mirror of
				https://github.com/qurator-spk/eynollah.git
				synced 2025-10-31 09:44:17 +01:00 
			
		
		
		
	attempting partial revert of dir_in mode from c606391c31
				
					
				
			This commit is contained in:
		
							parent
							
								
									482511adc0
								
							
						
					
					
						commit
						ca6090fef1
					
				
					 3 changed files with 270 additions and 268 deletions
				
			
		|  | @ -19,12 +19,13 @@ from eynollah.eynollah.eynollah import Eynollah | |||
|     type=click.Path(exists=True, file_okay=False), | ||||
|     required=True, | ||||
| ) | ||||
| @click.option( | ||||
|     "--dir_in", | ||||
|     "-di", | ||||
|     help="directory of images", | ||||
|     type=click.Path(exists=True, file_okay=False), | ||||
| ) | ||||
| # temporary disable directory input | ||||
| # @click.option( | ||||
| #     "--dir_in", | ||||
| #     "-di", | ||||
| #     help="directory of images", | ||||
| #     type=click.Path(exists=True, file_okay=False), | ||||
| # ) | ||||
| @click.option( | ||||
|     "--model", | ||||
|     "-m", | ||||
|  | @ -143,7 +144,7 @@ from eynollah.eynollah.eynollah import Eynollah | |||
| def main( | ||||
|     image, | ||||
|     out, | ||||
|     dir_in, | ||||
|     # dir_in, | ||||
|     model, | ||||
|     save_images, | ||||
|     save_layout, | ||||
|  | @ -179,7 +180,7 @@ def main( | |||
|     eynollah = Eynollah( | ||||
|         image_filename=image, | ||||
|         dir_out=out, | ||||
|         dir_in=dir_in, | ||||
|         # dir_in=dir_in, | ||||
|         dir_models=model, | ||||
|         dir_of_cropped_images=save_images, | ||||
|         dir_of_layout=save_layout, | ||||
|  | @ -199,9 +200,9 @@ def main( | |||
|         light_version=light_version, | ||||
|         ignore_page_extraction=ignore_page_extraction, | ||||
|     ) | ||||
|     eynollah.run() | ||||
|     # pcgts = eynollah.run() | ||||
|     # eynollah.writer.write_pagexml(pcgts) | ||||
|     # eynollah.run() | ||||
|     pcgts = eynollah.run() | ||||
|     eynollah.writer.write_pagexml(pcgts) | ||||
| 
 | ||||
| 
 | ||||
| if __name__ == "__main__": | ||||
|  |  | |||
|  | @ -145,11 +145,11 @@ class Eynollah: | |||
|     def __init__( | ||||
|             self, | ||||
|             dir_models, | ||||
|             image_filename=None, | ||||
|             image_filename, | ||||
|             image_pil=None, | ||||
|             image_filename_stem=None, | ||||
|             dir_out=None, | ||||
|             dir_in=None, | ||||
|             # dir_in=None, | ||||
|             dir_of_cropped_images=None, | ||||
|             dir_of_layout=None, | ||||
|             dir_of_deskewed=None, | ||||
|  | @ -171,16 +171,16 @@ class Eynollah: | |||
|             logger=None, | ||||
|             pcgts=None, | ||||
|     ): | ||||
|         if not dir_in: | ||||
|             if image_pil: | ||||
|                 self._imgs = self._cache_images(image_pil=image_pil) | ||||
|             else: | ||||
|                 self._imgs = self._cache_images(image_filename=image_filename) | ||||
|             if override_dpi: | ||||
|                 self.dpi = override_dpi | ||||
|             self.image_filename = image_filename | ||||
|         # if not dir_in: | ||||
|         #     if image_pil: | ||||
|         #         self._imgs = self._cache_images(image_pil=image_pil) | ||||
|         #     else: | ||||
|         #         self._imgs = self._cache_images(image_filename=image_filename) | ||||
|         #     if override_dpi: | ||||
|         #         self.dpi = override_dpi | ||||
|         #     self.image_filename = image_filename | ||||
|         self.dir_out = dir_out | ||||
|         self.dir_in = dir_in | ||||
|         # self.dir_in = dir_in | ||||
|         self.dir_of_all = dir_of_all | ||||
|         self.dir_save_page = dir_save_page | ||||
|         self.dir_of_deskewed = dir_of_deskewed | ||||
|  | @ -200,21 +200,21 @@ class Eynollah: | |||
|         self.light_version = light_version | ||||
|         self.ignore_page_extraction = ignore_page_extraction | ||||
|         self.pcgts = pcgts | ||||
|         if not dir_in: | ||||
|             self.plotter = None if not enable_plotting else EynollahPlotter( | ||||
|                 dir_out=self.dir_out, | ||||
|                 dir_of_all=dir_of_all, | ||||
|                 dir_save_page=dir_save_page, | ||||
|                 dir_of_deskewed=dir_of_deskewed, | ||||
|                 dir_of_cropped_images=dir_of_cropped_images, | ||||
|                 dir_of_layout=dir_of_layout, | ||||
|                 image_filename_stem=Path(Path(image_filename).name).stem) | ||||
|             self.writer = EynollahXmlWriter( | ||||
|                 dir_out=self.dir_out, | ||||
|                 image_filename=self.image_filename, | ||||
|                 curved_line=self.curved_line, | ||||
|                 textline_light=self.textline_light, | ||||
|                 pcgts=pcgts) | ||||
|         # if not dir_in: | ||||
|         self.plotter = None if not enable_plotting else EynollahPlotter( | ||||
|             dir_out=self.dir_out, | ||||
|             dir_of_all=dir_of_all, | ||||
|             dir_save_page=dir_save_page, | ||||
|             dir_of_deskewed=dir_of_deskewed, | ||||
|             dir_of_cropped_images=dir_of_cropped_images, | ||||
|             dir_of_layout=dir_of_layout, | ||||
|             image_filename_stem=Path(Path(image_filename).name).stem) | ||||
|         self.writer = EynollahXmlWriter( | ||||
|             dir_out=self.dir_out, | ||||
|             image_filename=self.image_filename, | ||||
|             curved_line=self.curved_line, | ||||
|             textline_light=self.textline_light, | ||||
|             pcgts=pcgts) | ||||
|         self.logger = logger if logger else getLogger('eynollah') | ||||
