf.get_logger().setLevel("ERROR") warnings.filterwarnings("ignore") - +import matplotlib.pyplot as plt from .utils.contour import ( filter_contours_area_of_image, @@ -1103,11 +1103,13 @@ class Eynollah: prediction_regions_org_y = prediction_regions_org_y[:,:,0] mask_zeros_y = (prediction_regions_org_y[:,:]==0)*1 - img_only_regions_with_sep = ( (prediction_regions_org_y[:,:] != 3) & (prediction_regions_org_y[:,:] != 0) )*1 + ##img_only_regions_with_sep = ( (prediction_regions_org_y[:,:] != 3) & (prediction_regions_org_y[:,:] != 0) )*1 + img_only_regions_with_sep = ( prediction_regions_org_y[:,:] == 1 )*1 img_only_regions_with_sep = img_only_regions_with_sep.astype(np.uint8) try: - img_only_regions = cv2.erode(img_only_regions_with_sep[:,:], KERNEL, iterations=6) + img_only_regions = cv2.erode(img_only_regions_with_sep[:,:], KERNEL, iterations=20) + _, _ = find_num_col(img_only_regions, multiplier=6.0) img = resize_image(img_org, int(img_org.shape[0]), int(img_org.shape[1]*(1.2 if is_image_enhanced else 1))) @@ -1693,6 +1695,7 @@ class Eynollah: t1 = time.time() text_regions_p_1 ,erosion_hurts = self.get_regions_from_xy_2models(img_res, is_image_enhanced, num_col_classifier) + self.logger.info("Textregion detection took %ss ", str(time.time() - t1)) t1 = time.time()