|
|
@ -276,6 +276,7 @@ class eynollah:
|
|
|
|
return prediction_true
|
|
|
|
return prediction_true
|
|
|
|
|
|
|
|
|
|
|
|
def check_dpi(self):
|
|
|
|
def check_dpi(self):
|
|
|
|
|
|
|
|
self.logger.debug("enter check_dpi")
|
|
|
|
dpi = os.popen('identify -format "%x " ' + self.image_filename).read()
|
|
|
|
dpi = os.popen('identify -format "%x " ' + self.image_filename).read()
|
|
|
|
return int(float(dpi))
|
|
|
|
return int(float(dpi))
|
|
|
|
|
|
|
|
|
|
|
@ -368,7 +369,7 @@ class eynollah:
|
|
|
|
label_p_pred = model_num_classifier.predict(img_in)
|
|
|
|
label_p_pred = model_num_classifier.predict(img_in)
|
|
|
|
num_col = np.argmax(label_p_pred[0]) + 1
|
|
|
|
num_col = np.argmax(label_p_pred[0]) + 1
|
|
|
|
|
|
|
|
|
|
|
|
print(num_col, label_p_pred, "num_col_classifier")
|
|
|
|
self.logger.info("Found %s columns (%s)", num_col, label_p_pred)
|
|
|
|
|
|
|
|
|
|
|
|
session_col_classifier.close()
|
|
|
|
session_col_classifier.close()
|
|
|
|
del model_num_classifier
|
|
|
|
del model_num_classifier
|
|
|
@ -421,7 +422,7 @@ class eynollah:
|
|
|
|
label_p_pred = model_num_classifier.predict(img_in)
|
|
|
|
label_p_pred = model_num_classifier.predict(img_in)
|
|
|
|
num_col = np.argmax(label_p_pred[0]) + 1
|
|
|
|
num_col = np.argmax(label_p_pred[0]) + 1
|
|
|
|
|
|
|
|
|
|
|
|
print(num_col, label_p_pred, "num_col_classifier")
|
|
|
|
self.logger.info("Found %s columns (%s)", num_col, label_p_pred)
|
|
|
|
|
|
|
|
|
|
|
|
session_col_classifier.close()
|
|
|
|
session_col_classifier.close()
|
|
|
|
del model_num_classifier
|
|
|
|
del model_num_classifier
|
|
|
@ -431,7 +432,7 @@ class eynollah:
|
|
|
|
del page_coord
|
|
|
|
del page_coord
|
|
|
|
K.clear_session()
|
|
|
|
K.clear_session()
|
|
|
|
gc.collect()
|
|
|
|
gc.collect()
|
|
|
|
print(dpi)
|
|
|
|
self.logger.info("%s DPI" % dpi)
|
|
|
|
|
|
|
|
|
|
|
|
if dpi < 298:
|
|
|
|
if dpi < 298:
|
|
|
|
img_new, num_column_is_classified = self.calculate_width_height_by_columns(img, num_col, width_early, label_p_pred)
|
|
|
|
img_new, num_column_is_classified = self.calculate_width_height_by_columns(img, num_col, width_early, label_p_pred)
|
|
|
@ -484,7 +485,7 @@ class eynollah:
|
|
|
|
del img_res
|
|
|
|
del img_res
|
|
|
|
|
|
|
|
|
|
|
|
def start_new_session_and_model(self, model_dir):
|
|
|
|
def start_new_session_and_model(self, model_dir):
|
|
|
|
self.logger.debug("enter start_new_session_and_model")
|
|
|
|
self.logger.debug("enter start_new_session_and_model (model_dir=%s)", model_dir)
|
|
|
|
config = tf.ConfigProto()
|
|
|
|
config = tf.ConfigProto()
|
|
|
|
config.gpu_options.allow_growth = True
|
|
|
|
config.gpu_options.allow_growth = True
|
|
|
|
|
|
|
|
|
|
|
@ -507,7 +508,7 @@ class eynollah:
|
|
|
|
if img.shape[1] < img_width_model:
|
|
|
|
if img.shape[1] < img_width_model:
|
|
|
|
img = resize_image(img, img.shape[0], img_width_model)
|
|
|
|
img = resize_image(img, img.shape[0], img_width_model)
|
|
|
|
|
|
|
|
|
|
|
|
# print(img_height_model,img_width_model)
|
|
|
|
self.logger.info("Image dimensions: %sx%s", img_height_model, img_width_model)
|
|
|
|
margin = int(marginal_of_patch_percent * img_height_model)
|
|
|
|
margin = int(marginal_of_patch_percent * img_height_model)
|
|
|
|
width_mid = img_width_model - 2 * margin
|
|
|
|
width_mid = img_width_model - 2 * margin
|
|
|
|
height_mid = img_height_model - 2 * margin
|
|
|
|
height_mid = img_height_model - 2 * margin
|
|
|
