|
|
|
@ -4961,7 +4961,7 @@ class Eynollah_ocr:
|
|
|
|
|
self.model_ocr.to(self.device)
|
|
|
|
|
|
|
|
|
|
else:
|
|
|
|
|
self.model_ocr_dir = dir_models + "/model_1_ocrcnn"#"/model_0_ocr_cnnrnn"#"/model_23_ocr_cnnrnn"
|
|
|
|
|
self.model_ocr_dir = dir_models + "/model_1_new_ocrcnn"#"/model_0_ocr_cnnrnn"#"/model_23_ocr_cnnrnn"
|
|
|
|
|
model_ocr = load_model(self.model_ocr_dir , compile=False)
|
|
|
|
|
|
|
|
|
|
self.prediction_model = tf.keras.models.Model(
|
|
|
|
@ -5080,6 +5080,18 @@ class Eynollah_ocr:
|
|
|
|
|
return [image1, image2]
|
|
|
|
|
else:
|
|
|
|
|
return None
|
|
|
|
|
def preprocess_and_resize_image_for_ocrcnn_model(self, img, image_height, image_width):
|
|
|
|
|
ratio = image_height /float(img.shape[0])
|
|
|
|
|
w_ratio = int(ratio * img.shape[1])
|
|
|
|
|
if w_ratio <= image_width:
|
|
|
|
|
width_new = w_ratio
|
|
|
|
|
else:
|
|
|
|
|
width_new = image_width
|
|
|
|
|
img = resize_image(img, image_height, width_new)
|
|
|
|
|
img_fin = np.ones((image_height, image_width, 3))*255
|
|
|
|
|
img_fin[:,:width_new,:] = img[:,:,:]
|
|
|
|
|
img_fin = img_fin / 255.
|
|
|
|
|
return img_fin
|
|
|
|
|
|
|
|
|
|
def run(self):
|
|
|
|
|
ls_imgs = os.listdir(self.dir_in)
|
|
|
|
@ -5214,7 +5226,7 @@ class Eynollah_ocr:
|
|
|
|
|
else:
|
|
|
|
|
max_len = 512
|
|
|
|
|
padding_token = 299
|
|
|
|
|
image_width = max_len * 4
|
|
|
|
|
image_width = 512#max_len * 4
|
|
|
|
|
image_height = 32
|
|
|
|
|
b_s = 8
|
|
|
|
|
|
|
|
|
@ -5265,10 +5277,31 @@ class Eynollah_ocr:
|
|
|
|
|
mask_poly = mask_poly[y:y+h, x:x+w, :]
|
|
|
|
|
img_crop = img_poly_on_img[y:y+h, x:x+w, :]
|
|
|
|
|
img_crop[mask_poly==0] = 255
|
|
|
|
|
img_crop = tf.reverse(img_crop,axis=[-1])
|
|
|
|
|
img_crop = self.distortion_free_resize(img_crop, img_size)
|
|
|
|
|
img_crop = tf.cast(img_crop, tf.float32) / 255.0
|
|
|
|
|
cropped_lines.append(img_crop)
|
|
|
|
|
|
|
|
|
|
if h2w_ratio > 0.05:
|
|
|
|
|
img_fin = self.preprocess_and_resize_image_for_ocrcnn_model(img_crop, image_height, image_width)
|
|
|
|
|
cropped_lines.append(img_fin)
|
|
|
|
|
cropped_lines_meging_indexing.append(0)
|
|
|
|
|
else:
|
|
|
|
|
splited_images = self.return_textlines_split_if_needed(img_crop)
|
|
|
|
|
#print(splited_images)
|
|
|
|
|
if splited_images:
|
|
|
|
|
img_fin = self.preprocess_and_resize_image_for_ocrcnn_model(splited_images[0], image_height, image_width)
|
|
|
|
|
cropped_lines.append(img_fin)
|
|
|
|
|
cropped_lines_meging_indexing.append(1)
|
|
|
|
|
img_fin = self.preprocess_and_resize_image_for_ocrcnn_model(splited_images[1], image_height, image_width)
|
|
|
|
|
|
|
|
|
|
cropped_lines.append(img_fin)
|
|
|
|
|
cropped_lines_meging_indexing.append(-1)
|
|
|
|
|
else:
|
|
|
|
|
img_fin = self.preprocess_and_resize_image_for_ocrcnn_model(img_crop, image_height, image_width)
|
|
|
|
|
cropped_lines.append(img_fin)
|
|
|
|
|
cropped_lines_meging_indexing.append(0)
|
|
|
|
|
#img_crop = tf.reverse(img_crop,axis=[-1])
|
|
|
|
|
#img_crop = self.distortion_free_resize(img_crop, img_size)
|
|
|
|
|
#img_crop = tf.cast(img_crop, tf.float32) / 255.0
|
|
|
|
|
|
|
|
|
