This commit is contained in:
Robert Sachunsky 2025-10-25 13:36:48 +02:00 committed by GitHub
commit cf5a0bacd2
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
5 changed files with 1162 additions and 1117 deletions

View file

@ -79,18 +79,28 @@ def machine_based_reading_order(input, dir_in, out, model, log_level):
type=click.Path(file_okay=True, dir_okay=True), type=click.Path(file_okay=True, dir_okay=True),
required=True, required=True,
) )
@click.option(
"--overwrite",
"-O",
help="overwrite (instead of skipping) if output xml exists",
is_flag=True,
)
@click.option( @click.option(
"--log_level", "--log_level",
"-l", "-l",
type=click.Choice(['OFF', 'DEBUG', 'INFO', 'WARN', 'ERROR']), type=click.Choice(['OFF', 'DEBUG', 'INFO', 'WARN', 'ERROR']),
help="Override log level globally to this", help="Override log level globally to this",
) )
def binarization(patches, model_dir, input_image, dir_in, output, log_level): def binarization(patches, model_dir, input_image, dir_in, output, overwrite, log_level):
assert bool(input_image) != bool(dir_in), "Either -i (single input) or -di (directory) must be provided, but not both." assert bool(input_image) != bool(dir_in), "Either -i (single input) or -di (directory) must be provided, but not both."
binarizer = SbbBinarizer(model_dir) binarizer = SbbBinarizer(model_dir)
if log_level: if log_level:
binarizer.log.setLevel(getLevelName(log_level)) binarizer.logger.setLevel(getLevelName(log_level))
binarizer.run(image_path=input_image, use_patches=patches, output=output, dir_in=dir_in) binarizer.run(overwrite=overwrite,
use_patches=patches,
image_path=input_image,
output=output,
dir_in=dir_in)
@main.command() @main.command()

View file

@ -2507,6 +2507,7 @@ class Eynollah:
My_main[ii] < box[3])): My_main[ii] < box[3])):
arg_text_con_main[ii] = jj arg_text_con_main[ii] = jj
check_if_textregion_located_in_a_box = True check_if_textregion_located_in_a_box = True
#print("main/matched", (mx_main[ii], Mx_main[ii], my_main[ii], My_main[ii]), "\tin", box, only_centers)
break break
if not check_if_textregion_located_in_a_box: if not check_if_textregion_located_in_a_box:
dists_tr_from_box = np.linalg.norm(c_boxes - np.array([[cy_main[ii]], [cx_main[ii]]]), axis=0) dists_tr_from_box = np.linalg.norm(c_boxes - np.array([[cy_main[ii]], [cx_main[ii]]]), axis=0)
@ -2514,6 +2515,7 @@ class Eynollah:
(boxes[:, 0] <= cx_main[ii]) & (cx_main[ii] < boxes[:, 1])) (boxes[:, 0] <= cx_main[ii]) & (cx_main[ii] < boxes[:, 1]))
ind_min = np.argmin(np.ma.masked_array(dists_tr_from_box, ~pcontained_in_box)) ind_min = np.argmin(np.ma.masked_array(dists_tr_from_box, ~pcontained_in_box))
arg_text_con_main[ii] = ind_min arg_text_con_main[ii] = ind_min
#print("main/fallback", (mx_main[ii], Mx_main[ii], my_main[ii], My_main[ii]), "\tin", boxes[ind_min], only_centers)
args_contours_main = np.arange(len(contours_only_text_parent)) args_contours_main = np.arange(len(contours_only_text_parent))
order_by_con_main = np.zeros_like(arg_text_con_main) order_by_con_main = np.zeros_like(arg_text_con_main)
@ -2531,6 +2533,7 @@ class Eynollah:
My_head[ii] < box[3])): My_head[ii] < box[3])):
arg_text_con_head[ii] = jj arg_text_con_head[ii] = jj
check_if_textregion_located_in_a_box = True check_if_textregion_located_in_a_box = True
#print("head/matched", (mx_head[ii], Mx_head[ii], my_head[ii], My_head[ii]), "\tin", box, only_centers)
break break