@ -660,9 +661,11 @@ class eynollah:
|
|
|
|
del img_page_prediction
|
|
|
|
del img_page_prediction
|
|
|
|
|
|
|
|
|
|
|
|
gc.collect()
|
|
|
|
gc.collect()
|
|
|
|
|
|
|
|
self.logger.debug("exit resize_and_enhance_image_with_column_classifier")
|
|
|
|
return croped_page, page_coord
|
|
|
|
return croped_page, page_coord
|
|
|
|
|
|
|
|
|
|
|
|
def extract_page(self):
|
|
|
|
def extract_page(self):
|
|
|
|
|
|
|
|
self.logger.debug("enter extract_page")
|
|
|
|
patches = False
|
|
|
|
patches = False
|
|
|
|
model_page, session_page = self.start_new_session_and_model(self.model_page_dir)
|
|
|
|
model_page, session_page = self.start_new_session_and_model(self.model_page_dir)
|
|
|
|
for ii in range(1):
|
|
|
|
for ii in range(1):
|
|
|
@ -708,6 +711,7 @@ class eynollah:
|
|
|
|
return croped_page, page_coord
|
|
|
|
return croped_page, page_coord
|
|
|
|
|
|
|
|
|
|
|
|
def extract_text_regions(self, img, patches, cols):
|
|
|
|
def extract_text_regions(self, img, patches, cols):
|
|
|
|
|
|
|
|
self.logger.debug("enter extract_text_regions")
|
|
|
|
img_height_h = img.shape[0]
|
|
|
|
img_height_h = img.shape[0]
|
|
|
|
img_width_h = img.shape[1]
|
|
|
|
img_width_h = img.shape[1]
|
|
|
|
|
|
|
|
|
|
|
@ -809,9 +813,11 @@ class eynollah:
|
|
|
|
del session_region
|
|
|
|
del session_region
|
|
|
|
del img
|
|
|
|
del img
|
|
|
|
gc.collect()
|
|
|
|
gc.collect()
|
|
|
|
|
|
|
|
self.logger.debug("exit extract_text_regions")
|
|
|
|
return prediction_regions, prediction_regions2
|
|
|
|
return prediction_regions, prediction_regions2
|
|
|
|
|
|
|
|
|
|
|
|
def get_slopes_and_deskew_new(self, contours, contours_par, textline_mask_tot, image_page_rotated, boxes, slope_deskew):
|
|
|
|
def get_slopes_and_deskew_new(self, contours, contours_par, textline_mask_tot, image_page_rotated, boxes, slope_deskew):
|
|
|
|
|
|
|
|
self.logger.debug("enter get_slopes_and_deskew_new")
|
|
|
|
num_cores = cpu_count()
|
|
|
|
num_cores = cpu_count()
|
|
|
|
queue_of_all_params = Queue()
|
|
|
|
queue_of_all_params = Queue()
|
|
|
|
|
|
|
|
|
|
|
@ -858,10 +864,12 @@ class eynollah:
|
|
|
|
|
|
|
|
|
|
|
|
for i in range(num_cores):
|
|
|
|
for i in range(num_cores):
|
|
|
|
processes[i].join()
|
|
|
|
processes[i].join()
|
|
|
|
# print(slopes,'slopes')
|
|
|
|
self.logger.debug('slopes %s', slopes)
|
|
|
|
|
|
|
|
self.logger.debug("exit get_slopes_and_deskew_new")
|
|
|
|
return slopes, all_found_texline_polygons, boxes, all_found_text_regions, all_found_text_regions_par, all_box_coord, all_index_text_con
|
|
|
|
return slopes, all_found_texline_polygons, boxes, all_found_text_regions, all_found_text_regions_par, all_box_coord, all_index_text_con
|
|
|
|
|
|
|
|
|
|
|
|
def get_slopes_and_deskew_new_curved(self, contours, contours_par, textline_mask_tot, image_page_rotated, boxes, mask_texts_only, num_col, scale_par, slope_deskew):
|
|
|
|
def get_slopes_and_deskew_new_curved(self, contours, contours_par, textline_mask_tot, image_page_rotated, boxes, mask_texts_only, num_col, scale_par, slope_deskew):
|
|
|
|
|
|
|
|
self.logger.debug("enter get_slopes_and_deskew_new_curved")
|
|
|
|
num_cores = cpu_count()
|
|
|
|
num_cores = cpu_count()
|
|
|
|
queue_of_all_params = Queue()
|
|
|
|
queue_of_all_params = Queue()
|
|
|
|
|
|
|
|
|
|
|
@ -912,6 +920,7 @@ class eynollah:
|
|
|
|
return all_found_texline_polygons, boxes, all_found_text_regions, all_found_text_regions_par, all_box_coord, all_index_text_con, slopes