|
#cropped_lines.append(img_crop)
|
|
|
|
|
|
|
|
|
|
indexer_text_region = indexer_text_region +1
|
|
|
|
|
|
|
|
|
@ -5282,12 +5315,12 @@ class Eynollah_ocr:
|
|
|
|
|
n_start = i*b_s
|
|
|
|
|
imgs = cropped_lines[n_start:]
|
|
|
|
|
imgs = np.array(imgs)
|
|
|
|
|
imgs = imgs.reshape(imgs.shape[0], image_width, image_height, 3)
|
|
|
|
|
imgs = imgs.reshape(imgs.shape[0], image_height, image_width, 3)
|
|
|
|
|
else:
|
|
|
|
|
n_start = i*b_s
|
|
|
|
|
n_end = (i+1)*b_s
|
|
|
|
|
imgs = cropped_lines[n_start:n_end]
|
|
|
|
|
imgs = np.array(imgs).reshape(b_s, image_width, image_height, 3)
|
|
|
|
|
imgs = np.array(imgs).reshape(b_s, image_height, image_width, 3)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
preds = self.prediction_model.predict(imgs, verbose=0)
|
|
|
|
@ -5296,15 +5329,32 @@ class Eynollah_ocr:
|
|
|
|
|
for ib in range(imgs.shape[0]):
|
|
|
|
|
pred_texts_ib = pred_texts[ib].strip("[UNK]")
|
|
|
|
|
extracted_texts.append(pred_texts_ib)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
extracted_texts_merged = [extracted_texts[ind] if cropped_lines_meging_indexing[ind]==0 else extracted_texts[ind]+extracted_texts[ind+1] if cropped_lines_meging_indexing[ind]==1 else None for ind in range(len(cropped_lines_meging_indexing))]
|
|
|
|
|
|
|
|
|
|
extracted_texts_merged = [ind for ind in extracted_texts_merged if ind is not None]
|
|
|
|
|
#print(extracted_texts_merged, len(extracted_texts_merged))
|
|
|
|
|
|
|
|
|
|
unique_cropped_lines_region_indexer = np.unique(cropped_lines_region_indexer)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#print(len(unique_cropped_lines_region_indexer), 'unique_cropped_lines_region_indexer')
|
|
|
|
|
text_by_textregion = []
|
|
|
|
|
for ind in unique_cropped_lines_region_indexer:
|
|
|
|
|
extracted_texts_merged_un = np.array(extracted_texts)[np.array(cropped_lines_region_indexer)==ind]
|
|
|
|
|
extracted_texts_merged_un = np.array(extracted_texts_merged)[np.array(cropped_lines_region_indexer)==ind]
|
|
|
|
|
|
|
|
|
|
text_by_textregion.append(" ".join(extracted_texts_merged_un))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
##unique_cropped_lines_region_indexer = np.unique(cropped_lines_region_indexer)
|
|
|
|
|
|
|
|
|
|
##text_by_textregion = []
|
|
|
|
|
##for ind in unique_cropped_lines_region_indexer:
|
|
|
|
|
##extracted_texts_merged_un = np.array(extracted_texts)[np.array(cropped_lines_region_indexer)==ind]
|
|
|
|
|
|
|
|
|
|
##text_by_textregion.append(" ".join(extracted_texts_merged_un))
|
|
|
|
|
|
|
|
|
|
indexer = 0
|
|
|
|
|
indexer_textregion = 0
|
|
|
|
|
for nn in root1.iter(region_tags):
|
|
|
|
@ -5317,7 +5367,7 @@ class Eynollah_ocr:
|
|
|
|
|
if child_textregion.tag.endswith("TextLine"):
|
|
|
|
|
text_subelement = ET.SubElement(child_textregion, 'TextEquiv')
|
|
|
|
|
unicode_textline = ET.SubElement(text_subelement, 'Unicode')
|
|
|
|
|
unicode_textline.text = extracted_texts[indexer]
|
|
|
|
|
unicode_textline.text = extracted_texts_merged[indexer]
|
|
|
|
|
indexer = indexer + 1
|
|
|
|
|
has_textline = True
|
|
|
|
|
if has_textline:
|
|
|
|
|