|         self.dir_models = dir_models | ||||
| 
 | ||||
|  | @ -236,39 +236,39 @@ class Eynollah: | |||
| 
 | ||||
|         self.models = {} | ||||
| 
 | ||||
|         if dir_in and light_version: | ||||
|             config = tf.compat.v1.ConfigProto() | ||||
|             config.gpu_options.allow_growth = True | ||||
|             session = tf.compat.v1.Session(config=config) | ||||
|             set_session(session) | ||||
|         # if dir_in and light_version: | ||||
|         #     config = tf.compat.v1.ConfigProto() | ||||
|         #     config.gpu_options.allow_growth = True | ||||
|         #     session = tf.compat.v1.Session(config=config) | ||||
|         #     set_session(session) | ||||
| 
 | ||||
|             self.model_page = self.our_load_model(self.model_page_dir) | ||||
|             self.model_classifier = self.our_load_model(self.model_dir_of_col_classifier) | ||||
|             self.model_bin = self.our_load_model(self.model_dir_of_binarization) | ||||
|             self.model_textline = self.our_load_model(self.model_textline_dir) | ||||
|             self.model_region = self.our_load_model(self.model_region_dir_p_ens_light) | ||||
|             self.model_region_fl_np = self.our_load_model(self.model_region_dir_fully_np) | ||||
|             self.model_region_fl = self.our_load_model(self.model_region_dir_fully) | ||||
|         #     self.model_page = self.our_load_model(self.model_page_dir) | ||||
|         #     self.model_classifier = self.our_load_model(self.model_dir_of_col_classifier) | ||||
|         #     self.model_bin = self.our_load_model(self.model_dir_of_binarization) | ||||
|         #     self.model_textline = self.our_load_model(self.model_textline_dir) | ||||
|         #     self.model_region = self.our_load_model(self.model_region_dir_p_ens_light) | ||||
|         #     self.model_region_fl_np = self.our_load_model(self.model_region_dir_fully_np) | ||||
|         #     self.model_region_fl = self.our_load_model(self.model_region_dir_fully) | ||||
| 
 | ||||
|             self.ls_imgs = os.listdir(self.dir_in) | ||||
|         #     self.ls_imgs = os.listdir(self.dir_in) | ||||
| 
 | ||||
|         if dir_in and not light_version: | ||||
|             config = tf.compat.v1.ConfigProto() | ||||
|             config.gpu_options.allow_growth = True | ||||
|             session = tf.compat.v1.Session(config=config) | ||||
|             set_session(session) | ||||
|         # if dir_in and not light_version: | ||||
|         #     config = tf.compat.v1.ConfigProto() | ||||
|         #     config.gpu_options.allow_growth = True | ||||
|         #     session = tf.compat.v1.Session(config=config) | ||||
|         #     set_session(session) | ||||
| 
 | ||||
|             self.model_page = self.our_load_model(self.model_page_dir) | ||||
|             self.model_classifier = self.our_load_model(self.model_dir_of_col_classifier) | ||||
|             self.model_bin = self.our_load_model(self.model_dir_of_binarization) | ||||
|             self.model_textline = self.our_load_model(self.model_textline_dir) | ||||
|             self.model_region = self.our_load_model(self.model_region_dir_p_ens) | ||||
|             self.model_region_p2 = self.our_load_model(self.model_region_dir_p2) | ||||
|             self.model_region_fl_np = self.our_load_model(self.model_region_dir_fully_np) | ||||
|             self.model_region_fl = self.our_load_model(self.model_region_dir_fully) | ||||
|             self.model_enhancement = self.our_load_model(self.model_dir_of_enhancement) | ||||
|         #     self.model_page = self.our_load_model(self.model_page_dir) | ||||
|         #     self.model_classifier = self.our_load_model(self.model_dir_of_col_classifier) | ||||
|         #     self.model_bin = self.our_load_model(self.model_dir_of_binarization) | ||||
|         #     self.model_textline = self.our_load_model(self.model_textline_dir) | ||||
|         #     self.model_region = self.our_load_model(self.model_region_dir_p_ens) | ||||
|         #     self.model_region_p2 = self.our_load_model(self.model_region_dir_p2) | ||||
|         #     self.model_region_fl_np = self.our_load_model(self.model_region_dir_fully_np) | ||||
|         #     self.model_region_fl = self.our_load_model(self.model_region_dir_fully) | ||||
|         #     self.model_enhancement = self.our_load_model(self.model_dir_of_enhancement) | ||||
| 
 | ||||
|             self.ls_imgs = os.listdir(self.dir_in) | ||||
|         #     self.ls_imgs = os.listdir(self.dir_in) | ||||
| 
 | ||||
|     def _cache_images(self, image_filename=None, image_pil=None): | ||||
|         ret = {} | ||||
|  | @ -283,9 +283,9 @@ class Eynollah: | |||
|             ret[f'img{prefix}_uint8'] = ret[f'img{prefix}'].astype(np.uint8) | ||||
|         return ret | ||||
| 
 | ||||
|     def reset_file_name_dir(self, image_filename): | ||||
|         self._imgs = self._cache_images(image_filename=image_filename) | ||||
|         self.image_filename = image_filename | ||||
|     # def reset_file_name_dir(self, image_filename): | ||||
|     #     self._imgs = self._cache_images(image_filename=image_filename) | ||||
|     #     self.image_filename = image_filename | ||||
| 
 | ||||
|         self.plotter = None if not self.enable_plotting else EynollahPlotter( | ||||
|             dir_out=self.dir_out, | ||||
|  | @ -476,9 +476,9 @@ class Eynollah: | |||
|             img = self.imread() | ||||
| 
 | ||||
|         _, page_coord = self.early_page_for_num_of_column_classification(img) | ||||
|         if not self.dir_in: | ||||
|             model_num_classifier, session_col_classifier = self.start_new_session_and_model( | ||||
|                 self.model_dir_of_col_classifier) | ||||
|         # if not self.dir_in: | ||||