|
|
|
|
return all_found_texline_polygons, boxes, all_found_text_regions, all_found_text_regions_par, all_box_coord, all_index_text_con, slopes
|
|
|
|
|
|
|
|
|
|
|
|
def do_work_of_slopes_new_curved(self, queue_of_all_params, boxes_text, textline_mask_tot_ea, contours_per_process, contours_par_per_process, image_page_rotated, mask_texts_only, num_col, scale_par, indexes_r_con_per_pro, slope_deskew):
|
|
|
|
def do_work_of_slopes_new_curved(self, queue_of_all_params, boxes_text, textline_mask_tot_ea, contours_per_process, contours_par_per_process, image_page_rotated, mask_texts_only, num_col, scale_par, indexes_r_con_per_pro, slope_deskew):
|
|
|
|
|
|
|
|
self.logger.debug("enter do_work_of_slopes_new_curved")
|
|
|
|
slopes_per_each_subprocess = []
|
|
|
|
slopes_per_each_subprocess = []
|
|
|
|
bounding_box_of_textregion_per_each_subprocess = []
|
|
|
|
bounding_box_of_textregion_per_each_subprocess = []
|
|
|
|
textlines_rectangles_per_each_subprocess = []
|
|
|
|
textlines_rectangles_per_each_subprocess = []
|
|
|
@ -1021,6 +1030,7 @@ class eynollah:
|
|
|
|
queue_of_all_params.put([textlines_rectangles_per_each_subprocess, bounding_box_of_textregion_per_each_subprocess, contours_textregion_per_each_subprocess, contours_textregion_par_per_each_subprocess, all_box_coord_per_process, index_by_text_region_contours, slopes_per_each_subprocess])
|
|
|
|
queue_of_all_params.put([textlines_rectangles_per_each_subprocess, bounding_box_of_textregion_per_each_subprocess, contours_textregion_per_each_subprocess, contours_textregion_par_per_each_subprocess, all_box_coord_per_process, index_by_text_region_contours, slopes_per_each_subprocess])
|
|
|
|
|
|
|
|
|
|
|
|
def do_work_of_slopes_new(self, queue_of_all_params, boxes_text, textline_mask_tot_ea, contours_per_process, contours_par_per_process, indexes_r_con_per_pro, image_page_rotated, slope_deskew):
|
|
|
|
def do_work_of_slopes_new(self, queue_of_all_params, boxes_text, textline_mask_tot_ea, contours_per_process, contours_par_per_process, indexes_r_con_per_pro, image_page_rotated, slope_deskew):
|
|
|
|
|
|
|
|
self.logger.debug('enter do_work_of_slopes_new')
|
|
|
|
|
|
|
|
|
|
|
|
slopes_per_each_subprocess = []
|
|
|
|
slopes_per_each_subprocess = []
|
|
|
|
bounding_box_of_textregion_per_each_subprocess = []
|
|
|
|
bounding_box_of_textregion_per_each_subprocess = []
|
|
|
@ -1095,6 +1105,7 @@ class eynollah:
|
|
|
|
queue_of_all_params.put([slopes_per_each_subprocess, textlines_rectangles_per_each_subprocess, bounding_box_of_textregion_per_each_subprocess, contours_textregion_per_each_subprocess, contours_textregion_par_per_each_subprocess, all_box_coord_per_process, index_by_text_region_contours])
|
|
|
|
queue_of_all_params.put([slopes_per_each_subprocess, textlines_rectangles_per_each_subprocess, bounding_box_of_textregion_per_each_subprocess, contours_textregion_per_each_subprocess, contours_textregion_par_per_each_subprocess, all_box_coord_per_process, index_by_text_region_contours])
|
|
|
|
|
|
|
|
|
|
|
|
def textline_contours(self, img, patches, scaler_h, scaler_w):
|
|
|
|
def textline_contours(self, img, patches, scaler_h, scaler_w):
|
|
|
|
|
|
|
|
self.logger.debug('enter textline_contours')
|
|
|
|
|
|
|
|
|
|
|
|
if patches:
|
|
|
|
if patches:
|
|
|
|
model_textline, session_textline = self.start_new_session_and_model(self.model_textline_dir)
|
|
|
|