if not check_if_textregion_located_in_a_box: if not check_if_textregion_located_in_a_box:
dists_tr_from_box = np.linalg.norm(c_boxes - np.array([[cy_head[ii]], [cx_head[ii]]]), axis=0) dists_tr_from_box = np.linalg.norm(c_boxes - np.array([[cy_head[ii]], [cx_head[ii]]]), axis=0)
@ -2538,6 +2541,7 @@ class Eynollah:
(boxes[:, 0] <= cx_head[ii]) & (cx_head[ii] < boxes[:, 1])) (boxes[:, 0] <= cx_head[ii]) & (cx_head[ii] < boxes[:, 1]))
ind_min = np.argmin(np.ma.masked_array(dists_tr_from_box, ~pcontained_in_box)) ind_min = np.argmin(np.ma.masked_array(dists_tr_from_box, ~pcontained_in_box))
arg_text_con_head[ii] = ind_min arg_text_con_head[ii] = ind_min
#print("head/fallback", (mx_head[ii], Mx_head[ii], my_head[ii], My_head[ii]), "\tin", boxes[ind_min], only_centers)
args_contours_head = np.arange(len(contours_only_text_parent_h)) args_contours_head = np.arange(len(contours_only_text_parent_h))
order_by_con_head = np.zeros_like(arg_text_con_head) order_by_con_head = np.zeros_like(arg_text_con_head)
@ -2553,7 +2557,7 @@ class Eynollah:
con_inter_box_h = contours_only_text_parent_h[args_contours_box_head] con_inter_box_h = contours_only_text_parent_h[args_contours_box_head]
indexes_sorted, kind_of_texts_sorted, index_by_kind_sorted = order_of_regions( indexes_sorted, kind_of_texts_sorted, index_by_kind_sorted = order_of_regions(
textline_mask_tot[ys, xs], con_inter_box, con_inter_box_h, box[2]) textline_mask_tot[ys, xs], con_inter_box, con_inter_box_h, box[2], box[0])
order_of_texts, id_of_texts = order_and_id_of_texts( order_of_texts, id_of_texts = order_and_id_of_texts(
con_inter_box, con_inter_box_h, con_inter_box, con_inter_box_h,
@ -2587,7 +2591,7 @@ class Eynollah:
try: try:
results = match_boxes(False) results = match_boxes(False)
except Exception as why: except Exception as why:
self.logger.error(why) self.logger.exception(why)
results = match_boxes(True) results = match_boxes(True)
self.logger.debug("exit do_order_of_regions") self.logger.debug("exit do_order_of_regions")
@ -2665,45 +2669,35 @@ class Eynollah:
return layout_org, contours_new return layout_org, contours_new
def delete_separator_around(self, spliter_y,peaks_neg,image_by_region, pixel_line, pixel_table): def delete_separator_around(self, splitter_y, peaks_neg, image_by_region, label_seps, label_table):
# format of subboxes: box=[x1, x2 , y1, y2] # format of subboxes: box=[x1, x2 , y1, y2]
pix_del = 100 pix_del = 100
if len(image_by_region.shape)==3: for i in range(len(splitter_y)-1):
for i in range(len(spliter_y)-1): for j in range(1,len(peaks_neg[i])-1):
for j in range(1,len(peaks_neg[i])-1): where = np.index_exp[splitter_y[i]:
ys = slice(int(spliter_y[i]), splitter_y[i+1],
int(spliter_y[i+1])) peaks_neg[i][j] - pix_del:
xs = slice(peaks_neg[i][j] - pix_del, peaks_neg[i][j] + pix_del,
peaks_neg[i][j] + pix_del) :]
image_by_region[ys,xs,0][image_by_region[ys,xs,0]==pixel_line] = 0 if image_by_region.ndim < 3:
image_by_region[ys,xs,0][image_by_region[ys,xs,1]==pixel_line] = 0 where = where[:2]
image_by_region[ys,xs,0][image_by_region[ys,xs,2]==pixel_line] = 0 else:
print("image_by_region ndim is 3!") # rs
image_by_region[ys,xs,0][image_by_region[ys,xs,0]==pixel_table] = 0 image_by_region[where][image_by_region[where] == label_seps] = 0
image_by_region[ys,xs,0][image_by_region[ys,xs,1]==pixel_table] = 0 image_by_region[where][image_by_region[where] == label_table] = 0