|         model_num_classifier, session_col_classifier = self.start_new_session_and_model( | ||||
|             self.model_dir_of_col_classifier) | ||||
|         if self.input_binary: | ||||
|             img_in = np.copy(img) | ||||
|             img_in = img_in / 255.0 | ||||
|  | @ -501,10 +501,10 @@ class Eynollah: | |||
|             img_in[0, :, :, 1] = img_1ch[:, :] | ||||
|             img_in[0, :, :, 2] = img_1ch[:, :] | ||||
| 
 | ||||
|         if not self.dir_in: | ||||
|             label_p_pred = model_num_classifier.predict(img_in, verbose=0) | ||||
|         else: | ||||
|             label_p_pred = self.model_classifier.predict(img_in, verbose=0) | ||||
|         # if not self.dir_in: | ||||
|         label_p_pred = model_num_classifier.predict(img_in, verbose=0) | ||||
|         # else: | ||||
|         #     label_p_pred = self.model_classifier.predict(img_in, verbose=0) | ||||
| 
 | ||||
|         num_col = np.argmax(label_p_pred[0]) + 1 | ||||
| 
 | ||||
|  | @ -524,12 +524,12 @@ class Eynollah: | |||
|         self.logger.info("Detected %s DPI", dpi) | ||||
|         if self.input_binary: | ||||
|             img = self.imread() | ||||
|             if self.dir_in: | ||||
|                 prediction_bin = self.do_prediction(True, img, self.model_bin) | ||||
|             else: | ||||
|             # if self.dir_in: | ||||
|             #     prediction_bin = self.do_prediction(True, img, self.model_bin) | ||||
|             # else: | ||||
| 
 | ||||
|                 model_bin, session_bin = self.start_new_session_and_model(self.model_dir_of_binarization) | ||||
|                 prediction_bin = self.do_prediction(True, img, model_bin) | ||||
|             model_bin, session_bin = self.start_new_session_and_model(self.model_dir_of_binarization) | ||||
|             prediction_bin = self.do_prediction(True, img, model_bin) | ||||
| 
 | ||||
|             prediction_bin = prediction_bin[:, :, 0] | ||||
|             prediction_bin = (prediction_bin[:, :] == 0) * 1 | ||||
|  | @ -546,9 +546,9 @@ class Eynollah: | |||
| 
 | ||||
|         t1 = time.time() | ||||
|         _, page_coord = self.early_page_for_num_of_column_classification(img_bin) | ||||
|         if not self.dir_in: | ||||
|             model_num_classifier, session_col_classifier = self.start_new_session_and_model( | ||||
|                 self.model_dir_of_col_classifier) | ||||
|         # if not self.dir_in: | ||||
|         model_num_classifier, session_col_classifier = self.start_new_session_and_model( | ||||
|             self.model_dir_of_col_classifier) | ||||
| 
 | ||||
|         if self.input_binary: | ||||
|             img_in = np.copy(img) | ||||
|  | @ -568,10 +568,11 @@ class Eynollah: | |||
|             img_in[0, :, :, 1] = img_1ch[:, :] | ||||
|             img_in[0, :, :, 2] = img_1ch[:, :] | ||||
| 
 | ||||
|         if self.dir_in: | ||||
|             label_p_pred = self.model_classifier.predict(img_in, verbose=0) | ||||
|         else: | ||||
|             label_p_pred = model_num_classifier.predict(img_in, verbose=0) | ||||
|         # if self.dir_in: | ||||
|         #     label_p_pred = self.model_classifier.predict(img_in, verbose=0) | ||||
|         # else: | ||||
|         #     label_p_pred = model_num_classifier.predict(img_in, verbose=0) | ||||
|         label_p_pred = model_num_classifier.predict(img_in, verbose=0) | ||||
|         num_col = np.argmax(label_p_pred[0]) + 1 | ||||
| 
 | ||||
|         self.logger.info("Found %d columns (%s)", num_col, np.around(label_p_pred, decimals=5)) | ||||
|  | @ -984,13 +985,13 @@ class Eynollah: | |||
|         if not self.ignore_page_extraction: | ||||
|             img = cv2.GaussianBlur(self.image, (5, 5), 0) | ||||
| 
 | ||||
|             if not self.dir_in: | ||||
|                 model_page, session_page = self.start_new_session_and_model(self.model_page_dir) | ||||
|             # if not self.dir_in: | ||||
|             model_page, session_page = self.start_new_session_and_model(self.model_page_dir) | ||||
| 
 | ||||
|             if not self.dir_in: | ||||
|                 img_page_prediction = self.do_prediction(False, img, model_page) | ||||
|             else: | ||||
|                 img_page_prediction = self.do_prediction(False, img, self.model_page) | ||||
|             # if not self.dir_in: | ||||
|             img_page_prediction = self.do_prediction(False, img, model_page) | ||||
|             # else: | ||||
|             #    img_page_prediction = self.do_prediction(False, img, self.model_page) | ||||
|             imgray = cv2.cvtColor(img_page_prediction, cv2.COLOR_BGR2GRAY) | ||||
|             _, thresh = cv2.threshold(imgray, 0, 255, 0) | ||||
|             thresh = cv2.dilate(thresh, KERNEL, iterations=3) | ||||
|  | @ -1036,14 +1037,14 @@ class Eynollah: | |||
|                 img = img.astype(np.uint8) | ||||
|             else: | ||||
|                 img = self.imread() | ||||
|             if not self.dir_in: | ||||
|                 model_page, session_page = self.start_new_session_and_model(self.model_page_dir) | ||||
|             # if not self.dir_in: | ||||
|             model_page, session_page = self.start_new_session_and_model(self.model_page_dir) | ||||
|             img = cv2.GaussianBlur(img, (5, 5), 0) | ||||
| 
 | ||||
|             if self.dir_in: | ||||
|                 img_page_prediction = self.do_prediction(False, img, self.model_page) | ||||
|             else: | ||||
|                 img_page_prediction = self.do_prediction(False, img, model_page) | ||||
|             # if self.dir_in: | ||||
|             #    img_page_prediction = self.do_prediction(False, img, self.model_page) | ||||
|             # else: | ||||
|             img_page_prediction = self.do_prediction(False, img, model_page) | ||||
| 