model_textline, session_textline = self.start_new_session_and_model(self.model_textline_dir)
|
|
|
@ -1127,6 +1138,7 @@ class eynollah:
|
|
|
|
return prediction_textline[:, :, 0], prediction_textline_longshot_true_size[:, :, 0]
|
|
|
|
return prediction_textline[:, :, 0], prediction_textline_longshot_true_size[:, :, 0]
|
|
|
|
|
|
|
|
|
|
|
|
def do_work_of_slopes(self, q, poly, box_sub, boxes_per_process, textline_mask_tot, contours_per_process):
|
|
|
|
def do_work_of_slopes(self, q, poly, box_sub, boxes_per_process, textline_mask_tot, contours_per_process):
|
|
|
|
|
|
|
|
self.logger.debug('enter do_work_of_slopes')
|
|
|
|
slope_biggest = 0
|
|
|
|
slope_biggest = 0
|
|
|
|
slopes_sub = []
|
|
|
|
slopes_sub = []
|
|
|
|
boxes_sub_new = []
|
|
|
|
boxes_sub_new = []
|
|
|
@ -1167,6 +1179,7 @@ class eynollah:
|
|
|
|
box_sub.put(boxes_sub_new)
|
|
|
|
box_sub.put(boxes_sub_new)
|
|
|
|
|
|
|
|
|
|
|
|
def serialize_lines_in_region(self, textregion, all_found_texline_polygons, region_idx, page_coord, all_box_coord, slopes, id_indexer_l):
|
|
|
|
def serialize_lines_in_region(self, textregion, all_found_texline_polygons, region_idx, page_coord, all_box_coord, slopes, id_indexer_l):
|
|
|
|
|
|
|
|
self.logger.debug('enter serialize_lines_in_region')
|
|
|
|
for j in range(len(all_found_texline_polygons[region_idx])):
|
|
|
|
for j in range(len(all_found_texline_polygons[region_idx])):
|
|
|
|
textline=ET.SubElement(textregion, 'TextLine')
|
|
|
|
textline=ET.SubElement(textregion, 'TextLine')
|
|
|
|
textline.set('id','l'+str(id_indexer_l))
|
|
|
|
textline.set('id','l'+str(id_indexer_l))
|
|
|
@ -1245,6 +1258,7 @@ class eynollah:
|
|
|
|
return id_indexer_l
|
|
|
|
return id_indexer_l
|
|
|
|
|
|
|
|
|
|
|
|
def calculate_polygon_coords(self, contour_list, i, page_coord):
|
|
|
|
def calculate_polygon_coords(self, contour_list, i, page_coord):
|
|
|
|
|
|
|
|
self.logger.debug('enter calculate_polygon_coords')
|
|
|
|
coords = ''
|
|
|
|
coords = ''
|
|
|
|
for j in range(len(contour_list[i])):
|
|
|
|
for j in range(len(contour_list[i])):
|
|
|
|
if len(contour_list[i][j]) == 2:
|
|
|
|
if len(contour_list[i][j]) == 2:
|
|
|
@ -1262,6 +1276,7 @@ class eynollah:
|
|
|
|
return coords
|
|
|
|
return coords
|
|
|
|
|
|
|
|
|
|
|
|
def write_into_page_xml_full(self, contours, contours_h, page_coord, dir_of_image, order_of_texts, id_of_texts, all_found_texline_polygons, all_found_texline_polygons_h, all_box_coord, all_box_coord_h, found_polygons_text_region_img, found_polygons_tables, found_polygons_drop_capitals, found_polygons_marginals, all_found_texline_polygons_marginals, all_box_coord_marginals, slopes, slopes_marginals):
|
|
|
|
def write_into_page_xml_full(self, contours, contours_h, page_coord, dir_of_image, order_of_texts, id_of_texts, all_found_texline_polygons, all_found_texline_polygons_h, all_box_coord, all_box_coord_h, found_polygons_text_region_img, found_polygons_tables, found_polygons_drop_capitals, found_polygons_marginals, all_found_texline_polygons_marginals, all_box_coord_marginals, slopes, slopes_marginals):
|
|
|
|
|
|
|
|
self.logger.debug('enter write_into_page_xml_full')
|
|
|
|
|
|
|
|
|
|
|
|
found_polygons_text_region = contours
|
|
|
|
found_polygons_text_region = contours
|
|
|
|
found_polygons_text_region_h = contours_h
|
|
|
|
found_polygons_text_region_h = contours_h
|
|
|
@ -1481,13 +1496,14 @@ class eynollah:
|
|
|
|
##tree = ET.ElementTree(pcgts)
|
|
|
|
##tree = ET.ElementTree(pcgts)