image_by_region[ys,xs,0][image_by_region[ys,xs,2]==pixel_table] = 0
else:
for i in range(len(spliter_y)-1):
for j in range(1,len(peaks_neg[i])-1):
ys = slice(int(spliter_y[i]),
int(spliter_y[i+1]))
xs = slice(peaks_neg[i][j] - pix_del,
peaks_neg[i][j] + pix_del)
image_by_region[ys,xs][image_by_region[ys,xs]==pixel_line] = 0
image_by_region[ys,xs][image_by_region[ys,xs]==pixel_table] = 0
return image_by_region return image_by_region
def add_tables_heuristic_to_layout( def add_tables_heuristic_to_layout(
self, image_regions_eraly_p, boxes, self, image_regions_eraly_p, boxes,
slope_mean_hor, spliter_y, peaks_neg_tot, image_revised, slope_mean_hor, splitter_y, peaks_neg_tot, image_revised,
num_col_classifier, min_area, pixel_line): num_col_classifier, min_area, label_seps):
pixel_table =10 label_table =10
image_revised_1 = self.delete_separator_around(spliter_y, peaks_neg_tot, image_revised, pixel_line, pixel_table) image_revised_1 = self.delete_separator_around(splitter_y, peaks_neg_tot, image_revised, label_seps, label_table)
try: try:
image_revised_1[:,:30][image_revised_1[:,:30]==pixel_line] = 0 image_revised_1[:,:30][image_revised_1[:,:30]==label_seps] = 0
image_revised_1[:,-30:][image_revised_1[:,-30:]==pixel_line] = 0 image_revised_1[:,-30:][image_revised_1[:,-30:]==label_seps] = 0
except: except:
pass pass
boxes = np.array(boxes, dtype=int) # to be on the safe side boxes = np.array(boxes, dtype=int) # to be on the safe side
@ -2714,7 +2708,7 @@ class Eynollah:
_, thresh = cv2.threshold(image_col, 0, 255, 0) _, thresh = cv2.threshold(image_col, 0, 255, 0)
contours,hirarchy=cv2.findContours(thresh.copy(), cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE) contours,hirarchy=cv2.findContours(thresh.copy(), cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)
if indiv==pixel_table: if indiv==label_table:
main_contours = filter_contours_area_of_image_tables(thresh, contours, hirarchy, main_contours = filter_contours_area_of_image_tables(thresh, contours, hirarchy,
max_area=1, min_area=0.001) max_area=1, min_area=0.001)
else: else:
@ -2730,11 +2724,11 @@ class Eynollah:
box_xs = slice(*boxes[i][0:2]) box_xs = slice(*boxes[i][0:2])
image_box = img_comm[box_ys, box_xs] image_box = img_comm[box_ys, box_xs]
try: try:
image_box_tabels_1 = (image_box == pixel_table) * 1 image_box_tabels_1 = (image_box == label_table) * 1
contours_tab,_=return_contours_of_image(image_box_tabels_1) contours_tab,_=return_contours_of_image(image_box_tabels_1)
contours_tab=filter_contours_area_of_image_tables(image_box_tabels_1,contours_tab,_,1,0.003) contours_tab=filter_contours_area_of_image_tables(image_box_tabels_1,contours_tab,_,1,0.003)
image_box_tabels_1 = (image_box == pixel_line).astype(np.uint8) * 1 image_box_tabels_1 = (image_box == label_seps).astype(np.uint8) * 1
image_box_tabels_and_m_text = ( (image_box == pixel_table) | image_box_tabels_and_m_text = ( (image_box == label_table) |
(image_box == 1) ).astype(np.uint8) * 1 (image_box == 1) ).astype(np.uint8) * 1
image_box_tabels_1 = cv2.dilate(image_box_tabels_1, KERNEL, iterations=5) image_box_tabels_1 = cv2.dilate(image_box_tabels_1, KERNEL, iterations=5)
@ -2796,7 +2790,7 @@ class Eynollah:
y_up_tabs=[] y_up_tabs=[]
for ii in range(len(y_up_tabs)): for ii in range(len(y_up_tabs)):
image_box[y_up_tabs[ii]:y_down_tabs[ii]] = pixel_table image_box[y_up_tabs[ii]:y_down_tabs[ii]] = label_table