 | ||||
|             imgray = cv2.cvtColor(img_page_prediction, cv2.COLOR_BGR2GRAY) | ||||
|             _, thresh = cv2.threshold(imgray, 0, 255, 0) | ||||
|  | @ -1069,11 +1070,11 @@ class Eynollah: | |||
|         self.logger.debug("enter extract_text_regions") | ||||
|         img_height_h = img.shape[0] | ||||
|         img_width_h = img.shape[1] | ||||
|         if not self.dir_in: | ||||
|             model_region, session_region = self.start_new_session_and_model( | ||||
|                 self.model_region_dir_fully if patches else self.model_region_dir_fully_np) | ||||
|         else: | ||||
|             model_region = self.model_region_fl if patches else self.model_region_fl_np | ||||
|         # if not self.dir_in: | ||||
|         model_region, session_region = self.start_new_session_and_model( | ||||
|             self.model_region_dir_fully if patches else self.model_region_dir_fully_np) | ||||
|         # else: | ||||
|         #     model_region = self.model_region_fl if patches else self.model_region_fl_np | ||||
| 
 | ||||
|         if not patches: | ||||
|             img = otsu_copy_binary(img) | ||||
|  | @ -1588,23 +1589,23 @@ class Eynollah: | |||
| 
 | ||||
|     def textline_contours(self, img, patches, scaler_h, scaler_w): | ||||
|         self.logger.debug('enter textline_contours') | ||||
|         if not self.dir_in: | ||||
|             model_textline, session_textline = self.start_new_session_and_model( | ||||
|                 self.model_textline_dir if patches else self.model_textline_dir_np) | ||||
|         # if not self.dir_in: | ||||
|         model_textline, session_textline = self.start_new_session_and_model( | ||||
|             self.model_textline_dir if patches else self.model_textline_dir_np) | ||||
|         img = img.astype(np.uint8) | ||||
|         img_org = np.copy(img) | ||||
|         img_h = img_org.shape[0] | ||||
|         img_w = img_org.shape[1] | ||||
|         img = resize_image(img_org, int(img_org.shape[0] * scaler_h), int(img_org.shape[1] * scaler_w)) | ||||
|         if not self.dir_in: | ||||
|             prediction_textline = self.do_prediction(patches, img, model_textline) | ||||
|         else: | ||||
|             prediction_textline = self.do_prediction(patches, img, self.model_textline) | ||||
|         # if not self.dir_in: | ||||
|         prediction_textline = self.do_prediction(patches, img, model_textline) | ||||
|         # else: | ||||
|         #     prediction_textline = self.do_prediction(patches, img, self.model_textline) | ||||
|         prediction_textline = resize_image(prediction_textline, img_h, img_w) | ||||
|         if not self.dir_in: | ||||
|             prediction_textline_longshot = self.do_prediction(False, img, model_textline) | ||||
|         else: | ||||
|             prediction_textline_longshot = self.do_prediction(False, img, self.model_textline) | ||||
|         # if not self.dir_in: | ||||
|         prediction_textline_longshot = self.do_prediction(False, img, model_textline) | ||||
|         # else: | ||||
|         #     prediction_textline_longshot = self.do_prediction(False, img, self.model_textline) | ||||
|         prediction_textline_longshot_true_size = resize_image(prediction_textline_longshot, img_h, img_w) | ||||
| 
 | ||||
|         if self.textline_light: | ||||
|  | @ -1681,11 +1682,11 @@ class Eynollah: | |||
|             img_h_new = int(img_org.shape[0] / float(img_org.shape[1]) * img_w_new) | ||||
|         img_resized = resize_image(img, img_h_new, img_w_new) | ||||
| 
 | ||||
|         if not self.dir_in: | ||||
|             model_bin, session_bin = self.start_new_session_and_model(self.model_dir_of_binarization) | ||||
|             prediction_bin = self.do_prediction(True, img_resized, model_bin) | ||||
|         else: | ||||
|             prediction_bin = self.do_prediction(True, img_resized, self.model_bin) | ||||
|         # if not self.dir_in: | ||||
|         model_bin, session_bin = self.start_new_session_and_model(self.model_dir_of_binarization) | ||||
|         prediction_bin = self.do_prediction(True, img_resized, model_bin) | ||||
|         # else: | ||||
|         #     prediction_bin = self.do_prediction(True, img_resized, self.model_bin) | ||||
|         prediction_bin = prediction_bin[:, :, 0] | ||||
|         prediction_bin = (prediction_bin[:, :] == 0) * 1 | ||||
|         prediction_bin = prediction_bin * 255 | ||||
|  | @ -1698,11 +1699,11 @@ class Eynollah: | |||
| 
 | ||||
|         textline_mask_tot_ea = self.run_textline(img_bin) | ||||
| 
 | ||||
|         if not self.dir_in: | ||||
|             model_region, session_region = self.start_new_session_and_model(self.model_region_dir_p_ens_light) | ||||
|             prediction_regions_org = self.do_prediction_new_concept(True, img_bin, model_region) | ||||
|         else: | ||||
|             prediction_regions_org = self.do_prediction_new_concept(True, img_bin, self.model_region) | ||||
|         # if not self.dir_in: | ||||
|         model_region, session_region = self.start_new_session_and_model(self.model_region_dir_p_ens_light) | ||||
|         prediction_regions_org = self.do_prediction_new_concept(True, img_bin, model_region) | ||||
|         # else: | ||||
|         #     prediction_regions_org = self.do_prediction_new_concept(True, img_bin, self.model_region) | ||||
| 
 | ||||
|         # plt.imshow(prediction_regions_org[:,:,0]) | ||||
|         # plt.show() | ||||
|  | @ -1744,17 +1745,17 @@ class Eynollah: | |||
|         img_height_h = img_org.shape[0] | ||||
|         img_width_h = img_org.shape[1] | ||||
| 
 | ||||
|         if not self.dir_in: | ||||
|             model_region, session_region = self.start_new_session_and_model(self.model_region_dir_p_ens) | ||||
|         # if not self.dir_in: | ||||