|
|
|
|
##tree.write(os.path.join(dir_of_image, self.image_filename_stem) + ".xml")
|
|
|
|
##tree.write(os.path.join(dir_of_image, self.image_filename_stem) + ".xml")
|
|
|
|
|
|
|
|
|
|
|
|
print(self.image_filename_stem)
|
|
|
|
self.logger.info("filename stem: '%s'", self.image_filename_stem)
|
|
|
|
# print(os.path.join(dir_of_image, self.image_filename_stem) + ".xml")
|
|
|
|
# print(os.path.join(dir_of_image, self.image_filename_stem) + ".xml")
|
|
|
|
tree = ET.ElementTree(pcgts)
|
|
|
|
tree = ET.ElementTree(pcgts)
|
|
|
|
tree.write(os.path.join(dir_of_image, self.image_filename_stem) + ".xml")
|
|
|
|
tree.write(os.path.join(dir_of_image, self.image_filename_stem) + ".xml")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def calculate_page_coords(self):
|
|
|
|
def calculate_page_coords(self):
|
|
|
|
|
|
|
|
self.logger.debug('enter calculate_page_coords')
|
|
|
|
points_page_print = ""
|
|
|
|
points_page_print = ""
|
|
|
|
for lmm in range(len(self.cont_page[0])):
|
|
|
|
for lmm in range(len(self.cont_page[0])):
|
|
|
|
if len(self.cont_page[0][lmm]) == 2:
|
|
|
|
if len(self.cont_page[0][lmm]) == 2:
|
|
|
@ -1504,6 +1520,7 @@ class eynollah:
|
|
|
|
return points_page_print
|
|
|
|
return points_page_print
|
|
|
|
|
|
|
|
|
|
|
|
def write_into_page_xml(self, contours, page_coord, dir_of_image, order_of_texts, id_of_texts, all_found_texline_polygons, all_box_coord, found_polygons_text_region_img, found_polygons_marginals, all_found_texline_polygons_marginals, all_box_coord_marginals, curved_line, slopes, slopes_marginals):
|
|
|
|
def write_into_page_xml(self, contours, page_coord, dir_of_image, order_of_texts, id_of_texts, all_found_texline_polygons, all_box_coord, found_polygons_text_region_img, found_polygons_marginals, all_found_texline_polygons_marginals, all_box_coord_marginals, curved_line, slopes, slopes_marginals):
|
|
|
|
|
|
|
|
self.logger.debug('enter write_into_page_xml')
|
|
|
|
|
|
|
|
|
|
|
|
found_polygons_text_region = contours
|
|
|
|
found_polygons_text_region = contours
|
|
|
|
##found_polygons_text_region_h=contours_h
|
|
|
|
##found_polygons_text_region_h=contours_h
|
|
|
@ -1669,11 +1686,9 @@ class eynollah:
|
|
|
|
pass
|
|
|
|
pass
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
print(self.image_filename_stem)
|
|
|
|
self.logger.info("filename stem: '%s'", self.image_filename_stem)
|
|
|
|
# print(os.path.join(dir_of_image, self.image_filename_stem) + ".xml")
|
|
|
|
|
|
|
|
tree = ET.ElementTree(pcgts)
|
|
|
|
tree = ET.ElementTree(pcgts)
|
|
|
|
tree.write(os.path.join(dir_of_image, self.image_filename_stem) + ".xml")
|
|
|
|
tree.write(os.path.join(dir_of_image, self.image_filename_stem) + ".xml")
|
|
|
|
# cv2.imwrite(os.path.join(dir_of_image, self.image_filename_stem) + ".tif",self.image_org)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def get_regions_from_xy_2models(self,img,is_image_enhanced):
|
|
|
|
def get_regions_from_xy_2models(self,img,is_image_enhanced):
|
|
|
|
self.logger.debug("enter get_regions_from_xy_2models")
|
|
|
|
self.logger.debug("enter get_regions_from_xy_2models")
|
|
|
@ -1792,7 +1807,7 @@ class eynollah:
|
|
|
|
|
|
|
|
|
|
|
|
rate_two_models=text_sume_second/float(text_sume_early)*100
|
|
|
|
rate_two_models=text_sume_second/float(text_sume_early)*100
|
|
|
|
|
|
|
|
|
|
|
|
print(rate_two_models,'ratio_of_two_models')
|
|
|
|
self.logger.info("ratio_of_two_models: %s", rate_two_models)