image_revised_last[box_ys, box_xs] = image_box image_revised_last[box_ys, box_xs] = image_box
else: else:
@ -2807,14 +2801,14 @@ class Eynollah:
image_revised_last[box_ys, box_xs] = image_box image_revised_last[box_ys, box_xs] = image_box
if num_col_classifier==1: if num_col_classifier==1:
img_tables_col_1 = (image_revised_last == pixel_table).astype(np.uint8) img_tables_col_1 = (image_revised_last == label_table).astype(np.uint8)
contours_table_col1, _ = return_contours_of_image(img_tables_col_1) contours_table_col1, _ = return_contours_of_image(img_tables_col_1)
_,_ ,_ , _, y_min_tab_col1 ,y_max_tab_col1, _= find_new_features_of_contours(contours_table_col1) _,_ ,_ , _, y_min_tab_col1 ,y_max_tab_col1, _= find_new_features_of_contours(contours_table_col1)
if len(y_min_tab_col1)>0: if len(y_min_tab_col1)>0:
for ijv in range(len(y_min_tab_col1)): for ijv in range(len(y_min_tab_col1)):
image_revised_last[int(y_min_tab_col1[ijv]):int(y_max_tab_col1[ijv])] = pixel_table image_revised_last[int(y_min_tab_col1[ijv]):int(y_max_tab_col1[ijv])] = label_table
return image_revised_last return image_revised_last
def get_tables_from_model(self, img, num_col_classifier): def get_tables_from_model(self, img, num_col_classifier):
@ -2976,7 +2970,7 @@ class Eynollah:
max(self.num_col_lower or num_col_classifier, max(self.num_col_lower or num_col_classifier,
num_col_classifier)) num_col_classifier))
except Exception as why: except Exception as why:
self.logger.error(why) self.logger.exception(why)
num_col = None num_col = None
#print("inside graphics 3 ", time.time() - t_in_gr) #print("inside graphics 3 ", time.time() - t_in_gr)
return (num_col, num_col_classifier, img_only_regions, page_coord, image_page, mask_images, mask_lines, return (num_col, num_col_classifier, img_only_regions, page_coord, image_page, mask_images, mask_lines,
@ -3044,7 +3038,7 @@ class Eynollah:
if not num_column_is_classified: if not num_column_is_classified:
num_col_classifier = num_col + 1 num_col_classifier = num_col + 1
except Exception as why: except Exception as why:
self.logger.error(why) self.logger.exception(why)
num_col = None num_col = None
return (num_col, num_col_classifier, img_only_regions, page_coord, image_page, mask_images, mask_lines, return (num_col, num_col_classifier, img_only_regions, page_coord, image_page, mask_images, mask_lines,
text_regions_p_1, cont_page, table_prediction) text_regions_p_1, cont_page, table_prediction)
@ -3149,14 +3143,14 @@ class Eynollah:
text_regions_p_1_n = None text_regions_p_1_n = None
textline_mask_tot_d = None textline_mask_tot_d = None
regions_without_separators_d = None regions_without_separators_d = None
pixel_lines = 3 label_seps = 3
if np.abs(slope_deskew) < SLOPE_THRESHOLD: if np.abs(slope_deskew) < SLOPE_THRESHOLD:
_, _, matrix_of_lines_ch, splitter_y_new, _ = find_number_of_columns_in_document( _, _, matrix_of_seps_ch, splitter_y_new, _ = find_number_of_columns_in_document(
text_regions_p, num_col_classifier, self.tables, pixel_lines) text_regions_p, num_col_classifier, self.tables, label_seps)
if np.abs(slope_deskew) >= SLOPE_THRESHOLD: if np.abs(slope_deskew) >= SLOPE_THRESHOLD:
_, _, matrix_of_lines_ch_d, splitter_y_new_d, _ = find_number_of_columns_in_document( _, _, matrix_of_seps_ch_d, splitter_y_new_d, _ = find_number_of_columns_in_document(
text_regions_p_1_n, num_col_classifier, self.tables, pixel_lines) text_regions_p_1_n, num_col_classifier, self.tables, label_seps)