|         model_region, session_region = self.start_new_session_and_model(self.model_region_dir_p_ens) | ||||
| 
 | ||||
|         ratio_y = 1.3 | ||||
|         ratio_x = 1 | ||||
| 
 | ||||
|         img = resize_image(img_org, int(img_org.shape[0] * ratio_y), int(img_org.shape[1] * ratio_x)) | ||||
|         if not self.dir_in: | ||||
|             prediction_regions_org_y = self.do_prediction(True, img, model_region) | ||||
|         else: | ||||
|             prediction_regions_org_y = self.do_prediction(True, img, self.model_region) | ||||
|         # if not self.dir_in: | ||||
|         prediction_regions_org_y = self.do_prediction(True, img, model_region) | ||||
|         # else: | ||||
|         #     prediction_regions_org_y = self.do_prediction(True, img, self.model_region) | ||||
|         prediction_regions_org_y = resize_image(prediction_regions_org_y, img_height_h, img_width_h) | ||||
| 
 | ||||
|         # plt.imshow(prediction_regions_org_y[:,:,0]) | ||||
|  | @ -1774,24 +1775,24 @@ class Eynollah: | |||
|             img = resize_image(img_org, int(img_org.shape[0]), | ||||
|                                int(img_org.shape[1] * (1.2 if is_image_enhanced else 1))) | ||||
| 
 | ||||
|             if self.dir_in: | ||||
|                 prediction_regions_org = self.do_prediction(True, img, self.model_region) | ||||
|             else: | ||||
|                 prediction_regions_org = self.do_prediction(True, img, model_region) | ||||
|             # if self.dir_in: | ||||
|             #     prediction_regions_org = self.do_prediction(True, img, self.model_region) | ||||
|             # else: | ||||
|             prediction_regions_org = self.do_prediction(True, img, model_region) | ||||
|             prediction_regions_org = resize_image(prediction_regions_org, img_height_h, img_width_h) | ||||
| 
 | ||||
|             prediction_regions_org = prediction_regions_org[:, :, 0] | ||||
|             prediction_regions_org[(prediction_regions_org[:, :] == 1) & (mask_zeros_y[:, :] == 1)] = 0 | ||||
| 
 | ||||
|             if not self.dir_in: | ||||
|                 model_region, session_region = self.start_new_session_and_model(self.model_region_dir_p2) | ||||
|             # if not self.dir_in: | ||||
|             model_region, session_region = self.start_new_session_and_model(self.model_region_dir_p2) | ||||
| 
 | ||||
|             img = resize_image(img_org, int(img_org.shape[0]), int(img_org.shape[1])) | ||||
| 
 | ||||
|             if self.dir_in: | ||||
|                 prediction_regions_org2 = self.do_prediction(True, img, self.model_region_p2, 0.2) | ||||
|             else: | ||||
|                 prediction_regions_org2 = self.do_prediction(True, img, model_region, 0.2) | ||||
|             # if self.dir_in: | ||||
|             #     prediction_regions_org2 = self.do_prediction(True, img, self.model_region_p2, 0.2) | ||||
|             # else: | ||||
|             prediction_regions_org2 = self.do_prediction(True, img, model_region, 0.2) | ||||
|             prediction_regions_org2 = resize_image(prediction_regions_org2, img_height_h, img_width_h) | ||||
| 
 | ||||
|             mask_zeros2 = (prediction_regions_org2[:, :, 0] == 0) | ||||
|  | @ -1817,11 +1818,11 @@ class Eynollah: | |||
|                 if self.input_binary: | ||||
|                     prediction_bin = np.copy(img_org) | ||||
|                 else: | ||||
|                     if not self.dir_in: | ||||
|                         model_bin, session_bin = self.start_new_session_and_model(self.model_dir_of_binarization) | ||||
|                         prediction_bin = self.do_prediction(True, img_org, model_bin) | ||||
|                     else: | ||||
|                         prediction_bin = self.do_prediction(True, img_org, self.model_bin) | ||||
|                     # if not self.dir_in: | ||||
|                     model_bin, session_bin = self.start_new_session_and_model(self.model_dir_of_binarization) | ||||
|                     prediction_bin = self.do_prediction(True, img_org, model_bin) | ||||
|                     # else: | ||||
|                     #     prediction_bin = self.do_prediction(True, img_org, self.model_bin) | ||||
|                     prediction_bin = resize_image(prediction_bin, img_height_h, img_width_h) | ||||
| 
 | ||||
|                     prediction_bin = prediction_bin[:, :, 0] | ||||
|  | @ -1830,17 +1831,17 @@ class Eynollah: | |||
| 
 | ||||
|                     prediction_bin = np.repeat(prediction_bin[:, :, np.newaxis], 3, axis=2) | ||||
| 
 | ||||
|                 if not self.dir_in: | ||||
|                     model_region, session_region = self.start_new_session_and_model(self.model_region_dir_p_ens) | ||||
|                 # if not self.dir_in: | ||||
|                 model_region, session_region = self.start_new_session_and_model(self.model_region_dir_p_ens) | ||||
|                 ratio_y = 1 | ||||
|                 ratio_x = 1 | ||||
| 
 | ||||
|                 img = resize_image(prediction_bin, int(img_org.shape[0] * ratio_y), int(img_org.shape[1] * ratio_x)) | ||||
| 
 | ||||
|                 if not self.dir_in: | ||||
|                     prediction_regions_org = self.do_prediction(True, img, model_region) | ||||
|                 else: | ||||
|                     prediction_regions_org = self.do_prediction(True, img, self.model_region) | ||||
|                 # if not self.dir_in: | ||||
|                 prediction_regions_org = self.do_prediction(True, img, model_region) | ||||
|                 # else: | ||||
|                 #     prediction_regions_org = self.do_prediction(True, img, self.model_region) | ||||
|                 prediction_regions_org = resize_image(prediction_regions_org, img_height_h, img_width_h) | ||||
