|
|
|
@ -5,6 +5,7 @@ from shapely import geometry
|
|
|
|
|
|
|
|
|
|
from .rotate import rotate_image, rotation_image_new
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def contours_in_same_horizon(cy_main_hor):
|
|
|
|
|
X1 = np.zeros((len(cy_main_hor), len(cy_main_hor)))
|
|
|
|
|
X2 = np.zeros((len(cy_main_hor), len(cy_main_hor)))
|
|
|
|
@ -22,11 +23,13 @@ def contours_in_same_horizon(cy_main_hor):
|
|
|
|
|
all_args.append(list(set(list_h)))
|
|
|
|
|
return np.unique(np.array(all_args, dtype=object))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def find_contours_mean_y_diff(contours_main):
|
|
|
|
|
M_main = [cv2.moments(contours_main[j]) for j in range(len(contours_main))]
|
|
|
|
|
cy_main = [(M_main[j]["m01"] / (M_main[j]["m00"] + 1e-32)) for j in range(len(M_main))]
|
|
|
|
|
return np.mean(np.diff(np.sort(np.array(cy_main))))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def get_text_region_boxes_by_given_contours(contours):
|
|
|
|
|
boxes = []
|
|
|
|
|
contours_new = []
|
|
|
|
@ -37,6 +40,7 @@ def get_text_region_boxes_by_given_contours(contours):
|
|
|
|
|
|
|
|
|
|
return boxes, contours_new
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def filter_contours_area_of_image(image, contours, hierarchy, max_area, min_area):
|
|
|
|
|
found_polygons_early = []
|
|
|
|
|
for jv,c in enumerate(contours):
|
|
|
|
@ -51,6 +55,7 @@ def filter_contours_area_of_image(image, contours, hierarchy, max_area, min_area
|
|
|
|
|
for point in polygon.exterior.coords], dtype=np.uint))
|
|
|
|
|
return found_polygons_early
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def filter_contours_area_of_image_tables(image, contours, hierarchy, max_area, min_area):
|
|
|
|
|
found_polygons_early = []
|
|
|
|
|
for jv,c in enumerate(contours):
|
|
|
|
@ -71,6 +76,7 @@ def filter_contours_area_of_image_tables(image, contours, hierarchy, max_area, m
|
|
|
|
|
for point in polygon.exterior.coords], dtype=np.int32))
|
|
|
|
|
return found_polygons_early
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def find_new_features_of_contours(contours_main):
|
|
|
|
|
areas_main = np.array([cv2.contourArea(contours_main[j])
|
|
|
|
|
for j in range(len(contours_main))])
|
|
|
|
@ -114,6 +120,7 @@ def find_new_features_of_contours(contours_main):
|
|
|
|
|
|
|
|
|
|
return cx_main, cy_main, x_min_main, x_max_main, y_min_main, y_max_main, y_corr_x_min_from_argmin
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def find_features_of_contours(contours_main):
|
|
|
|
|
areas_main=np.array([cv2.contourArea(contours_main[j]) for j in range(len(contours_main))])
|
|
|
|
|
M_main=[cv2.moments(contours_main[j]) for j in range(len(contours_main))]
|
|
|
|
@ -127,12 +134,14 @@ def find_features_of_contours(contours_main):
|
|
|
|
|
|
|
|
|
|
return y_min_main, y_max_main
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def return_parent_contours(contours, hierarchy):
|
|
|
|
|
contours_parent = [contours[i]
|
|
|
|
|
for i in range(len(contours))
|
|
|
|
|
if hierarchy[0][i][3] == -1]
|
|
|
|
|
return contours_parent
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def return_contours_of_interested_region(region_pre_p, pixel, min_area=0.0002):
|
|
|
|
|
# pixels of images are identified by 5
|
|
|
|
|
if len(region_pre_p.shape) == 3:
|
|
|
|
@ -150,6 +159,7 @@ def return_contours_of_interested_region(region_pre_p, pixel, min_area=0.0002):
|
|
|
|
|
max_area=1, min_area=min_area)
|
|
|
|
|
return contours_imgs
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def do_work_of_contours_in_image(contour, index_r_con, img, slope_first):