#print(time.time()-t_0_box,'time box in 2') #print(time.time()-t_0_box,'time box in 2')
self.logger.info("num_col_classifier: %s", num_col_classifier) self.logger.info("num_col_classifier: %s", num_col_classifier)
@ -3171,7 +3165,7 @@ class Eynollah:
t1 = time.time() t1 = time.time()
if np.abs(slope_deskew) < SLOPE_THRESHOLD: if np.abs(slope_deskew) < SLOPE_THRESHOLD:
boxes, peaks_neg_tot_tables = return_boxes_of_images_by_order_of_reading_new( boxes, peaks_neg_tot_tables = return_boxes_of_images_by_order_of_reading_new(
splitter_y_new, regions_without_separators, matrix_of_lines_ch, splitter_y_new, regions_without_separators, matrix_of_seps_ch,
num_col_classifier, erosion_hurts, self.tables, self.right2left) num_col_classifier, erosion_hurts, self.tables, self.right2left)
boxes_d = None boxes_d = None
self.logger.debug("len(boxes): %s", len(boxes)) self.logger.debug("len(boxes): %s", len(boxes))
@ -3183,17 +3177,17 @@ class Eynollah:
else: else:
text_regions_p_tables = np.copy(text_regions_p) text_regions_p_tables = np.copy(text_regions_p)
text_regions_p_tables[(table_prediction == 1)] = 10 text_regions_p_tables[(table_prediction == 1)] = 10
pixel_line = 3 label_seps = 3
img_revised_tab2 = self.add_tables_heuristic_to_layout( img_revised_tab2 = self.add_tables_heuristic_to_layout(
text_regions_p_tables, boxes, 0, splitter_y_new, peaks_neg_tot_tables, text_regions_p_tables, text_regions_p_tables, boxes, 0, splitter_y_new, peaks_neg_tot_tables, text_regions_p_tables,
num_col_classifier , 0.000005, pixel_line) num_col_classifier , 0.000005, label_seps)
#print(time.time()-t_0_box,'time box in 3.2') #print(time.time()-t_0_box,'time box in 3.2')
img_revised_tab2, contoures_tables = self.check_iou_of_bounding_box_and_contour_for_tables( img_revised_tab2, contoures_tables = self.check_iou_of_bounding_box_and_contour_for_tables(
img_revised_tab2, table_prediction, 10, num_col_classifier) img_revised_tab2, table_prediction, 10, num_col_classifier)
#print(time.time()-t_0_box,'time box in 3.3') #print(time.time()-t_0_box,'time box in 3.3')
else: else:
boxes_d, peaks_neg_tot_tables_d = return_boxes_of_images_by_order_of_reading_new( boxes_d, peaks_neg_tot_tables_d = return_boxes_of_images_by_order_of_reading_new(
splitter_y_new_d, regions_without_separators_d, matrix_of_lines_ch_d, splitter_y_new_d, regions_without_separators_d, matrix_of_seps_ch_d,
num_col_classifier, erosion_hurts, self.tables, self.right2left) num_col_classifier, erosion_hurts, self.tables, self.right2left)
boxes = None boxes = None
self.logger.debug("len(boxes): %s", len(boxes_d)) self.logger.debug("len(boxes): %s", len(boxes_d))
@ -3206,11 +3200,11 @@ class Eynollah:
text_regions_p_tables = np.round(text_regions_p_tables) text_regions_p_tables = np.round(text_regions_p_tables)
text_regions_p_tables[(text_regions_p_tables != 3) & (table_prediction_n == 1)] = 10 text_regions_p_tables[(text_regions_p_tables != 3) & (table_prediction_n == 1)] = 10
pixel_line = 3 label_seps = 3
img_revised_tab2 = self.add_tables_heuristic_to_layout( img_revised_tab2 = self.add_tables_heuristic_to_layout(
text_regions_p_tables, boxes_d, 0, splitter_y_new_d, text_regions_p_tables, boxes_d, 0, splitter_y_new_d,
peaks_neg_tot_tables_d, text_regions_p_tables, peaks_neg_tot_tables_d, text_regions_p_tables,
num_col_classifier, 0.000005, pixel_line) num_col_classifier, 0.000005, label_seps)