|                 prediction_regions_org = prediction_regions_org[:, :, 0] | ||||
| 
 | ||||
|  | @ -1869,11 +1870,11 @@ class Eynollah: | |||
|             if self.input_binary: | ||||
|                 prediction_bin = np.copy(img_org) | ||||
| 
 | ||||
|                 if not self.dir_in: | ||||
|                     model_bin, session_bin = self.start_new_session_and_model(self.model_dir_of_binarization) | ||||
|                     prediction_bin = self.do_prediction(True, img_org, model_bin) | ||||
|                 else: | ||||
|                     prediction_bin = self.do_prediction(True, img_org, self.model_bin) | ||||
|                 # if not self.dir_in: | ||||
|                 model_bin, session_bin = self.start_new_session_and_model(self.model_dir_of_binarization) | ||||
|                 prediction_bin = self.do_prediction(True, img_org, model_bin) | ||||
|                 # else: | ||||
|                 #     prediction_bin = self.do_prediction(True, img_org, self.model_bin) | ||||
|                 prediction_bin = resize_image(prediction_bin, img_height_h, img_width_h) | ||||
|                 prediction_bin = prediction_bin[:, :, 0] | ||||
| 
 | ||||
|  | @ -1883,8 +1884,8 @@ class Eynollah: | |||
| 
 | ||||
|                 prediction_bin = np.repeat(prediction_bin[:, :, np.newaxis], 3, axis=2) | ||||
| 
 | ||||
|                 if not self.dir_in: | ||||
|                     model_region, session_region = self.start_new_session_and_model(self.model_region_dir_p_ens) | ||||
|                 # if not self.dir_in: | ||||
|                 model_region, session_region = self.start_new_session_and_model(self.model_region_dir_p_ens) | ||||
| 
 | ||||
|             else: | ||||
|                 prediction_bin = np.copy(img_org) | ||||
|  | @ -1892,10 +1893,10 @@ class Eynollah: | |||
|             ratio_x = 1 | ||||
| 
 | ||||
|             img = resize_image(prediction_bin, int(img_org.shape[0] * ratio_y), int(img_org.shape[1] * ratio_x)) | ||||
|             if not self.dir_in: | ||||
|                 prediction_regions_org = self.do_prediction(True, img, model_region) | ||||
|             else: | ||||
|                 prediction_regions_org = self.do_prediction(True, img, self.model_region) | ||||
|             # if not self.dir_in: | ||||
|             prediction_regions_org = self.do_prediction(True, img, model_region) | ||||
|             # else: | ||||
|             #     prediction_regions_org = self.do_prediction(True, img, self.model_region) | ||||
|             prediction_regions_org = resize_image(prediction_regions_org, img_height_h, img_width_h) | ||||
|             prediction_regions_org = prediction_regions_org[:, :, 0] | ||||
| 
 | ||||
|  | @ -3036,13 +3037,13 @@ class Eynollah: | |||
| 
 | ||||
|         t0_tot = time.time() | ||||
| 
 | ||||
|         if not self.dir_in: | ||||
|             self.ls_imgs = [1] | ||||
|         # if not self.dir_in: | ||||
|         self.ls_imgs = [1] | ||||
| 
 | ||||
|         for img_name in self.ls_imgs: | ||||
|             t0 = time.time() | ||||
|             if self.dir_in: | ||||
|                 self.reset_file_name_dir(os.path.join(self.dir_in, img_name)) | ||||
|             # if self.dir_in: | ||||
|             #     self.reset_file_name_dir(os.path.join(self.dir_in, img_name)) | ||||
| 
 | ||||
|             img_res, is_image_enhanced, num_col_classifier, num_column_is_classified = self.run_enhancement( | ||||
|                 self.light_version) | ||||
|  | @ -3077,10 +3078,10 @@ class Eynollah: | |||
|                 pcgts = self.writer.build_pagexml_no_full_layout([], page_coord, [], [], [], [], [], [], [], [], [], [], | ||||
|                                                                  cont_page, [], []) | ||||
|                 self.logger.info("Job done in %.1fs", time.time() - t1) | ||||
|                 if self.dir_in: | ||||
|                     self.writer.write_pagexml(pcgts) | ||||
|                     continue | ||||
|                 else: | ||||
|                 # if self.dir_in: | ||||
|                 #     self.writer.write_pagexml(pcgts) | ||||
|                 #     continue | ||||
|                 # else: | ||||
|                     return pcgts | ||||
| 
 | ||||
|             t1 = time.time() | ||||
|  | @ -3419,5 +3420,5 @@ class Eynollah: | |||
|                 # return pcgts | ||||
|             self.writer.write_pagexml(pcgts) | ||||
|             # self.logger.info("Job done in %.1fs", time.time() - t0) | ||||
|         if self.dir_in: | ||||
|             self.logger.info("All jobs done in %.1fs", time.time() - t0_tot) | ||||
|         # if self.dir_in: | ||||
|         #     self.logger.info("All jobs done in %.1fs", time.time() - t0_tot) | ||||
|  |  | |||
|  | @ -3,8 +3,8 @@ import numpy as np | |||
| from shapely import geometry | ||||
| 
 | ||||
| from .rotate import rotate_image, rotation_image_new | ||||
| from multiprocessing import Process, Queue, cpu_count | ||||
| from multiprocessing import Pool | ||||
| # from multiprocessing import Process, Queue, cpu_count | ||||
| # from multiprocessing import Pool | ||||
| 
 | ||||
| 
 | ||||
| def contours_in_same_horizon(cy_main_hor): | ||||
|  | @ -154,95 +154,95 @@ def return_contours_of_interested_region(region_pre_p, pixel, min_area=0.0002): | |||
|     return contours_imgs | ||||
| 
 | ||||
| 
 | ||||
| def do_work_of_contours_in_image(queue_of_all_params, contours_per_process, indexes_r_con_per_pro, img, slope_first): | ||||
|     cnts_org_per_each_subprocess = [] | ||||
|     index_by_text_region_contours = [] | ||||
|     for mv in range(len(contours_per_process)): | ||||
|         index_by_text_region_contours.append(indexes_r_con_per_pro[mv]) | ||||
| # def do_work_of_contours_in_image(queue_of_all_params, contours_per_process, indexes_r_con_per_pro, img, slope_first): | ||||