|
|
|
|
if is_image_enhanced and rate_two_models<95.50:#98.45:
|
|
|
|
if is_image_enhanced and rate_two_models<95.50:#98.45:
|
|
|
|
pass
|
|
|
|
pass
|
|
|
|
else:
|
|
|
|
else:
|
|
|
@ -1843,9 +1858,8 @@ class eynollah:
|
|
|
|
|
|
|
|
|
|
|
|
return text_regions_p_true
|
|
|
|
return text_regions_p_true
|
|
|
|
|
|
|
|
|
|
|
|
def do_order_of_regions(self, contours_only_text_parent, contours_only_text_parent_h, boxes, textline_mask_tot):
|
|
|
|
def do_order_of_regions_full_layout(self, contours_only_text_parent, contours_only_text_parent_h, boxes, textline_mask_tot):
|
|
|
|
|
|
|
|
self.logger.debug("enter do_order_of_regions_full_layout")
|
|
|
|
if self.full_layout:
|
|
|
|
|
|
|
|
cx_text_only, cy_text_only, x_min_text_only, _, _, _, y_cor_x_min_main = find_new_features_of_contoures(contours_only_text_parent)
|
|
|
|
cx_text_only, cy_text_only, x_min_text_only, _, _, _, y_cor_x_min_main = find_new_features_of_contoures(contours_only_text_parent)
|
|
|
|
cx_text_only_h, cy_text_only_h, x_min_text_only_h, _, _, _, y_cor_x_min_main_h = find_new_features_of_contoures(contours_only_text_parent_h)
|
|
|
|
cx_text_only_h, cy_text_only_h, x_min_text_only_h, _, _, _, y_cor_x_min_main_h = find_new_features_of_contoures(contours_only_text_parent_h)
|
|
|
|
|
|
|
|
|
|
|
@ -2011,7 +2025,8 @@ class eynollah:
|
|
|
|
order_text_new.append(tartib_new)
|
|
|
|
order_text_new.append(tartib_new)
|
|
|
|
return order_text_new, id_of_texts_tot
|
|
|
|
return order_text_new, id_of_texts_tot
|
|
|
|
|
|
|
|
|
|
|
|
else:
|
|
|
|
def do_order_of_regions_no_full_layout(self, contours_only_text_parent, contours_only_text_parent_h, boxes, textline_mask_tot):
|
|
|
|
|
|
|
|
self.logger.debug("enter do_order_of_regions_no_full_layout")
|
|
|
|
cx_text_only, cy_text_only, x_min_text_only, _, _, _, y_cor_x_min_main = find_new_features_of_contoures(contours_only_text_parent)
|
|
|
|
cx_text_only, cy_text_only, x_min_text_only, _, _, _, y_cor_x_min_main = find_new_features_of_contoures(contours_only_text_parent)
|
|
|
|
|
|
|
|
|
|
|
|
try:
|
|
|
|
try:
|
|
|
@ -2125,10 +2140,17 @@ class eynollah:
|
|
|
|
|
|
|
|
|
|
|
|
return order_text_new, id_of_texts_tot
|
|
|
|
return order_text_new, id_of_texts_tot
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def do_order_of_regions(self, *args, **kwargs):
|
|
|
|
|
|
|
|
if self.full_layout:
|
|
|
|
|
|
|
|
return self.do_order_of_regions_full_layout(*args, **kwargs)
|
|
|
|
|
|
|
|
return self.do_order_of_regions_no_full_layout(*args, **kwargs)
|
|
|
|
|
|
|
|
|
|
|
|
def run(self):
|
|
|
|
def run(self):
|
|
|
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
Get image and scales, then extract the page of scanned image
|
|
|
|
|
|
|
|
"""
|
|
|
|
self.logger.debug("enter run")
|
|
|
|
self.logger.debug("enter run")
|
|
|
|
is_image_enhanced = False
|
|
|
|
is_image_enhanced = False
|
|
|
|
# get image and sclaes, then extract the page of scanned image
|
|
|
|
|
|
|
|
t1 = time.time()
|
|
|
|
t1 = time.time()
|
|
|
|
|
|
|
|
|
|
|
|
##########
|
|
|
|
##########
|
|
|
@ -2230,7 +2252,7 @@ class eynollah:
|
|
|
|
#print(np.unique(textline_mask_tot_ea[:, :]), "textline")
|
|
|
|
#print(np.unique(textline_mask_tot_ea[:, :]), "textline")
|
|
|
|
if self.plotter:
|
|
|
|
if self.plotter:
|
|
|
|
self.plotter.save_plot_of_textlines(textline_mask_tot_ea, image_page)
|
|
|
|
self.plotter.save_plot_of_textlines(textline_mask_tot_ea, image_page)