img_revised_tab2_d,_ = self.check_iou_of_bounding_box_and_contour_for_tables( img_revised_tab2_d,_ = self.check_iou_of_bounding_box_and_contour_for_tables(
img_revised_tab2, table_prediction_n, 10, num_col_classifier) img_revised_tab2, table_prediction_n, 10, num_col_classifier)
@ -3329,14 +3323,14 @@ class Eynollah:
regions_without_separators = (text_regions_p[:,:] == 1)*1 regions_without_separators = (text_regions_p[:,:] == 1)*1
regions_without_separators[table_prediction == 1] = 1 regions_without_separators[table_prediction == 1] = 1
pixel_lines=3 label_seps=3
if np.abs(slope_deskew) < SLOPE_THRESHOLD: if np.abs(slope_deskew) < SLOPE_THRESHOLD:
num_col, _, matrix_of_lines_ch, splitter_y_new, _ = find_number_of_columns_in_document( num_col, _, matrix_of_lines_ch, splitter_y_new, _ = find_number_of_columns_in_document(
text_regions_p, num_col_classifier, self.tables, pixel_lines) text_regions_p, num_col_classifier, self.tables, label_seps)
if np.abs(slope_deskew) >= SLOPE_THRESHOLD: if np.abs(slope_deskew) >= SLOPE_THRESHOLD:
num_col_d, _, matrix_of_lines_ch_d, splitter_y_new_d, _ = find_number_of_columns_in_document( num_col_d, _, matrix_of_lines_ch_d, splitter_y_new_d, _ = find_number_of_columns_in_document(
text_regions_p_1_n, num_col_classifier, self.tables, pixel_lines) text_regions_p_1_n, num_col_classifier, self.tables, label_seps)
if num_col_classifier>=3: if num_col_classifier>=3:
if np.abs(slope_deskew) < SLOPE_THRESHOLD: if np.abs(slope_deskew) < SLOPE_THRESHOLD:
@ -3355,10 +3349,10 @@ class Eynollah:
num_col_classifier, erosion_hurts, self.tables, self.right2left) num_col_classifier, erosion_hurts, self.tables, self.right2left)
text_regions_p_tables = np.copy(text_regions_p) text_regions_p_tables = np.copy(text_regions_p)
text_regions_p_tables[:,:][(table_prediction[:,:]==1)] = 10 text_regions_p_tables[:,:][(table_prediction[:,:]==1)] = 10
pixel_line = 3 label_seps = 3
img_revised_tab2 = self.add_tables_heuristic_to_layout( img_revised_tab2 = self.add_tables_heuristic_to_layout(
text_regions_p_tables, boxes, 0, splitter_y_new, peaks_neg_tot_tables, text_regions_p_tables, text_regions_p_tables, boxes, 0, splitter_y_new, peaks_neg_tot_tables, text_regions_p_tables,
num_col_classifier , 0.000005, pixel_line) num_col_classifier , 0.000005, label_seps)
img_revised_tab2,contoures_tables = self.check_iou_of_bounding_box_and_contour_for_tables( img_revised_tab2,contoures_tables = self.check_iou_of_bounding_box_and_contour_for_tables(
img_revised_tab2, table_prediction, 10, num_col_classifier) img_revised_tab2, table_prediction, 10, num_col_classifier)
@ -3370,11 +3364,11 @@ class Eynollah:
text_regions_p_tables = np.round(text_regions_p_tables) text_regions_p_tables = np.round(text_regions_p_tables)
text_regions_p_tables[(text_regions_p_tables != 3) & (table_prediction_n == 1)] = 10 text_regions_p_tables[(text_regions_p_tables != 3) & (table_prediction_n == 1)] = 10
pixel_line = 3 label_seps = 3
img_revised_tab2 = self.add_tables_heuristic_to_layout( img_revised_tab2 = self.add_tables_heuristic_to_layout(
text_regions_p_tables, boxes_d, 0, splitter_y_new_d, text_regions_p_tables, boxes_d, 0, splitter_y_new_d,
peaks_neg_tot_tables_d, text_regions_p_tables, peaks_neg_tot_tables_d, text_regions_p_tables,
num_col_classifier, 0.000005, pixel_line) num_col_classifier, 0.000005, label_seps)