| #     cnts_org_per_each_subprocess = [] | ||||
| #     index_by_text_region_contours = [] | ||||
| #     for mv in range(len(contours_per_process)): | ||||
| #         index_by_text_region_contours.append(indexes_r_con_per_pro[mv]) | ||||
|          | ||||
|         img_copy = np.zeros(img.shape) | ||||
|         img_copy = cv2.fillPoly(img_copy, pts=[contours_per_process[mv]], color=(1, 1, 1)) | ||||
| #         img_copy = np.zeros(img.shape) | ||||
| #         img_copy = cv2.fillPoly(img_copy, pts=[contours_per_process[mv]], color=(1, 1, 1)) | ||||
| 
 | ||||
|         img_copy = rotation_image_new(img_copy, -slope_first) | ||||
| #         img_copy = rotation_image_new(img_copy, -slope_first) | ||||
| 
 | ||||
|         img_copy = img_copy.astype(np.uint8) | ||||
|         imgray = cv2.cvtColor(img_copy, cv2.COLOR_BGR2GRAY) | ||||
|         ret, thresh = cv2.threshold(imgray, 0, 255, 0) | ||||
| #         img_copy = img_copy.astype(np.uint8) | ||||
| #         imgray = cv2.cvtColor(img_copy, cv2.COLOR_BGR2GRAY) | ||||
| #         ret, thresh = cv2.threshold(imgray, 0, 255, 0) | ||||
| 
 | ||||
|         cont_int, _ = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) | ||||
| #         cont_int, _ = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) | ||||
| 
 | ||||
|         cont_int[0][:, 0, 0] = cont_int[0][:, 0, 0] + np.abs(img_copy.shape[1] - img.shape[1]) | ||||
|         cont_int[0][:, 0, 1] = cont_int[0][:, 0, 1] + np.abs(img_copy.shape[0] - img.shape[0]) | ||||
| #         cont_int[0][:, 0, 0] = cont_int[0][:, 0, 0] + np.abs(img_copy.shape[1] - img.shape[1]) | ||||
| #         cont_int[0][:, 0, 1] = cont_int[0][:, 0, 1] + np.abs(img_copy.shape[0] - img.shape[0]) | ||||
| 
 | ||||
|         cnts_org_per_each_subprocess.append(cont_int[0]) | ||||
| #         cnts_org_per_each_subprocess.append(cont_int[0]) | ||||
| 
 | ||||
|     queue_of_all_params.put([cnts_org_per_each_subprocess, index_by_text_region_contours]) | ||||
| #     queue_of_all_params.put([cnts_org_per_each_subprocess, index_by_text_region_contours]) | ||||
| 
 | ||||
| 
 | ||||
| def get_textregion_contours_in_org_image_multi(cnts, img, slope_first): | ||||
| # def get_textregion_contours_in_org_image_multi(cnts, img, slope_first): | ||||
|      | ||||
|     num_cores = cpu_count() | ||||
|     queue_of_all_params = Queue() | ||||
| #     num_cores = cpu_count() | ||||
| #     queue_of_all_params = Queue() | ||||
| 
 | ||||
|     processes = [] | ||||
|     nh = np.linspace(0, len(cnts), num_cores + 1) | ||||
|     indexes_by_text_con = np.array(range(len(cnts))) | ||||
|     for i in range(num_cores): | ||||
|         contours_per_process = cnts[int(nh[i]): int(nh[i + 1])] | ||||
|         indexes_text_con_per_process = indexes_by_text_con[int(nh[i]): int(nh[i + 1])] | ||||
| #     processes = [] | ||||
| #     nh = np.linspace(0, len(cnts), num_cores + 1) | ||||
| #     indexes_by_text_con = np.array(range(len(cnts))) | ||||
| #     for i in range(num_cores): | ||||
| #         contours_per_process = cnts[int(nh[i]): int(nh[i + 1])] | ||||
| #         indexes_text_con_per_process = indexes_by_text_con[int(nh[i]): int(nh[i + 1])] | ||||
| 
 | ||||
|         processes.append(Process(target=do_work_of_contours_in_image, args=(queue_of_all_params, contours_per_process, indexes_text_con_per_process, img, slope_first))) | ||||
|     for i in range(num_cores): | ||||
|         processes[i].start() | ||||
|     cnts_org = [] | ||||
|     all_index_text_con = [] | ||||
|     for i in range(num_cores): | ||||
|         list_all_par = queue_of_all_params.get(True) | ||||
|         contours_for_sub_process = list_all_par[0] | ||||
|         indexes_for_sub_process = list_all_par[1] | ||||
|         for j in range(len(contours_for_sub_process)): | ||||
|             cnts_org.append(contours_for_sub_process[j]) | ||||
|             all_index_text_con.append(indexes_for_sub_process[j]) | ||||
|     for i in range(num_cores): | ||||
|         processes[i].join() | ||||
| #         processes.append(Process(target=do_work_of_contours_in_image, args=(queue_of_all_params, contours_per_process, indexes_text_con_per_process, img, slope_first))) | ||||
| #     for i in range(num_cores): | ||||
| #         processes[i].start() | ||||
| #     cnts_org = [] | ||||
| #     all_index_text_con = [] | ||||
| #     for i in range(num_cores): | ||||
| #         list_all_par = queue_of_all_params.get(True) | ||||
| #         contours_for_sub_process = list_all_par[0] | ||||
| #         indexes_for_sub_process = list_all_par[1] | ||||
| #         for j in range(len(contours_for_sub_process)): | ||||
| #             cnts_org.append(contours_for_sub_process[j]) | ||||
| #             all_index_text_con.append(indexes_for_sub_process[j]) | ||||
| #     for i in range(num_cores): | ||||
| #         processes[i].join() | ||||
| 
 | ||||
|     print(all_index_text_con) | ||||
|     return cnts_org | ||||
| #     print(all_index_text_con) | ||||
| #     return cnts_org | ||||
| 
 | ||||
| 
 | ||||
| def loop_contour_image(index_l, cnts, img, slope_first): | ||||
|     img_copy = np.zeros(img.shape) | ||||
|     img_copy = cv2.fillPoly(img_copy, pts=[cnts[index_l]], color=(1, 1, 1)) | ||||
| # def loop_contour_image(index_l, cnts, img, slope_first): | ||||
| #     img_copy = np.zeros(img.shape) | ||||
| #     img_copy = cv2.fillPoly(img_copy, pts=[cnts[index_l]], color=(1, 1, 1)) | ||||
| 
 | ||||
|     # plt.imshow(img_copy) | ||||
|     # plt.show() | ||||
| #     # plt.imshow(img_copy) | ||||
| #     # plt.show() | ||||
| 
 | ||||
|     # print(img.shape,'img') | ||||
|     img_copy = rotation_image_new(img_copy, -slope_first) | ||||
|     # print(img_copy.shape,'img_copy') | ||||