|
|
|
|
print("textline: " + str(time.time() - t1))
|
|
|
|
self.logger.info("textline detection took %ss", str(time.time() - t1))
|
|
|
|
# plt.imshow(textline_mask_tot_ea)
|
|
|
|
# plt.imshow(textline_mask_tot_ea)
|
|
|
|
# plt.show()
|
|
|
|
# plt.show()
|
|
|
|
# sys.exit()
|
|
|
|
# sys.exit()
|
|
|
@ -2243,12 +2265,12 @@ class eynollah:
|
|
|
|
if self.plotter:
|
|
|
|
if self.plotter:
|
|
|
|
self.plotter.save_deskewed_image(slope_deskew)
|
|
|
|
self.plotter.save_deskewed_image(slope_deskew)
|
|
|
|
# img_rotated=rotyate_image_different(self.image_org,slope_deskew)
|
|
|
|
# img_rotated=rotyate_image_different(self.image_org,slope_deskew)
|
|
|
|
print(slope_deskew, "slope_deskew")
|
|
|
|
self.logger.info("slope_deskew: %s", slope_deskew)
|
|
|
|
|
|
|
|
|
|
|
|
##plt.imshow(img_rotated)
|
|
|
|
##plt.imshow(img_rotated)
|
|
|
|
##plt.show()
|
|
|
|
##plt.show()
|
|
|
|
##sys.exit()
|
|
|
|
##sys.exit()
|
|
|
|
print("deskewing: " + str(time.time() - t1))
|
|
|
|
self.logger.info("deskewing: " + str(time.time() - t1))
|
|
|
|
|
|
|
|
|
|
|
|
image_page_rotated, textline_mask_tot = image_page[:, :], textline_mask_tot_ea[:, :]
|
|
|
|
image_page_rotated, textline_mask_tot = image_page[:, :], textline_mask_tot_ea[:, :]
|
|
|
|
textline_mask_tot[mask_images[:, :] == 1] = 0
|
|
|
|
textline_mask_tot[mask_images[:, :] == 1] = 0
|
|
|
@ -2278,7 +2300,7 @@ class eynollah:
|
|
|
|
self.plotter.save_plot_of_layout_main_all(text_regions_p, image_page)
|
|
|
|
self.plotter.save_plot_of_layout_main_all(text_regions_p, image_page)
|
|
|
|
self.plotter.save_plot_of_layout_main(text_regions_p, image_page)
|
|
|
|
self.plotter.save_plot_of_layout_main(text_regions_p, image_page)
|
|
|
|
|
|
|
|
|
|
|
|
print("marginals: " + str(time.time() - t1))
|
|
|
|
self.logger.info("detection of marginals took %ss", str(time.time() - t1))
|
|
|
|
|
|
|
|
|
|
|
|
if not self.full_layout:
|
|
|
|
if not self.full_layout:
|
|
|
|
|
|
|
|
|
|
|
@ -2298,8 +2320,7 @@ class eynollah:
|
|
|
|
K.clear_session()
|
|
|
|
K.clear_session()
|
|
|
|
gc.collect()
|
|
|
|
gc.collect()
|
|
|
|
|
|
|
|
|
|
|
|
# print(peaks_neg_fin,num_col,'num_col2')
|
|
|
|
self.logger.info("num_col_classifier: %s", num_col_classifier)
|
|
|
|
print(num_col_classifier, "num_col_classifier")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if num_col_classifier >= 3:
|
|
|
|
if num_col_classifier >= 3:
|
|
|
|
if np.abs(slope_deskew) < SLOPE_THRESHOLD:
|
|
|
|
if np.abs(slope_deskew) < SLOPE_THRESHOLD:
|
|
|
@ -2323,9 +2344,8 @@ class eynollah:
|
|
|
|
else:
|
|
|
|
else:
|
|
|
|
boxes_d = return_boxes_of_images_by_order_of_reading_new(spliter_y_new_d, regions_without_seperators_d, matrix_of_lines_ch_d, num_col_classifier)
|
|
|
|
boxes_d = return_boxes_of_images_by_order_of_reading_new(spliter_y_new_d, regions_without_seperators_d, matrix_of_lines_ch_d, num_col_classifier)
|
|
|
|
|
|
|
|
|
|
|
|
# print(len(boxes),'boxes')
|
|
|
|
self.logger.debug("len(boxes): %s", len(boxes))
|
|
|
|
# sys.exit()
|
|
|
|
self.logger.info("detecting boxes took %ss", str(time.time() - t1))
|
|
|
|
print("boxes in: " + str(time.time() - t1))
|
|
|
|
|
|
|
|
img_revised_tab = text_regions_p[:, :]
|
|
|
|
img_revised_tab = text_regions_p[:, :]
|
|
|
|
pixel_img = 2
|
|
|
|
pixel_img = 2
|
|
|
|
polygons_of_images = return_contours_of_interested_region(img_revised_tab, pixel_img)
|
|
|
|
polygons_of_images = return_contours_of_interested_region(img_revised_tab, pixel_img)