img_revised_tab2_d,_ = self.check_iou_of_bounding_box_and_contour_for_tables( img_revised_tab2_d,_ = self.check_iou_of_bounding_box_and_contour_for_tables(
img_revised_tab2, table_prediction_n, 10, num_col_classifier) img_revised_tab2, table_prediction_n, 10, num_col_classifier)
@ -4717,12 +4711,12 @@ class Eynollah:
regions_without_separators_d = cv2.erode(regions_without_separators_d[:, :], KERNEL, iterations=6) regions_without_separators_d = cv2.erode(regions_without_separators_d[:, :], KERNEL, iterations=6)
if np.abs(slope_deskew) < SLOPE_THRESHOLD: if np.abs(slope_deskew) < SLOPE_THRESHOLD:
boxes, peaks_neg_tot_tables = return_boxes_of_images_by_order_of_reading_new( boxes, _ = return_boxes_of_images_by_order_of_reading_new(
splitter_y_new, regions_without_separators, matrix_of_lines_ch, splitter_y_new, regions_without_separators, matrix_of_lines_ch,
num_col_classifier, erosion_hurts, self.tables, self.right2left, num_col_classifier, erosion_hurts, self.tables, self.right2left,
logger=self.logger) logger=self.logger)
else: else:
boxes_d, peaks_neg_tot_tables_d = return_boxes_of_images_by_order_of_reading_new( boxes_d, _ = return_boxes_of_images_by_order_of_reading_new(
splitter_y_new_d, regions_without_separators_d, matrix_of_lines_ch_d, splitter_y_new_d, regions_without_separators_d, matrix_of_lines_ch_d,
num_col_classifier, erosion_hurts, self.tables, self.right2left, num_col_classifier, erosion_hurts, self.tables, self.right2left,
logger=self.logger) logger=self.logger)

View file

@ -25,7 +25,7 @@ class SbbBinarizer:
def __init__(self, model_dir, logger=None): def __init__(self, model_dir, logger=None):
self.model_dir = model_dir self.model_dir = model_dir
self.log = logger if logger else logging.getLogger('SbbBinarizer') self.logger = logger if logger else logging.getLogger('SbbBinarizer')
self.start_new_session() self.start_new_session()
@ -315,64 +315,46 @@ class SbbBinarizer:
prediction_true = prediction_true.astype(np.uint8) prediction_true = prediction_true.astype(np.uint8)
return prediction_true[:,:,0] return prediction_true[:,:,0]
def run(self, image=None, image_path=None, output=None, use_patches=False, dir_in=None): def run(self, image_path=None, output=None, dir_in=None, use_patches=False, overwrite=False):
# print(dir_in,'dir_in') if dir_in:
if not dir_in: ls_imgs = [(os.path.join(dir_in, image_filename),
if (image is not None and image_path is not None) or \ os.path.join(output, os.path.splitext(image_filename)[0] + '.png'))
(image is None and image_path is None): for image_filename in filter(is_image_filename,
raise ValueError("Must pass either a opencv2 image or an image_path") os.listdir(dir_in))]
if image_path is not None:
image = cv2.imread(image_path)
img_last = 0
for n, (model, model_file) in enumerate(zip(self.models, self.model_files)):
self.log.info('Predicting with model %s [%s/%s]' % (model_file, n + 1, len(self.model_files)))
res = self.predict(model, image, use_patches)
img_fin = np.zeros((res.shape[0], res.shape[1], 3))
res[:, :][res[:, :] == 0] = 2
res = res - 1
res = res * 255
img_fin[:, :, 0] = res
img_fin[:, :, 1] = res
img_fin[:, :, 2] = res
img_fin = img_fin.astype(np.uint8)
img_fin = (res[:, :] == 0) * 255
img_last = img_last + img_fin
kernel = np.ones((5, 5), np.uint8)
img_last[:, :][img_last[:, :] > 0] = 255
img_last = (img_last[:, :] == 0) * 255
if output:
cv2.imwrite(output, img_last)
return img_last
else: else:
ls_imgs = list(filter(is_image_filename, os.listdir(dir_in))) ls_imgs = [(image_path, output)]
for image_name in ls_imgs:
image_stem = image_name.split('.')[0]
print(image_name,'image_name')
image = cv2.imread(os.path.join(dir_in,image_name) )
img_last = 0
for n, (model, model_file) in enumerate(zip(self.models, self.model_files)):
self.log.info('Predicting with model %s [%s/%s]' % (model_file, n + 1, len(self.model_files)))
res = self.predict(model, image, use_patches) for input_path, output_path in ls_imgs:
print(input_path, 'image_name')
if os.path.exists(output_path):
if overwrite:
self.logger.warning("will overwrite existing output file '%s'", output_ptah)
else:
self.logger.warning("will skip input for existing output file '%s'", output_path)
image = cv2.imread(input_path)
result = self.run_single(image, use_patches)
cv2.imwrite(output_path, result)
img_fin = np.zeros((res.shape[0], res.shape[1], 3)) def run_single(self, image: np.ndarray, use_patches=False):
res[:, :][res[:, :] == 0] = 2 img_last = 0
res = res - 1 for n, (model, model_file) in enumerate(zip(self.models, self.model_files)):
res = res * 255 self.logger.info('Predicting with model %s [%s/%s]' % (model_file, n + 1, len(self.model_files)))
img_fin[:, :, 0] = res
img_fin[:, :, 1] = res
img_fin[:, :, 2] = res
img_fin = img_fin.astype(np.uint8) res = self.predict(model, image, use_patches)
img_fin = (res[:, :] == 0) * 255
img_last = img_last + img_fin
kernel = np.ones((5, 5), np.uint8) img_fin = np.zeros((res.shape[0], res.shape[1], 3))
img_last[:, :][img_last[:, :] > 0] = 255 res[:, :][res[:, :] == 0] = 2
img_last = (img_last[:, :] == 0) * 255 res = res - 1
res = res * 255
cv2.imwrite(os.path.join(output, image_stem + '.png'), img_last) img_fin[:, :, 0] = res
img_fin[:, :, 1] = res
img_fin[:, :, 2] = res
img_fin = img_fin.astype(np.uint8)
img_fin = (res[:, :] == 0) * 255
img_last = img_last + img_fin
kernel = np.ones((5, 5), np.uint8)
img_last[:, :][img_last[:, :] > 0] = 255
img_last = (img_last[:, :] == 0) * 255
return img_last

File diff suppressed because it is too large Load diff

View file

@ -14,21 +14,16 @@ from shapely.ops import unary_union, nearest_points
from .rotate import rotate_image, rotation_image_new from .rotate import rotate_image, rotation_image_new
def contours_in_same_horizon(cy_main_hor): def contours_in_same_horizon(cy_main_hor):
X1 = np.zeros((len(cy_main_hor), len(cy_main_hor))) """
X2 = np.zeros((len(cy_main_hor), len(cy_main_hor))) Takes an array of y coords, identifies all pairs among them
which are close to each other, and returns all such pairs
X1[0::1, :] = cy_main_hor[:] by index into the array.
X2 = X1.T """
sort = np.argsort(cy_main_hor)
X_dif = np.abs(X2 - X1) same = np.diff(cy_main_hor[sort] <= 20)
args_help = np.array(range(len(cy_main_hor))) # groups = np.split(sort, np.arange(len(cy_main_hor) - 1)[~same] + 1)
all_args = [] same = np.flatnonzero(same)
for i in range(len(cy_main_hor)): return np.stack((sort[:-1][same], sort[1:][same])).T
list_h = list(args_help[X_dif[i, :] <= 20])
list_h.append(i)
if len(list_h) > 1:
all_args.append(list(set(list_h)))
return np.unique(np.array(all_args, dtype=object))
def find_contours_mean_y_diff(contours_main): def find_contours_mean_y_diff(contours_main):
M_main = [cv2.moments(contours_main[j]) for j in range(len(contours_main))] M_main = [cv2.moments(contours_main[j]) for j in range(len(contours_main))]