|     # plt.imshow(img_copy) | ||||
|     # plt.show() | ||||
| #     # print(img.shape,'img') | ||||
| #     img_copy = rotation_image_new(img_copy, -slope_first) | ||||
| #     # print(img_copy.shape,'img_copy') | ||||
| #     # plt.imshow(img_copy) | ||||
| #     # plt.show() | ||||
| 
 | ||||
|     img_copy = img_copy.astype(np.uint8) | ||||
|     imgray = cv2.cvtColor(img_copy, cv2.COLOR_BGR2GRAY) | ||||
|     ret, thresh = cv2.threshold(imgray, 0, 255, 0) | ||||
| #     img_copy = img_copy.astype(np.uint8) | ||||
| #     imgray = cv2.cvtColor(img_copy, cv2.COLOR_BGR2GRAY) | ||||
| #     ret, thresh = cv2.threshold(imgray, 0, 255, 0) | ||||
| 
 | ||||
|     cont_int, _ = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) | ||||
| #     cont_int, _ = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) | ||||
| 
 | ||||
|     cont_int[0][:, 0, 0] = cont_int[0][:, 0, 0] + np.abs(img_copy.shape[1] - img.shape[1]) | ||||
|     cont_int[0][:, 0, 1] = cont_int[0][:, 0, 1] + np.abs(img_copy.shape[0] - img.shape[0]) | ||||
|     # print(np.shape(cont_int[0])) | ||||
|     return cont_int[0] | ||||
| #     cont_int[0][:, 0, 0] = cont_int[0][:, 0, 0] + np.abs(img_copy.shape[1] - img.shape[1]) | ||||
| #     cont_int[0][:, 0, 1] = cont_int[0][:, 0, 1] + np.abs(img_copy.shape[0] - img.shape[0]) | ||||
| #     # print(np.shape(cont_int[0])) | ||||
| #     return cont_int[0] | ||||
| 
 | ||||
| 
 | ||||
| def get_textregion_contours_in_org_image_multi2(cnts, img, slope_first): | ||||
| # def get_textregion_contours_in_org_image_multi2(cnts, img, slope_first): | ||||
| 
 | ||||
|     cnts_org = [] | ||||
|     # print(cnts,'cnts') | ||||
|     with Pool(cpu_count()) as p: | ||||
|         cnts_org = p.starmap(loop_contour_image, [(index_l, cnts, img, slope_first) for index_l in range(len(cnts))]) | ||||
| #     cnts_org = [] | ||||
| #     # print(cnts,'cnts') | ||||
| #     with Pool(cpu_count()) as p: | ||||
| #         cnts_org = p.starmap(loop_contour_image, [(index_l, cnts, img, slope_first) for index_l in range(len(cnts))]) | ||||
|          | ||||
|     return cnts_org | ||||
| #     return cnts_org | ||||
| 
 | ||||
| 
 | ||||
| def get_textregion_contours_in_org_image(cnts, img, slope_first): | ||||
|  | @ -276,42 +276,42 @@ def get_textregion_contours_in_org_image(cnts, img, slope_first): | |||
|     return cnts_org | ||||
| 
 | ||||
| 
 | ||||
| def get_textregion_contours_in_org_image_light(cnts, img, slope_first): | ||||
| # def get_textregion_contours_in_org_image_light(cnts, img, slope_first): | ||||
|      | ||||
|     h_o = img.shape[0] | ||||
|     w_o = img.shape[1] | ||||
| #     h_o = img.shape[0] | ||||
| #     w_o = img.shape[1] | ||||
|      | ||||
|     img = cv2.resize(img, (int(img.shape[1]/3.), int(img.shape[0]/3.)), interpolation=cv2.INTER_NEAREST) | ||||
|     # cnts = list( (np.array(cnts)/2).astype(np.int16) ) | ||||
|     # cnts = cnts/2 | ||||
|     cnts = [(i / 3).astype(np.int32) for i in cnts] | ||||
|     cnts_org = [] | ||||
|     # print(cnts,'cnts') | ||||
|     for i in range(len(cnts)): | ||||
|         img_copy = np.zeros(img.shape) | ||||
|         img_copy = cv2.fillPoly(img_copy, pts=[cnts[i]], color=(1, 1, 1)) | ||||
| #     img = cv2.resize(img, (int(img.shape[1]/3.), int(img.shape[0]/3.)), interpolation=cv2.INTER_NEAREST) | ||||
| #     # cnts = list( (np.array(cnts)/2).astype(np.int16) ) | ||||
| #     # cnts = cnts/2 | ||||
| #     cnts = [(i / 3).astype(np.int32) for i in cnts] | ||||
| #     cnts_org = [] | ||||
| #     # print(cnts,'cnts') | ||||
| #     for i in range(len(cnts)): | ||||
| #         img_copy = np.zeros(img.shape) | ||||
| #         img_copy = cv2.fillPoly(img_copy, pts=[cnts[i]], color=(1, 1, 1)) | ||||
| 
 | ||||
|         # plt.imshow(img_copy) | ||||
|         # plt.show() | ||||
| #         # plt.imshow(img_copy) | ||||
| #         # plt.show() | ||||
| 
 | ||||
|         # print(img.shape,'img') | ||||
|         img_copy = rotation_image_new(img_copy, -slope_first) | ||||
|         # print(img_copy.shape,'img_copy') | ||||
|         # plt.imshow(img_copy) | ||||
|         # plt.show() | ||||
| #         # print(img.shape,'img') | ||||
| #         img_copy = rotation_image_new(img_copy, -slope_first) | ||||
| #         # print(img_copy.shape,'img_copy') | ||||
| #         # plt.imshow(img_copy) | ||||
| #         # plt.show() | ||||
| 
 | ||||
|         img_copy = img_copy.astype(np.uint8) | ||||
|         imgray = cv2.cvtColor(img_copy, cv2.COLOR_BGR2GRAY) | ||||
|         ret, thresh = cv2.threshold(imgray, 0, 255, 0) | ||||
| #         img_copy = img_copy.astype(np.uint8) | ||||
| #         imgray = cv2.cvtColor(img_copy, cv2.COLOR_BGR2GRAY) | ||||
| #         ret, thresh = cv2.threshold(imgray, 0, 255, 0) | ||||
| 
 | ||||
|         cont_int, _ = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) | ||||
| #         cont_int, _ = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) | ||||
| 
 | ||||
|         cont_int[0][:, 0, 0] = cont_int[0][:, 0, 0] + np.abs(img_copy.shape[1] - img.shape[1]) | ||||
|         cont_int[0][:, 0, 1] = cont_int[0][:, 0, 1] + np.abs(img_copy.shape[0] - img.shape[0]) | ||||
|         # print(np.shape(cont_int[0])) | ||||
|         cnts_org.append(cont_int[0]*3) | ||||
| #         cont_int[0][:, 0, 0] = cont_int[0][:, 0, 0] + np.abs(img_copy.shape[1] - img.shape[1]) | ||||
| #         cont_int[0][:, 0, 1] = cont_int[0][:, 0, 1] + np.abs(img_copy.shape[0] - img.shape[0]) | ||||
| #         # print(np.shape(cont_int[0])) | ||||
| #         cnts_org.append(cont_int[0]*3) | ||||
| 
 | ||||
|     return cnts_org | ||||
| #     return cnts_org | ||||
| 
 | ||||
| 
 | ||||
| def return_contours_of_interested_textline(region_pre_p, pixel): | ||||
|  |  | |||
		Loading…
	
	Add table
		Add a link
		
	
		Reference in a new issue