|
|
|
@ -2412,7 +2432,7 @@ class eynollah:
|
|
|
|
K.clear_session()
|
|
|
|
K.clear_session()
|
|
|
|
gc.collect()
|
|
|
|
gc.collect()
|
|
|
|
img_revised_tab = np.copy(text_regions_p[:, :])
|
|
|
|
img_revised_tab = np.copy(text_regions_p[:, :])
|
|
|
|
print("full layout in: " + str(time.time() - t1))
|
|
|
|
self.logger.info("detection of full layout took %ss", str(time.time() - t1))
|
|
|
|
pixel_img = 5
|
|
|
|
pixel_img = 5
|
|
|
|
polygons_of_images = return_contours_of_interested_region(img_revised_tab, pixel_img)
|
|
|
|
polygons_of_images = return_contours_of_interested_region(img_revised_tab, pixel_img)
|
|
|
|
|
|
|
|
|
|
|
@ -2638,7 +2658,7 @@ class eynollah:
|
|
|
|
self.write_into_page_xml_full(contours_only_text_parent, contours_only_text_parent_h, page_coord, self.dir_out, order_text_new, id_of_texts_tot, all_found_texline_polygons, all_found_texline_polygons_h, all_box_coord, all_box_coord_h, polygons_of_images, polygons_of_tabels, polygons_of_drop_capitals, polygons_of_marginals, all_found_texline_polygons_marginals, all_box_coord_marginals, slopes, slopes_marginals)
|
|
|
|
self.write_into_page_xml_full(contours_only_text_parent, contours_only_text_parent_h, page_coord, self.dir_out, order_text_new, id_of_texts_tot, all_found_texline_polygons, all_found_texline_polygons_h, all_box_coord, all_box_coord_h, polygons_of_images, polygons_of_tabels, polygons_of_drop_capitals, polygons_of_marginals, all_found_texline_polygons_marginals, all_box_coord_marginals, slopes, slopes_marginals)
|
|
|
|
else:
|
|
|
|
else:
|
|
|
|
contours_only_text_parent_h = None
|
|
|
|
contours_only_text_parent_h = None
|
|
|
|
# print('bura galmir?')
|
|
|
|
# self.logger.debug('bura galmir?')
|
|
|
|
if np.abs(slope_deskew) < SLOPE_THRESHOLD:
|
|
|
|
if np.abs(slope_deskew) < SLOPE_THRESHOLD:
|
|
|
|
#contours_only_text_parent = list(np.array(contours_only_text_parent)[index_by_text_par_con])
|
|
|
|
#contours_only_text_parent = list(np.array(contours_only_text_parent)[index_by_text_par_con])
|
|
|
|
order_text_new, id_of_texts_tot = self.do_order_of_regions(contours_only_text_parent, contours_only_text_parent_h, boxes, textline_mask_tot)
|
|
|
|
order_text_new, id_of_texts_tot = self.do_order_of_regions(contours_only_text_parent, contours_only_text_parent_h, boxes, textline_mask_tot)
|
|
|
@ -2648,4 +2668,4 @@ class eynollah:
|
|
|
|
# order_text_new , id_of_texts_tot=self.do_order_of_regions(contours_only_text_parent,contours_only_text_parent_h,boxes,textline_mask_tot)
|
|
|
|
# order_text_new , id_of_texts_tot=self.do_order_of_regions(contours_only_text_parent,contours_only_text_parent_h,boxes,textline_mask_tot)
|
|
|
|
self.write_into_page_xml(txt_con_org, page_coord, self.dir_out, order_text_new, id_of_texts_tot, all_found_texline_polygons, all_box_coord, polygons_of_images, polygons_of_marginals, all_found_texline_polygons_marginals, all_box_coord_marginals, self.curved_line, slopes, slopes_marginals)
|
|
|
|
self.write_into_page_xml(txt_con_org, page_coord, self.dir_out, order_text_new, id_of_texts_tot, all_found_texline_polygons, all_box_coord, polygons_of_images, polygons_of_marginals, all_found_texline_polygons_marginals, all_box_coord_marginals, self.curved_line, slopes, slopes_marginals)
|
|
|
|
|
|
|
|
|
|
|
|
print("Job done in: " + str(time.time() - t1))
|
|
|
|
self.logger.info("Job done in %ss", str(time.time() - t1))
|
|
|
|