|
|
|
|
|
img_copy = np.zeros(img.shape)
|
|
|
|
|
img_copy = cv2.fillPoly(img_copy, pts=[contour], color=(1, 1, 1))
|
|
|
|
@ -166,6 +176,7 @@ def do_work_of_contours_in_image(contour, index_r_con, img, slope_first):
|
|
|
|
|
|
|
|
|
|
return cont_int[0], index_r_con
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def get_textregion_contours_in_org_image_multi(cnts, img, slope_first, map=map):
|
|
|
|
|
if not len(cnts):
|
|
|
|
|
return [], []
|
|
|
|
@ -176,6 +187,7 @@ def get_textregion_contours_in_org_image_multi(cnts, img, slope_first, map=map):
|
|
|
|
|
cnts, range(len(cnts)))
|
|
|
|
|
return tuple(zip(*results))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def get_textregion_contours_in_org_image(cnts, img, slope_first):
|
|
|
|
|
cnts_org = []
|
|
|
|
|
# print(cnts,'cnts')
|
|
|
|
@ -204,6 +216,7 @@ def get_textregion_contours_in_org_image(cnts, img, slope_first):
|
|
|
|
|
|
|
|
|
|
return cnts_org
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def get_textregion_contours_in_org_image_light_old(cnts, img, slope_first):
|
|
|
|
|
zoom = 3
|
|
|
|
|
img = cv2.resize(img, (img.shape[1] // zoom,
|
|
|
|
@ -225,6 +238,7 @@ def get_textregion_contours_in_org_image_light_old(cnts, img, slope_first):
|
|
|
|
|
|
|
|
|
|
return cnts_org
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def do_back_rotation_and_get_cnt_back(contour_par, index_r_con, img, slope_first):
|
|
|
|
|
img_copy = np.zeros(img.shape)
|
|
|
|
|
img_copy = cv2.fillPoly(img_copy, pts=[contour_par], color=(1, 1, 1))
|
|
|
|
@ -239,6 +253,7 @@ def do_back_rotation_and_get_cnt_back(contour_par, index_r_con, img, slope_first
|
|
|
|
|
# print(np.shape(cont_int[0]))
|
|
|
|
|
return cont_int[0], index_r_con
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def get_textregion_contours_in_org_image_light(cnts, img, slope_first, map=map):
|
|
|
|
|
if not len(cnts):
|
|
|
|
|
return []
|
|
|
|
@ -254,6 +269,7 @@ def get_textregion_contours_in_org_image_light(cnts, img, slope_first, map=map):
|
|
|
|
|
contours, indexes = tuple(zip(*results))
|
|
|
|
|
return [i*6 for i in contours]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def return_contours_of_interested_textline(region_pre_p, pixel):
|
|
|
|
|
# pixels of images are identified by 5
|
|
|
|
|
if len(region_pre_p.shape) == 3:
|
|
|
|
@ -271,6 +287,7 @@ def return_contours_of_interested_textline(region_pre_p, pixel):
|
|
|
|
|
thresh, contours_imgs, hierarchy, max_area=1, min_area=0.000000003)
|
|
|
|
|
return contours_imgs
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def return_contours_of_image(image):
|
|
|
|
|
if len(image.shape) == 2:
|
|
|
|
|
image = np.repeat(image[:, :, np.newaxis], 3, axis=2)
|
|
|
|
@ -282,6 +299,7 @@ def return_contours_of_image(image):
|
|
|
|
|
contours, hierarchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
|
|
|
|
|
return contours, hierarchy
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def return_contours_of_interested_region_by_min_size(region_pre_p, pixel, min_size=0.00003):
|
|
|
|
|
# pixels of images are identified by 5
|
|
|
|
|
if len(region_pre_p.shape) == 3:
|
|
|
|
@ -300,6 +318,7 @@ def return_contours_of_interested_region_by_min_size(region_pre_p, pixel, min_si
|
|
|
|
|
|
|
|
|
|
return contours_imgs
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def return_contours_of_interested_region_by_size(region_pre_p, pixel, min_area, max_area):
|
|
|
|
|
# pixels of images are identified by 5
|
|
|
|
|
if len(region_pre_p.shape) == 3:
|
|
|
|
|